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Abstract

We have explored the role of calcium concentration dynamics in the generation of chaos and in
the regularization of the bursting oscillations using a minimal neural circuit of two coupled model
neurons. In regions of the control parameter space where the slowest component, namely the
calcium concentration in the endoplasmic reticulum, weakly depends on the other variables, this
model is analogous to three dimensional systems as found in {1] or [2]. These are minimal models
that describe the fundamental characteristics of the chaotic spiking-bursting behavior observed
in real neurons. We have investigated different regimes of cooperative behavior in large assemblies
of such units using lattices of non-identical Hindmarsh-Rose neurons electrically coupled with
parameters chosen randomly inside the chaotic region. We study the regularization mechanisms
in large assemblies and the development of several spatio-temporal patterns as a function of the
interconnectivity among nearest neighbors.
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1 Introduction

How detailed should a model of a central pattern generator (CPG) describing, say,
locomotion of an animal be? Must it describe, based on genetic information, the protein
composition of the membrane and numerous features of the neuromodulators responsible
for the activity of ion channels of the cell in order to have a biologically justified model
of a neuron and a CPG as a whole? Should one take into account details of the spikes
propagating through axons and their transformation into chemical signals in synapses?
Of course, it would be desirable to take all these factors into consideration. A CPG
model constructed in this fashion would, in principle, explain and predict the dependence
of rhythmic activity on any parameters, e. g., on the change of ambient temperature. It

1 Corresponding author. Phone (619) 534-6753. Fax: (619) 534-7664. Email: mrabinovich@ucsd.edu

0378-4371/99/$ - see front matter © 1999 Elsevier Science B.V. All rights reserved.
PH: S0378-4371(98)00528-7



406 M. 1. Rabinovich et al. / Physica A 263 (1999) 405414

seems clear that it is presently impossible to construct such a detailed model: ion channels
are numerous, couplings among neurons are sometimes ambiguous, and the neurons are
different as a rule. In addition, the rich architecture of neural circuits and the diversified
characteristic time scales determining dynamic activity of constituent elements make a
direct attack very difficult. What can one rely upon in such a situation? We believe
there are two interesting directions: (i) the detailed investigation of the simplest circuits
within the framework of realistic models of neurons and synapses justified biologically [3],
and (ii) construction of phenomenological models of complex neural circuits consisting
of large assemblies of simple model neurons [4]. In an ideal case, a combination of these
two ways should give rather effective, structurally stable (in the sense of the theory of
dynamic systems) models of neural circuits that take into account both information about
elementary acts of coupling among real neurons and key cooperative effects.

In this research we attempt to apply aspects of each of these approaches to neural
circuits consisting of spiking-bursting chaotic neurons. In particular, we investigate the
mechanisms of synchronization and regularization of neural network dynamics for (i)
a system of two coupled neurons, and (ii) a large lattice of different chaotic neurons.
A detailed model of spiking-bursting chaotic neurons is used for a minimal circuit, with
primary attention focused on the role of slow [Ca?*] dynamics as it affects the processes of
synchronization and regularization. A three-dimensional model of spiking-bursting chaotic
neurons is used for the lattice simulations. There we focus on the spatio-temporal patterns
observed in the cooperative behavior and on the analysis of the averaged behavior of a
group of neurons (coarse grain dynamics).

2 Synchronization and Regularization Phenomena in Two Coupled Chaotic
Neurons. The Role of Endoplasmic Reticular Ca?t Dynamics.

Based on experimental observations [5,6], we have built a two-compartment model of
the lobster’s stomatogastric LP neuron [3] to study chaotic and synchronization phenom-
ena observed in the stomatogastric CPG. The model incorporates six active ionic currents
distributed in two compartments (soma-neuropil and axon) depending on their slow/fast
evolution (see figure 1). A detailed calcium dynamics for the soma compartment includes
Ca®* storage in the endoplasmic reticulum and Ca?* diffusion through the luminal and
through the cytoplasmic membrane. Recent studies indicate that the presence of calcium
oscillations inside the endoplasmic reticulum has significant effects in the cytoplasmic
membrane potential oscillations [7-10]. Our simulations show that the slow calcium con-
centration dynamics inside the endoplasmic reticulum ([Ca®*].,) may have an important
role in generating and regulating the chaotic bursting-spiking activity of these neurons.
The concentration of inositol 1,4,5-triphosphate (I1P;) receptor appears as a control pa-
rameter in this model.

