Orthogonal folding of extensional detachments: Structure and origin of the Sierra Nevada elongated dome (Betics, SE Spain)

J. M. Martínez-Martínez and J. I. Soto
Instituto Andaluz de Ciencias de la Tierra (CSIC) and Departamento de Geodinámica, Universidad de Granada, Granada, Spain

J. C. Balanyá
Departamento de Ciencias Ambientales, Facultad de Ciencias Experimentales, Universidad Pablo de Olavide, Sevilla, Spain

Received 22 January 2001; revised 23 October 2001; accepted 14 December 2001; published 25 May 2002.

[1] A close relationship of the kinematics and timing between low-angle extensional faulting and upright folding is established for the Miocene detachment systems in the hinterland of the Betics in southeastern Spain. Folding accompanied tectonic denudation developing elongated domes with fold axes both parallel and perpendicular to the direction of extension. The geometry, kinematics, and tectonic evolution of two major sequentially developed extensional fault systems have been characterized in several E-W elongated mountain ranges of the central Betics on the basis of new cartographic and structural data and a comprehensive revision of other available geological and geophysical observations. The extensional systems have an average WSW direction of extension and led to exhumation of the two lower metamorphic complexes of the Betics, the Nevada-Filabride and the Alpujarride, during the middle and upper Miocene (Serravallian to Tortonian). The extended domain contains a core complex, with distal and proximal antiformal hinges separated by around 60 km and with a fold amplitude of ~6 km (measured parallel to the direction of extension). The total amount of extension across the core complex is about 109–116 km, corresponding to a stretching factor (\(\epsilon\)) of 3.5–3.9, estimated using the distance between fold axial surfaces and a geometrical model accomplishing footwall deformation during tectonic denudation via subvertical simple shear. The elongated domal and basinal geometry of the detachments and their respective footwalls is due to the interference between two sets of orthogonal large-scale open folds, trending N-S and E-W. Longitudinal, N-S trending folds are interpreted as isostatic folds, i.e., folds that developed in response to differential unloading of the extensional detachment footwalls inducing ductile flow in the middle crust. These folds formed in a rolling-hinge antcline in which rotation migrates westward through the footwall as it is progressively unroofed. In contrast, E-W trending folds, being subparallel to the direction of extension, have a contractual origin and progressively affect to the west the isostatically readjusted segments of the detachments once they are inactive. Orthogonal folding occurred since the Serravallian to lower Pliocene. Extension is still active from the rolling-hinge antcline in Sierra Nevada to the west. The middle Miocene to Pliocene tectonic evolution of the Sierra Nevada elongated dome at the core of the Betic hinterland is another example of the coexistence of extension and contraction during continued overall convergence and mountain-building. Index Terms: 8109 Tectonophysics: Continental tectonics—extensional (0905); 8005 Structural Geology: Folds and folding; 8010 Structural Geology: Fractures and faults; 8025 Structural Geology: Mesoscopic fabrics; Keywords: extensional detachments, elongated domes, orthogonal folds, unroofing, Betics, Mediterranean

1. Introduction

[2] The synchronous development of low-angle normal faults (extensional detachments) and large-scale upright folds has been well documented in extended terranes throughout the world [e.g., Spencer, 1984; John, 1987; Wernicke and Axen, 1988; Getty and Gromet, 1992; Mancktelow and Pavlis, 1994; Axen et al., 1998; Tari et al., 1999; Yin et al., 1999]. Moreover, doubly plunging antiformal (domal) and synformal (basinal) geometries affecting both the detachment faults and their respective footwalls have fold axes both parallel and perpendicular to the direction of extension.

[3] It is a matter of debate as to whether these folds are formed by a single process or are related to the superposition of two mechanically independent processes. The single-process models that have been proposed are (1) the emplacement of synextensional plutons [Holt et al., 1986; Reynolds and Lister, 1990; Amato et al., 1994; Davis and Henderson, 1999]; (2) uncompensated undulatory Moho geometry during extension [Yin, 1989, 1991]; and (3) horizontal compression perpendicular to the direction of extension, generating finite constrictional deformations [Bartley et al., 1990; Buick, 1991; Yin and Dunn, 1992; Chauvet and Serranne, 1994; Mancktelow and Pavlis, 1994; Kurz and Neubauer, 1996; Hartz and Andressen, 1997; Lammerer and Weger, 1998].

