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The wave functions of the quantum relativistic harmonic oscillator in configuration space
have recently been shown by Aldaya et al. to be expressed by means of a one-parameéter
family of polynomials {HM {€)}2Zo. These polynomials are to be called Relativistic Hermite
Polynomials (briefly RHP) because they reduce to the well-known classical Hermite polyno-
mials in the non-relativistic limit (N — oc). Here, several algebraic and spectral properties of
these polynomials are investigated. As to the former ones, a Rodrigues-type formula, a gener-
ating.function, various recurrence relations and sum rules are found. On the other hand, the
density of zeros 2,,(£) (i.e. the number of zeros per interval) of the nth-degree RHP is studied
by means of the so-called Newton sum rules. The exact values of these quantities, which are
closely related to the moments around the orlgln of §2,(£), are explicitly given in terms of the
parameter N.
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1. Introduction

Aldaya et al. [2] have recently obtained a quantum symmetry algebra of a
relativistic harmonic oscillator in 1+ 1 dimensions generated by the energy,
position and momentum operators. This algebra, which generalizes the non-
relativistic one, has allowed to work out an explicit expression for the
corresponding wavefunctions in configuration space given by (cf. {2, p. 383]):

\I!n(t, f, p,N) — eif/h mwtz—-n/,’l n+N)H(N)(§) (1)
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where the following notation has been used

2
N
hw ¢

N\1/2
al&N) = (H%) ., P&, pN) =V + mila{& N,

2 0
£&.p:N) =2 arctan (‘W (p "p+mc)).

mct

Here, 7 is the principal quantum number, w represents the frequency of the oscil-
lator and p is the momentum. The functions HM)(¢) are polynomials which
reduce to the well known classical Hermite polynomials [1,7] in the non-relativistic
limit ¢ — oo (i.e. when N — oo) and the dimensionless real parameter ¥ must be
greater than 1/2 because of the square integrability of the wavefunction.

From equation (1} and the Casimir operator of the representation of the rela—
tivistic algebra, Aldaya et al. [2] have shown that the RHP p, (& N) = (5)
satisfy the following second order differential equation

52 a2 L _
(1+N)yn N(N-l—n 1)£yn+~h—f(2N+n—1)yn_O, (2)

and the three-term recurrence relation

. 2
A =2(1+ 2 ene) - @L}”—Zﬂ(w%)ﬂﬁ‘?(@.

From these two equations Aldaya et al. have also computed the exphc1t expression
of these polynomials

[7/2] ’
=M Z Aﬁ)-zk (26",
(3)
4 (—1) nIN¥ (N —1/22N +n—1)!

mn=2% = l(n — 2N + k — 1/2)I2N)"2N — 1)’

The differential equation (2) shows that the RHP are a generalization of the
so-called polynomials of hypergeometric type [14]. A polynomial P,(§) is of hyper-
geometric type if it is a solution of a second order differential equation of the form

(&) Py +7(E) Py + Ay P, =0,
where ¢ and 7 are n-independent polynomials of degree not greater than 2 and 1
respectively, and X\, = —nt’ — (n(n —1)/2)c" is a constant. Notice that in the
RHP case r=7(&mN) = (=2/N)N +n—1)¢& then, the function 7 does

depend on the degree of the polynomial solution. Nevertheless, the relation
My = —n1 — {n(n—1)/2)0" is still valid.
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The hypergeometric character of the RHP has been used in [19] to prove that
these polynomials satisfy a varying orthogonality relation from which several
asymptotic properties of the zeros have been deduced. Nagel in [13] also uses
equation (2) to obtain a fruitful connection between these polynomials and the
well known Gegenbauer polynomials [1,7]. By using this connection, Nagel
translates some properties of the Gegenbauer polynomials to the RHP. In
particular, he proves in another way (different from the one used in [19]) the
aforementioned varying orthogonality as well as some other asymptotic
properties. Moreover, an interesting relation between the zeros of Bessel functions
and the ones of RHP is deduced.

in this paper some of the Nikiforov and Uvarov ideas [14] are extended and
applied to differential equations of the RHP kind. In particular, a general
method to obtain a Rodrigues-type formula for the polynomial solutions of
hypergeometric-type differential equations with = 7(£;#) is given in section 2,
which also includes an integral representation and a generating function for the
corresponding polynomials. In section 3, the integral representation is used in
order to build up several recurrence formulas and sum rules involving the RHP.