A complete description of the currents (conductance variables described by Hodgkin-
Huxley and Goldman-Hodgkin-Katz formalisms) and the calcium dynamics for the single
neuron model can be found in [3]. For all the simulations described in this paper, the
IPj concentration was set at the regime where the neurons fire chaotic bursts. We have
reproduced four sets of experiments carried out using the dynamic clamp technique which
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MODEL OF TWO STOMATOGASTRIC NEURONS

Calcium Dynamics: C,
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Fig. 1. Schematic description of the model of two stomatogastric LP neurons coupled electri-
cally. The model includes a detailed characterization of the [Ca?*] storage and diffusion in the
endoplasmic reticulum of each neuron. fi, f2 and f3 stand for complex dependencies on their
arguments and on other biophysical parameters such as pumping rates, buffering coefficients
and activation and inactivation variables.

allows us to change the conductance of the electrical coupling between two real neurons
(the conductance associated with the electrical coupling between these type of neurons
is gec =~ 0.100 — 0.200uS in the natural state). Depending on the strength of the cou-
pling, different collective behaviors are observed: from independent chaotic bursting to
synchronized chaotic bursting and to anti-phase regular activity.

When the two model neurons are coupled with null or small coupling conductance (ge. =
0.0014S) independent chaotic behavior is observed (see [3] for a detailed characterization
of the chaos in the single neuron model). Membrane potential bursts range from half
a second to two seconds without periodicity (see figure 2a). The number of spikes on
the top of the slow waves also changes from burst to burst. Note that local maxima of
cytoplasmic calcium concentration ([Ca?*]) mark the end of the burst plateaus. Calcium
concentration inside the endoplasmic reticulum ([Ca?*]xx) evolves slowly modulating (in
anti-phase) the faster oscillations of cytoplasmic [Ca?*| and influencing on the length of
the voltage plateaus. We will discuss the evolution of these three variables for different
coupling strengths ge..

A moderate value (g, = 0.05uS) for the coupling conductance between the two model
neurons causes burst (slow wave) synchronization but not spike synchronization (see fig-
ure 2b and also V;(¢) vs. Va(t) plot in figure 3b). This synchronization of the slow waves is
the observed behavior for two real stomatogastric neurons interacting with their natural
electrical coupling. Note that, in our simulations for this conductivity range, [Ca?*] and
[Ca?*]gr oscillate in a similar fashion for both neurons but they are not completely in
phase, in spite of the existing burst synchronization for the membrane potential.

Whenever the two model neurons are coupled with a high electrical conductance, g.. >
0.2uS, complete synchronization both for slow waves and fast action potentials is observed,
see figure 2c and also Vj(t) vs. V(t) plot for the membrane potentials in figure 3c. Note
that [Ca®*] and [Ca**]gg now oscillate more in phase between the two neurons than in
the previous cases, but yet their trajectories do not overlap.

For all three cases discussed so far, small, medium and high positive coupling conduc-
tance, the bursting activity remains irregular regardless of the degree of synchronization.
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Fig. 2. Four different collective behaviors observed when two LP model neurons are coupled
electrically (cf. figure 2 in [5]): a) independent chaotic bursting activity, b) burst synchronization,
c) total synchronization and d) anti-phase synchronization with regularization. Activity for
neuron one is plotted with a dark trace; neuron two is represented with a light trace. In each
of the graphs, from top to bottom: membrane potential V;,, cytoplasmic calcium concentration
([Ca**]), and calcium concentration inside the endoplasmic reticulum ([Ca?*]gg).