[4] Other authors have concluded, in contrast, that the formation of domal and basinal detachment faults is the result of the interference between two independent processes. Folds with hinges trending perpendicular to the direction of extension have been interpreted as having been formed by (1) reverse drag caused by movement over a structurally deeper detachment [Spencer, 1984; Bartley and Wernicke, 1984; Gans et al., 1985; Davis and Lister, 1988; Brady et al., 2000]; (2) the formation of antithetic shear zones in the lower plate [Reynolds and Lister, 1990; Kruger et al., 1998]; (3) movement along a flat-ramp fault surface, producing fault bend folding [John, 1987]; and (4) isostatic rebound due to tectonic denudation [Rehrig and Reynolds, 1980, Spencer, 1984;
developed through a “rolling hinge” mechanism in which rotation that folds trending perpendicular to the direction of extension [Axen et al., 1992; Axen and Wernicke, 1991; Wdowinski and Axen, 1992; Manning and Bartley, 1994; Axen et al., 1995; Lee, 1995; Axen and Bartley, 1997; Lavier et al., 1999]. Folds parallel to the direction of extension have variously been interpreted as: (1) original fault corrugations [Davis and Lister, 1985; John, 1987; Davis and Lister, 1988; Miller and John, 1999]; (2) contractional folds of initially planar detachment faults [Spencer, 1984, 1985]; (3) folds due to differential uplift in a lateral ramp (analogous to the formation of hanging wall rollover folds) [Duebendorfer and Sharp, 1998]; and (4) folds attributed to syntectonic deformation [Coleman et al., 1997; Davis and Henderson, 1999] or postmagmatic extensional-related collapse [Anderson et al., 1994].

Large-scale upright folds are a common structure in the Betics in SE Spain and have mainly determined the current physiography of the chain, which consists of a basin and range morphology with anticlines occupying the ranges and synclines in the basins. Noteworthy among the mountain ranges is the Sierra Nevada core complex [Martínez-Martínez et al., 1997b], which occupies the inner part of a large-scale elongated domal structure where the lowest tectono-metamorphic nappe complex of the internal Betics is exposed. On the basis of both new structural data from the Sierra Nevada and the revision of geological data in a broader area, we have attempted to determine (1) the location of major extensional necks (highly extended zones) and the implications of their time-space changes and (2) the chronological and, if any, genetic relationships between extension and the two sets of large-scale folds, trending subparallel and subperpendicular to the direction of extension. The combined analysis of extensional fault systems and folding shows that two main extensional detachments are required to explain both the observed geometry and the distribution of the fault rocks.

2. Tectonic Setting

The Betics in southern Spain form the northern branch of the peri-Alborán orogenic system (western Mediterranean), which includes the Rif and Tell mountains in North Africa. The Betics and Rif are linked across the Strait of Gibraltar to form an arcuate orogen commonly known as the Gibraltar arc (inset in Figure 1). Several pre-Miocene terrains form part of the arc: (1) the South-Iberian domain and (2) the Maghrebian domain, both consisting of nonmetamorphic Triassic to Miocene sediments deposited on the continental margins of the southern Iberian and northern African plates, respectively; (3) the Flysch Trough domain, which comprises mainly lower Cretaceous to early Miocene deep marine clastic sediments deposited in a trough between the paleomargins, along the Iberia-Africa transform boundary [Biju-Duval et al., 1977; Wildi, 1983]; and (4) the Alborán domain, made up mainly of Paleozoic and Mesozoic rocks, mainly deformed under variable metamorphic conditions during the Cretaceous to Paleogene. This domain includes the Internal Zones of the Betics and Rif and also constitutes the thin continental basement of the Alborán basin, a Neogene extensional basin developed behind the Gibraltar arc [Comas et al., 1992, 1999].

The Alborán domain consists of a large number of stacked thrust sheets grouped into three nappe complexes: the Nevado-Filabrides, the Alpujarrides, and the Malaguides, in ascending order. Stacking occurred during the pre-Miocene in a more easterly position, probably when the Alborán domain was a segment of the continuous Alpine orogenic belt [Boullion et al., 1986]. The Nevado-Filabride rocks, ranging in age from Paleozoic to Cretaceous, show polyphase Alpine metamorphism with an early high-pressure/low-temperature (HP/LT) metamorphism, followed by high-greenschist facies in the two lower tectonic units and almandine-amphibolite facies in the uppermost one [Nijhuis, 1964; Gómez-Puignaire and Fernández-Soler, 1987; García-Dueñas et al., 1988; Bakker et al., 1989; Soto, 1991]. The Alpujarride rocks, mainly consisting of Paleozoic metapelites and Triassic carbonate rocks, also show polyphase Alpine metamorphism with a first HP/LT event followed by isothermal decompression inducing metamorphism of intermediate to low pressure [Goffé et al., 1989; Tubía et al., 1992; Azañón et al., 1997; Balanyà et al., 1997]. In each Alpujarride tectonic unit the metamorphic grade increases downward in the sequence. Moreover, the upper units show a higher grade than the lower ones. This observation suggests that stacking was postmetamorphic [Balanyà et al., 1997; Azañón and Crespo-Blanc, 2000]. The Malaguide rocks, ranging in age from Silurian to Oligocene, have not undergone significant Alpine metamorphism, although the Silurian series preserve Variscan orogenic features showing very low metamorphic grade [Chalouan and Michard, 1990].