Finally, section 4 deals with the spectrum of zeros of the RHP. Equation (1)
-shows that such a spectrum is the same as the spectrum of zeros of wave functions
of the relativistic harmonic oscillator. In particular, after proving that all zeros
are real and simple, their density (i.e. the number of zeros per unit interval) is
considered and investigated via the Newton sum rules which, when conveniently
normalized, represent the moments of such density functions.

2. Rodrigues formula: integral representation and generating function

Let us consider the second order differential equation
o)y + TE A+ Myn =0, 4)

where o and 1 are polynomials of degree not greater than 2 and 1 respectively and
A, 18 a constant.

Following some ideas of [14], we denote by V, , = d %1,/ d€® the kth derivative of
the nth degree polynomial solution of equation (4). It is easy to show by induction
that they satisfy a second order differential equation of a similar form

AV + Tel& M)V i + vk Ve = 0, (5)
where :

Tl&m) = 7(Em) + k(€ v =Mk (&) + Wk(k; Do ()

So, a necessary and sufficient condition for equation (4) to have a polynomial solu-
tion of degree nis v, , = 0, thatis A, = —n7'(¢;n) = (n(r — 1)/2)0". Consequently,
 since for equation (2) this last condition holds, one can say that each RHP HY) (&)
is exactly of degree n.
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The selfadjoint form of equation (5) is

d
pT: (COni Vi) + Pr iV iVii =0, (7)

where p, r = p, +{£) is the symmetrization factor of equation (5), i.e.

Pil€) _ ml&m) —d(€) {pn,k(s) =o€ puo(&),
Pnk(8) o(®) oni(6) = 0(€) 0 m(£).

Here 7,.(¢;n) is given by equation (6) and p, ¢(£) is the symmetrization factor of
equation (4). It should be noticed that this factor p,, may depend on the
degree n of the polynomial, contrary to what happens in the conventional
hypergeometric-type differential equations [14]. In spite of this, the method
described by these authors to obtain a Rodrigues formula, can be extended to
the case that we consider here in an almost straightforward way.

Taking into account equation (8) and V,; & = Vy i+1, from equation (7) we obtain

8)

1\ d
PricVne = (— Vn,k) I (Pt Vi er1)
and iterating m — & times in this last expression,
Cor 1 d™*
Vp =—2 Vom), 9
‘ nyk Cn,m Prk dfm_k (Pn,m n,m) ( )
where
r—1 )
Cn,r:(_l)rHVn,jy Cn,O =1, (10)
j=0

and vy ; is defined in equation (6).
Putting £ = 0 and m = r in equation (9) one has the following Rodrigues-type
formula: '
Vo 1 d"
Vig=y, =—2 — —_(¢"p. o). 11
n,O yn Cn’n pn’o d&n ( pn,()) ( )

Notice that V;, , is a constant which depends on the normalization of the poly-
nomial y,. For example, if monic polynomials are considered (i.e. polynomials
with leading coefficient equal to unity) then V,, , = nl.

Moreover, by using Cauchy’s integral formula for analytic functions, equation
(11) provides an integral representation for the polynomial solutions of equation

(4); namely,
Van 1 nl / o(8)"pro(s)
) = L P _ dS, 12
yn(g) Cn,n pn,()(é) Vi T (.S‘ - E)n—i-l ( )
where I" denotes a closed contour in the complex plane encircling the point s = £

and such that o”p, ¢ is analytic in the region inside it.
On the other hand, equation (9) also provides a Rodrigues-type formula for the
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kth derivative of y,. Just putting m = » in equation (9), we obtain

v dk V;a nCn k 1 dHMk ( )
nk = d&k Yn = ‘ Cn ” Ukpn d{n_k G Pn,0

From this expression and using again Cauchy’s integral formula for analytic
functions, an integral representation for the kth derivative of y, can also be given:

d* VonCok 1 (n—k)! f als)" pno(s |
V= oy, = 0 _ O g5, (13
G A N s e 1)

where the contour T" has the same characteristics as stated above. Notice that the
method we have just described provides a Rodrigues-type formula (and also an
integral representation) for any polynomial solution of the differential equation
(4), directly in terms of its coefficients o and 7.