Thus, synchronization occurs without regularization. When the two neurons are coupled
with a small negative conductance g,, = —0.0014S, thus inverting the sign of the current
coming from the electrical coupling in both neurons, anti-phase synchronization is ob-
served in the membrane potentials, see figure 2d. Furthermore, the two neurons regulate
their bursting behavior in the sense that the lengths of the burst are kept uniform. As
can be noted in figure 2d, [Ca®*|gg remains nearly constant for the two neurons, while
[Ca?*] oscillates regularly but in anti-phase with respect to the other neuron. Note than
in the previous cases [Ca®t|gg oscillated slowly with a large amplitude. In our model,
chaotic behavior is sustained in the single neuron model whenever [Ca**)gr oscillations
are present. If [Ca’*]gp is kept constant, the model produces regular bursting activity.
For a small negative electrical coupling, the calcium dynamics in the ER of each neuron
is maintained constant, since the fast oscillations of calcium in the cytoplasm are rapid
enough and regular enough to have no influence on the slower calcium diffusion through
the endoplasmic reticulum membrane. Again, once the calcium concentration in the ER is
kept constant, regularization of the chaotic behavior occurs. This behavior is also observed
when the regularization is obtained by periodic driving through small periodic pulses of
current injection and when the two neurons are coupled with mutual inhibitory chemical
synapses.

All four cases of synchronization observed in the experiments with electrically coupled
real neurons and reproduced here using our model are summarized in figure 3. This figure
displays Vi(t), the membrane voltage in neuron 1, against V(¢) in neuron 2 and shows
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the synchronization status for both slow and fast oscillations depending on the value of
the electrical coupling conductance g.. between the two neurons. ge. is the only model
parameter changed in these four simulations.

a) ggc= 0.001 b) ggc= 0.05 C) o= 0.2
1 10 rr T T
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Fig. 3. Portraits of membrane potential V; vs. V5 showing the synchronization phenomena be-
tween the two neurons for all four cases discussed previously: a) independent bursting activity,
b) slow wave synchronization, ¢) total synchronization and d) anti-phase regularization.

The modeling of small lattices of LP two-compartment neurons with electric couplings
among nearest neighbors show that this regularization mechanism induced by the slow
dynamics of [Ca?*|gg is also robust when the neurons are coupled to more than one
neighbor.

3 Pattern formation with anti-phase regularization

As we discussed in the previous section, a pair of electrically coupled chaotic neurons
with mutual negative conductance behave regularly in the regime of anti-phase bursting
oscillations. Using a detailed model of a stomatogastric neuron, we have pointed out the
role that the slow calcium dynamics may have in the origin of this regularization. Now
we turn from the analysis of the dynamical origin of the regularization in a system of two
neurons to the study of the collective behavior in large assemblies of electrically coupled
neurons that have similar slow dynamics involved in the generation of their spiking-
bursting behavior. In order to make feasible the simulation of large lattices of neurons,
here we use the Hindmarsh-Rose (H-R) three dimensional system [2] to model each neuron.
This model reproduces the basic characteristics of the chaotic spiking-bursting behavior
observed in CPG neurons.

We have built a network of non-identical H-R neurons with parameters selected ran-
domly in the regime of chaotic oscillations [11]. Each model neuron is connected to its
nearest neighbors through an electrical coupling. The dynamics is described by the fol-
lowing system of equations:

dl—v .