The application of equations (2), (6), (8) and (10) to the RHP gives

o() = (1 + %) no = (&,

Uk = An+ kT'(&n) + k(kz— 1) a’, (14)

n—1
nl (2N
1) [ vy = (-1 22D,
j=G

where (a); = a(a+1)--- (@ + s — 1) denotes the well known Pochhammer symbol.
So, if we choose the normalization given in equation (3) also considered in [2],
ie. V,,=nl(2N),/N", then the Rodrigues-type formula and the corresponding
integral representation for the RHP and their derivatives are

H () = (~1)"o(5)N+"‘j—; o6, (15)
() = (17l 2 ] (:fsg,il ds, (16)
Sty = EHEN R £ gy
) = “;Z;"L%? s [,(Si(;;;i‘;ﬂ s (18)

where o(£) is given by equation (14) and T is a closed contour encircling the point
s = £ and such that it does not contain the points s = +i/v/N, N > 1/2, ensuring in
this way that the function o(s) (see equation (14)) has no zeros in the region inside
it
Now we are able to compute explicitly the generating function for the RHP,
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which is defined by

o0 (M)
gy =3 P8 (19)

for sufficiently small |#|. Inserting in this equation the expression of H, v )((_3) given
by equation (16), and interchanging summation and mtegrauon (this is always
possible for fixed ¢ and sufﬁ(:lent]y small It|), we obtain

: cr(s 1) t
B(¢,1) = o6 5 37 Jr -0 - Z .

Since the geometric series in the integrand can be summed, the above expression
becomes

V" ds.

o(et) =o' o [T

Due to the choice of the contour T', the integrand has a single pole inside it as
s =& — to(£), close to s = £ for sufficiently small |¢|. Its residue is

R= U(S)WNIS:f—to'(E) - (1 + /N - 1 —t{1+€2/N)-
So, the generating function for the RHP (defined by equation (19)) is given by
N
52 N N
D(E,t)=R| 1 . 20

It is interesting to remark that in the limit when N — oo, equations (15) and (20)
reduce to ' 4
= n 52 dn _52 3 = — 2
H () = (-1'e 55 e ‘], Jim (1) = exp{261 -1},

respectively, which are the well-known Rodrigues formula and the generating
function for the classical Hermite polynomials [1,6].

Finally, let us mention that an alternative way of obtaining the Rodrigues
formula (15)-(16) for the RHP (it has been obtained here as a particular case of
the general expression given in (9)—(11)) is to use their connection [13] with the
Gaussian hypergeometric functions and hence with the Gegenbauer polynomials
(cf. [13, equations (2)—(4)]).

3. Sum rules and recurrence relations

As has been shown in the previous section, several methods developed in [14] for
hypergeometric-type polynomials can be extended to the polynomial solutions of
(4). This is also the case when trying to compute differential-difference relations
(cf. [14, p. 14]), the basic ingredient of these computations being the integral
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representations for the polynomials and their derivatives given by equations (16)
and (18).

Here we generalize and extend the aforementioned approach to obtain
several sum rules involving the RHP and their derivatives, which are obtained
directly in terms of the coefficients of the differential equation that they satisfy.
As an illustration, the following two kinds of sum rules are considered:

(I) Sum rulés involving more than two RHP of consecutive degrees, H, " )(5),
n=kk+1,....m(m—Fk>2)

Sy = f} A(HM (©). (21)
n==k

It is shown below that it is always possible to find coefficients A,(£),
n=k, k+1,...,m, such that §; = 0. For the explicit expression of these
A-coefficients, see equation (26).
(I Sum rules involving a RHP and its first m derivatives (m > 2), [H¥) ()],
ji=0,1,...,m:
m dj
Su=2_ B(6) g (@) (22)
j=0

It is shown below that it is always possible to find coefficients B;(£),
Jj=0,1,...,m, such that 8y = 0. For the explicit expression of these B-
coefficients, see equation (27).