—d;'] =i+ 320 — 2} — Zig+ Lig — Gee 3, (Tij — Tum) (1)
(L,m)eA

dy;.;

=1 5205 — v (2)

dt
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d;:j = —rz;+7S(zi; + 1.6) ’

where 4,7 = 1... N indicate location on the two dimensional N x N lattice A and {,m
indexes run over the four nearest neighbors of each unit (%, j). The parameters used for
all the simulations described in this paper are: I;; = 3.281 £ 0.05, r = 0.0021 and
S = 4. Here, g, is the strength of the electrical coupling, a parameter analogous to the
coupling conductance used in the LP model neurons of the previous section. As in our
previously discussed model of the stomatogastric CPG, the dynamics of the H-R model
is also characterized by two different time scales. Here, we are abstracting this behavior
using just two fast dynamical variables and a slow one. The subsystem of (z;;, 4i;) in
the H-R model is responsible for the fast oscillations or the spiking activity, and the slow
subsystem is represented by z; ;. The fast subsystem is placed in the state space near a
homoclinic bifurcation and, along with the slow subsystem, generates chaotic oscillations.

As in the biophysical model presented in section 2, anti-phase synchronization is ob-
served when a negative value for g.. is used in equation 1. We have studied the formation
of different patterns of activity in the background of these alternating anti-phase oscilla-
tions depending on the size of the network. For small networks (typically in the order of
10 by 10 neurons) total anti-phase synchronization and regularization is observed among
nearest neighbors (see figure 4a, top). We will use the following order parameter a(t) to
measure the evolution of the activity of the network A:

a(t)=% NiA (LZ w,-,j(t)——l— Y w4t (4)

J)EAA AB (ij)eAp

where A4 and Ap represent two interconnected sublattices (chess board configuration)
such that a neuron located in A4 has all its nearest neighbors in Ap, and vice versa
(AaUAp = Aand ApNAg = 0). Ny, and N,, are the number of units in each sublattice.
In figure 4a, dark squares represent the neurons in the subnetwork A, with low activity
(sub-threshold) and white squares represent the neurons in the subnetwork Ag with high
activity (above threshold). The order parameter a(t) is plotted as a function of time at
the bottom of each column in figure 4.

Figure 4b shows a snapshot of the network for a medium (30 by 30) lattice of H-R
networks coupled with negative conductances for a time step when a transition from sub-
threshold to supra-threshold activity occurs. Although not noticeable in the scale used
to plot a(t) in figure 4b, this transition is slower than the one in the previous case. This
allows to distinguish the wave shown in figure 4b whenever the transition takes place.
Figure 4c shows a snapshot of the network activity for a large network composed of 50
by 50 neurons. In this case, well defined waves of state transition separate domains of
anti-phase behavior. The waves are periodic in time over the whole network. This effect
can be understood looking at the behavior of a(t). If, as in this case, the network is big
enough the change from sub-threshold to supra-threshold activity takes place in a time
scale much greater than the previous cases. Furthermore, the system does not stay in
any of these states for a long time and this induces the formation of the spatio-temporal
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Fig. 4. Patterns of anti-phase synchronous behavior for three networks of H-R neurons electrically
coupled with negative conductance (g, = —1.12): a) network of 10 by 10 neurons, b) network
of 30 by 30 neurons, ¢} network of 50 by 50 neurons. At the bottom of each column the order
parameter a(t) is plotted as a function of time.

patterns.

4 Pattern formation and regularization on “coarse-grain” lattices

We have also built networks of H-R neurons with positive values for g, in equation 1.
In this case, the choice for the sign correspond to natural diffusive electrical coupling
among nearest neighbors. We found three main regimes of synchronization depending on
the strength of the electrical coupling ge.: spiking (complete), partial (clustering) and
bursting synchronization. Regularization of the slow wave is observed for all these cases.
The average activity < z(t) >= 1/N? ©),_, z; ;(t) can be used to study the global behav-
ior of the lattice and to identify the temporal characteristics, particularly, to distinguish
among the different types of global synchronization. When there is no synchronization,
the average activity remains very close to a constant value. When the average activity is
periodic and nearly constant at the top of the bursts, the system is in bursting synchro-
nization. When there is complete synchronization, the behavior of any individual unit is
identical to the average activity of the whole lattice.