Let us begin with the sum rule I. Our aim is to find the 4-coefficients of equation
(21) so that Sy = 0. Using the integral representation of the RHP H,% )(5) given by
equation (16), the above sum becomes, after some manipulations:

ol 1
SI - Vi P O'(S)N(S _ é)m-H P(S: g) dS, (23)

where T is a closed contour in the complex plane encircling the point s = & such that
o has no zeros inside it, and

m—k
P(s,&) =3 (=1)""(m — n)! Ay, ()0 (™ "(s — )"
n=0

Notice that P(s,£) is a polynomial in the variable s of degree m — k > 2.
Obviously, if we choose P(s5,£) =0 then S;=0, but this choice implies
A, =0,n=k, k+1,...,m, which is the trivial case we are not interested in.
However, let Q(s, &) be an arbitrary function of ¢ (smooth enough) such that it is
_a polynomial of degree m —k —2 (=degP —2) in the variable 5. Then, it is
always possible to choose the A-coefficients and the function Q(s,£) in such a
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way that the integrand in equation (23) can be expressed as

1 o(s
e T =g [(s &

If this relation holds, it is then clear that it implies Sy = O since the contour I (see
equation (23)) is a closed one. .
In order to prove that 4,(£) and Q can always be chosen so that equation (24)

holds true, the only step needed is to perform the derivative in its right hand
side. This yields

)IN

O(s f)} (24)

P56 = {5 (s - 0 - me(9)} 06, + 5~ ot £ [R5 (29

which shows that, in fact, Q must be a polynomial in s of degree two less than the
degree of P.

On the other hand, considering equation (25} as a function of s and expanding
both sides of it in powers of (s — &) the following relation is obtained:

m—k
Z (=1)"""(m — n)l 4y, ()0 (€)™ (s — &)
"t p—m—2N 4" .
=Zg ( Z)IN ds™ 2[Q( (S_‘S)
m—k— 1 n—m—N ar 13
+ Z e 060 ey
m—k—2
+ [Q( (s —&)".
n=0 =£

Then, equating the coefficients of the powers of (s — E) in this latter expression, a
linear system is obtained, which contains m — k+ 1 > 3 equations and 2(m — k)
unknowns (m —k+ 1 A-coefficients and m —k — 1 derivatives of Q). Thus,
m — k — 1 unknowns can be chosen arbitrarily (e.g. the derivatives of Q) and the
remaining m — k + 1 are determined in terms of them. Using the notation

0,=0,6)= 1068 i (=06 =06

the following expressions for 4,(£) (n =k, k+1,...,m) are obtained:
i) =— g
" = Dla(e
=n™" 2(1

Am—l(é) =

—m)o 2d-m—-N)
e e+ e,
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__ =np™ (n —m)o(§) 2n-m—N)
Am—n(E) - (m — n)!a({)m_" { Al Qn + N(n _ 1)| ‘SQM—]
n n};(zi__zz)‘?r Qn—Z}: 2<n<m—k-2),
(1 AN+Ek+1) IN+k+1
Ap1(€) = T Dlo@ {N(m Y £Qm—k—2 +m Qm—k-—3}a
(=t 2N +k
400 = (g Onaea (26)
Here, as stated above, {Q,,n=0,1,...,m — k — 2} can be chosen arbitrarily and

each choice uniquely determines the function Q(s, £), which is the corresponding
Taylor interpolating polynomial in the variable 5. For example, putting

G m—motey

n!
a sum rule of the first kind (see equation (21))

Si=3 AOHME© =0 (m—k3>2),
n=k

is obtained, whose A-coefficients are polynomials in £ of degree at most two, as can
be easily deduced from equation (26). On the other hand, it should be remarked
that when m = k + 2, this sum rule gives rise to the already known (cf. [2, Eq.
(7)) three-term recurrence relation satisfied by the RHP, which is a particular
case of the general result we have given here. Notice that when m = k+ 2, the
degree of P is exactly two, so Q does not depend on s. It means that the only
arbitrary coefficient appearing in the three-term recurrence relation is Q, which
multiplies the whole relation. From this fact one can conclude that, except for a
common factor, there exists only one three-term recurrence relation involving
three RHP of consecutive degrees. Of course, many others sum rules of this kind
could be obtained for different choices of the functions @, and the parameters m
and k.

The method we have just described can be applied in a similar way to obtain the
sum rules Sy given by equation (22). In this case we try to obtain the B-coefficients
in equation (22) so that Sy = 0. In doing so, we rewrite this sum by using the
integral representations for the RHP and their derivatives given by equations
(16), (18). The resulting expression is

_ (—1"mla(e)N

Sz 2

/ ! P(s,€) ds,.
r

a(s)¥(s — &)™

where I is the same contour as in the previous case and P(s, ) is a polynomial in s
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of degree m > 2 given by

= 1)/(2N +n - j); o gy
; Nio(e) Bi(&)(s - &)

Here the well-known Pochhammer symbol (a); = a(a+1)---(a+k —1),{a)y =1
has been used.

At this point, the same argument we have just described for the sums of the first
kind allows to conclude that the B-coefficients can always be chosen so that Sy = 0.
They are given by:

By(§) = —na(€)Qu,

B = - et { (1 =m0 + 2= e,
5o = LN (1t g, 4 2t Mg,
+%ﬁ§§%¥gq},(szSm—zx 27
O = e S 0
)
5 (6) - CUNTO€) m=n=2N)

2N +n—m),, N(m-2)!

Here, the coefficients @; (i = 0,...,m — 1) can be chosen arbitrarily and the same
notation as in equation (26) has been used.
For instance, the choice

(2N +n— 1)

Qn:—;(E)TH—,

gives rise to a sum rule
&—ZBSW V=0 (m=>2),

whose B-coeflicients are polynomials in £ of degree at most two, as can be deduced
by taking into account equation (27). Moreover, it is interesting to remark that
when m = 2, the above sum rule becomes the second order differential equation
satisfied by RHP (already given in equation (2)). In fact, this sum rule is, for
each value of m, an mth order linear differential equation satisfied by the RHP.
For completeness, let us mention that other sum rules can be obtained by means
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of the Hansen techniques [10] or its generalizations [3] which start from three-term
recurrence relations. Indeed, these two authors have been able to compute sum
rules similar to the sum of the first kind (equation (21)) for sets { f, },en of func-
tions which satisfy a three-term recurrence relation of the form

@, (%) fu + By (X) frpr + cn(x)f;z—i-z = (.

Of course, the method used to compute the sums from this relation is completely
different from the one presented here, which uses as a starting point the second
order differential equation given in equation (2).

Finally, it should be mentioned that the approach which has been presented here
is being generalized [21] in order to obtain general sum rules and recurrence
formulas for functions of hypergeometric type (not necessarily polynomials) and
their derivatives, which can be computed in terms of the coefficients of the
differential equation that they satisfy. These types of functions are defined for
being analytic solutions of a linear second order differential equation of the form

o(x)y" +7(x; A}y + Ay =0,

where o is a polynomial of degree at most two, 7is also a polynomial in x of degree
at most one and A is a constant.

4, Zeros of the relativistic Hermite polynomials

‘Here, we will study the distribution of zeros of the RHP. As clearly shown by
equation (1), these zeros describe the nodes of the wave functions of the quantum
relativistic harmonic oscillator.

First of all we prove the following result.

Lemma
All zeros of £ (€) (N > 1/2) are real and simple. Moreover, no two consecutive,
RHP HY )(5) and H™)(¢) have a zero in common.

This lemma can be proved in various ways. Here we will consider that which
makes use of the Rodrigues formula given by equation (15). Let us consider the
function g(£) defined by

g(8) = o(&) "W HIM(E).

The use of equation (15) allows us to write its derivative in the form

d
7286 = o T O,

We now assume that all zeros of the nth degree RHP (and hence of the fﬁnction
-g(&)) are real and simple. Under this assumption we can denote them by
§1.n < &an < o+ < &, n Then, the Rolle theorem from elementary calculus applied
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to g(£) allows us to conclude that Hn o (g) has at least one root between two

consecutive zeros of H) (5) Moreover, the function g(¢) satisfies the limiting
conditions

lim g&) =

So, the same aforementioned theorem tells us that H,f 1 (£) has two more real zeros,
one of them lying in {— oc,£1,4) and the other in (§, ,, ). In this way we have
proved that if H{")(¢) has n real and simple zeros then H (fl (£) must have n+ 1
roots which are also real and simple.