In spite of the heterogeneity and chaotic behavior of the individual elements, lattices
of spiking-bursting neurons coupled diffusively show striking spatio-temporal patterns:
clusters of synchronization and regularization of the slow dynamics as seen in figure 5.
The boundaries of the clusters are the fronts of phase triggering between in-phase and
out of phase synchronization. These contrast patterns reproduce themselves periodically
in time. This regime coexists in control parameter space within the regime of bursting
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Fig. 5. Evolution of partial synchronization patterns in a network of 100x100 H-R neurons
coupled electrically with positive conductance.

synchronization that is homogeneous in space and periodic in time (bistability).
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Fig. 6. Evolution of coarse grain dynamics in the network shown in figure 5 (gec = 1.5). Top:
Tn/2,N/2, the activity of the neuron located at the center of the cluster, is shown (dark trace)
together with the average activity of the cluster bg(t) for a radius R = 2 (light trace). Bottom:
same figure for R = 20. In this simulation g, = 1.5. Right, degree of synchronization for different
radii of the cluster. See text for further explanation.

The dependence in R for the degree of synchronization between the activity in the
center of the cluster and the average activity in the cluster (g, = 1.5) is shown in figure 6.
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We define its value as (1 — og) x 100, where

[t [t - ba(t)] (5)

to

1
0'}23 = ;1—_,
where bg(t) is the average activity of a cluster centered at (N/2,N/2):
br(t) = Wi—c Yajere Tij(t), and A = {(3,5) : (i — F)* + (i — §)* < R%4,j=1...N}.
This measure reveals the presence of coarse grain phenomena in the activity of such
networks.

The collective dynamics of chaotic neurons with local interactions often exhibit “non-
trivial” cooperative behavior exhibiting a rich variety of phase transitions. Such behavior
is “non-trivial” because the chaotic dynamics of these lattices with short-scale interaction
shows extensive chaos: the number of Lyapunov exponents increases with the size of
the lattice. Actually, the cooperative behavior of chaotic lattices depends strongly on the
strength of the local connection, and this reveals a rich diversity of levels of synchronization
in the coarse grain phenomena.

5 Discussion

In this paper we have used two different models to study the collective behavior of
chaotic spiking-bursting neurons. The first model was a minimal network composed of
two biologically plausible neurons coupled electrically. Using this detailed model we re-
produced experimental results that show how the irregular bursting behavior in the stom-
atogastric neurons can turn to regular when the coupling conductance is changed. We
have also pointed out the role of the slow calcium dynamics in the endoplasmic reticulum
as the main variable that leads the chaotic dynamics in this model. Whenever the interac-
tion between the two neurons makes [Ca?*]ggr dynamics nearly constant (e.g. when fast
[Ca?*].ye oscillations are present in anti-phase behavior), the bursting activity becomes
regular.

We have built several networks of H-R neurons coupled electrically with negative and
positive conductances to study the behavior of large lattices of chaotic bursting neurons.
The size of the network influences on the collective behavior and on the development
of spatio-temporal patterns of activity. We investigated here two different mechanisms
involved in the regularization phenomena of ensembles of spiking-bursting chaotic neu-
rons. The first mechanism is related to the stability of anti-phase behavior of two coupled
neurons, which is provided by either mutual synaptic inhibition or negative electrical cou-
pling. The homoclinic nature of the fast oscillations are regulated by the slow oscillations.
The value of the slow variable increases as the model neuron is spiking. If there is no inhi-
bition to cut the raise of this slow variable, the system will be driven near the homoclinic
bifurcation, which is structurally unstable. Mutual inhibition, either by negative electri-
cal coupling (or synaptic coupling), will avoid that the neuron reaches the structurally
unstable fast oscillations. The second mechanism of regularization (for diffusive coupling)
is related to the synchronization of the slow bursting behavior of individual neurons by
periodic averaged field. Such bind of the regularization is only possible for large lattices
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so that the coarse grain can emerge. The slow dynamics of such course grain is periodic
and it seems reasonable to build simplify versions of the model in the parameter regions
of interest by considering the lattice of coarse grain units with regular dynamics.
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