The first statement of the lemma follows from the fact that H" ] (£ ) has a simple
and real root and the second is a straight consequence of the first one and the
differential-difference relation

d
dé

which, as shown in [2, equation (8)], is satisfied by the RHP.
We are now in a position to study the distribution of zeros of the RHP, defined as

B =2 N +n-DEN©),

1 n
Qule) =~ > _ 6E— &), (28)
k=1

~ where § ,, k =1,2,...,n, are the zeros of ¥ )(5). Here we will characterize this
distribution by means of its moments i\, r = 0, 1, 2,..., or, equivalently, in terms

~ of the Newton sum rules of the zeros N™, r =0,1,2,... ,1.e

H ]' 1 2 r 1 - i
u =S NP == N ese—g) ==Y (&) (29)
n = m =

In the last few years several methods (sece e.g. [4,5,8,9,18,20]) have been
developed to obtain these spectral quantities for an arbitrary polynomial. In
particular, it is possible to compute them in an exact and recurrent way starting
either from the explicit expression of the polynomials or from the differential

equation satisfied by them (if any). Briefly, the two corresponding procedures are
as follows:

(@) Moments from the explicit expression
Let

R
Py(x) =Y (—-1FCux™% Cuo=1,
. kW

be the monic explicit expression of an nth degree polynomial. Then [8], the Newton
sum rules of their zeros can be expressed in terms of Bell polynomials Y, [15] as
follows

1
(r—1)

_Nr(n) — _ Y,(flgl,.--,ﬁgr),
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where f; = (—1)"'( — 1)! and g, = (~1)'C,;. This expression, together with the

recurrence relation satisfied by the Bell polynomials [15], allows us to write the
following recurrence for the Newton sum rules [8]

N = (- 1)’+1{rCn,+Z ,,,,_JN(")} (30)
NP =n, NP =c,,.

(b) Moments from the second order differential equation
Let P,(x) be an nth degree polynomial solution of the differential equation

82(x) P, (x) + g1(x) Py (x) + go(x) Py(x) =0, (31)
where g;(x), i =0, 1,2, are polynomials of degree ¢; defined by
C; X .
X) = Z ax, i=0,1,2, (32)

with constant coefficients a' Assurnmg that the zeros of P,(x) are simple, the
following relation is fulfilled [4]

r+cy—3
2 Z af(lemer+2 —Za r+J o =123, (33)
m=-1

where the J-quantities are

( 0, if k=0,

(1/2)n(n—1), ifk=1,

L= T _ ) m— )N, | if k=2,
i Fly Mo ™ Mo Do 1S 0 om

\ (n —E)Nk_l +5 ; NN ik > 2,

X;po 1 =1,2,...,n, being the zeros of P,(x).

Since both the explicit expression and the second order differential equation of
the RHP are known, these two procedures to obtain the spectral moments may
be used for these polynomials.

In the first method, the monic polynomials A~ (5) are needed. From equation
(3) it follows that

7 =Y (~1) Ay e
=0
where
0, 7 odd,

f‘in,j = (— N)j/Zn'(N 1)
L0/ D= DUN + (7 - 1)/2)!

T J even.
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Then equation (36) gives

(”) )= =0
N;(z,’:) { + Z An,Z(s—j) 2] }

for the moments p = (1/n)N™ of the distribution of zeros of the RHP where the
initial conditions are

s=23,..., (34)

w_ 4. m_NeE-1)
oo =Ly =

Notice that the odd moments vanish accordingly to the fact that the RHP of even
degree are even functions and those of odd degree are odd functions. In particular,
this implies that the zero distribution of the RHP (see equation (28)) has to be
symmetric.

On the other hand, since the zeros of the RHP are simple, the recurrence given by
equation (33) in the second procedure is also valid for them. The comparison
between the RHP' differential equation, equation (2) and equations (31)-(32),
together with the use of equation (33), allow us to find, after some manipula-
tions, the following recurrence relationship also satisfied by the spectral moments
. of an nth degree RHP

#’2.&'+120$ S:(]ala"'a

(2N + 2k + 1)”57,;1) N(2n—2k— 1)l + nN Z Hg"; p)p,g;

+nZu2k+l_p),u2p, k=1,2,3,..., (35)

where the initial conditions are the same as in the previous relation, and the first
summation on the right hand side is taken to be zero when k = 1.

The solutions of the two recurrences given by equations (34)—(35) are, of course,
the same. The first few even moments are

0 _q m _No—1D)
Ho "'1! M 2N+l’ ".

o _ (n= VN> (n* +n—3+2(2n—3)N)
M= {1+ 2N)(3 + 2N) !

1 = {1+ 2N (3 +2N)(5 +2N)}—1{(n — DN[15 4+ 2( — dn(n+ 1)
+ (60 + 2n(2n — 5)(3n+ 5))N + (60 + 4n(5n — 17))N?]},
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p = {(1+2N)43 + 2N)2(5 + 2N) (7 + 2N}
x {(n — )N *[n(n+ 1)(213 - 950% + 17%)
— 315+ (~2100 + 19367 + 704n> — 8347* — 1624 + 1461° + 10n°)N
+ (—5040 + 5808n — 3d4n” — 15361 + 3121 + 80n°) N>
+ (~504_0 + 6816n — 2432n% — 288n° + 224n*) N
+ (—1680 + 24801 — 1264n? + 224n°)N4)}.

It is easy to check that in the limit when N tends to infinity, these moments become
the already known [5,18] moments of the zero distribution corresponding to the
classical Hermite polynomials. The expressions of the moments show clearly the
heavy calculations involved in their obtention. In this sense, it could be interesting
to mention that the help of computer algebra systems has been very useful. In
particular, the two algorithms considered here have allowed to construct two
built-in Mathematica [17] programs (see [9,18,20]) which are able to calculate
these moments.

On the other hand, though the above moments completely characterize the
corresponding distribution [16], to obtain it from them becomes impossible in
this case. Anyway, the moments themselves give us valuable information about
the distribution. To illustrate this point, let us consider some related statistical
parameters [11]. Since the zero distribution of the RHP is symmetric with respect
to the origin, the mean and the skewness are zero. The variance, defined as

N(n— 1)
%)= ) = {“fz‘gﬁl)} !
\ ’U]O[](N)
20}f \
v k() - — — —
15- ) \
\
\
10} N
~
5.-Kf TNy - -
g 16 15 20

. Figure 1. Variance (vigo(NV }) and kurtosis (k199(N )) of the zero distribution of the RHP of degree 100
in terms of the relativistic parameter & (varying from 1/2 to 20).
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Figure 2. Variance (v,(10)) and kurtosis (k,(10)) of the zero distribution of the RHP with relativistic
parameter N = 10 in terms of the principal quantum number # (varying from 30 to 500),

gives us an idea of the spread of the distribution. The kurtosis, given by

- i A —2n(N+4)+6

kn(N BRI Ty

~ gives us information about the qualitative shape of the distribution around its
maximum.

Figure 1 shows the behaviour of these two parameters in the transition from the
ultrarelativistic limit (¥ = 1/2) to the non-relativistic one for a fixed degree
(n=100), ie. for a fixed quantum principal number. Notice that for the lowest
values of N, the variance increases rapidly until it reaches an almost stationary
value, while the kurtosis decreases very fast for those lowest values and tends to
cross the N-axis; this happens for "N = 46.03. From this behaviour one can
conclude that the lower is N, the more peaked is the zero distribution around its
maximum (p(l") = 0). Moreover, the distribution is taller and thinner than the
Gaussian one for N < 46.03, it tends to behave as this distribution when
N =46.03 and for N > 46.03 it becomes more flat-top than the Gaussian.

In figure 2 the behaviour of the variance and kurtosis in terms of the quantum
principal number » is shown for fixed N. Since both parameters are increasing
functions of n, one can conclude that the higher is the energy of a state, the more
peaked is the zero distribution.

Of course, more information could be obtained by taking into account moments
of higher order. Finally, let us mention that the zero distribution of the relativistic
Hermite polynomials has been also studied in [19] and in [12] where a generalization
of the RHP is considered. In these two works the so-called WK B method is used to
obtain an approximation for the distribution of zeros defined in equation (28).
Moreover, it is shown that this approximation gives the correct asymptotic limit
(i.e. the limit when » tends to- infinity) which is explicitly calculated.
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