Neogene tectonic evolution of the peri-Alborán orogenic system is mainly constrained by two closely related facts: (1) the roughly N-S convergence between the European and African plates and (2) the westward migration of the Alborán domain. This convergence results in a broad zone of distributed deformation and seismicity in the region, resulting in a diffuse plate boundary. Kinematic reconstructions reveal continuous N-S convergence between Africa and Europe from the Late Cretaceous to the upper Miocene (9 Ma), then changing to NW-SE until the Present [Dewey et al., 1989; Mazzoli and Helman, 1994]. Westward migration was largely responsible for the collision between the Alborán domain and the South Iberian and Maghrebian paleomargins after the partial obliteration of the Flysch Trough domain. In this Neogene collisional process, the rocks of both the Flysch Trough domain and the South Iberian and Maghrebian domains (External Zones) were extremely shortened by thin-skinned thrusting and folding, while at the same time the Alborán domain underwent considerable thinning with the development of extensional detachments and associated low-angle normal faults. The Alpujarride/Nevado-Filabride boundary, traditionally considered to be a thrust, has been interpreted as one of these extensional detachments on the basis of numerous evidence, including the following:

1. The detachment staircase geometry shows flats and ramps cutting across and down toward the west through the thrust stack [García-Dueñas and Martínez-Martínez, 1988].
2. There is a westward sense of hanging wall displacement.
3. There is an extensional geometry of the detachment hanging wall. It is composed of tilted blocks bounded by listric normal faults coalescing on the detachment and highly extended riders [Martínez-Martínez and Azañón, 1997].
Figure 1. Tectonic map of the Sierra Nevada elongated dome (central Betics). Upper left inset shows the main tectonic domains of the peri-Alborán orogenic system: 1, Neogene basins; 2, South Iberian domain; 3, Maghrebian domain; 4, Flysch Trough units; 5, Alborán domain. Cross sections C-C' and D-D' are shown in Figures 6 and 11, respectively.
4. Local estimates for extension values for this contact are high [García-Dueñas et al., 1992; Crespo-Blanc, 1995; Martínez-Martínez and Azañón, 1997].

5. The nature of fault rocks associated with the detachment is such that beneath it there are mylonites with platy foliation and penetrative stretching lineation [Platt et al., 1984]. The sense of shear deduced from the lineation orientation together with kinematic indicators including S-C fabrics, rotated porphyroclasts, mica fish, and quartz C-axis fabrics are broadly consistent with a top to the west sense of shear [Galindo-Zaldívar et al., 1989]. Brittle deformation produced cataclasites, fault gouges, and tectonic breccias at the Alpujarride/Nevado-Filabride contact and postdate the mylonitic deformation. This brittle deformation exhibits a sense of shear similar to that of the earlier ductile deformation, based on asymmetric textures and slickenline orientation in fault rocks [García-Dueñas et al., 1988; Galindo-Zaldívar et al., 1989; Galindo-Zaldívar, 1993; Jabaloy et al., 1993].

6. Asymmetric footwall unroofing exists across the system. Cooling ages to near-surface temperatures in the footwall become younger in the direction of hanging wall motion, from 12 Ma in the eastern Sierra de los Filabres to 9 Ma in the western Sierra Nevada [Johnson et al., 1997]. On the other hand, available Ar-Ar cooling ages from the upper plate are systematically older (19–24 Ma) than the corresponding ones from the lower plate (16–17 Ma) [Monié et al., 1991].

[9] Extensional detachments, nonetheless, are not the most recent structures in the Alborán domain. There is well-documented evidence of large-scale E-W open folds, warping the extensional detachments [García-Dueñas et al., 1986], particularly east of the Granada basin (Figure 1). Finally, high-angle normal faults and strike-slip faults, many of which are still active, offset folds and extensional detachments. High-angle normal faults are particularly abundant in western Sierra Nevada and in the Granada basin, and in a narrow, NW-SE trending band between the western Sierra de los Filabres and western Sierra Alhamilla. Strike-slip faults are more frequent in the southeastern Betics.

[10] Several tectonic models have been proposed to account for the extension of the Alborán domain within a context of plate convergence, including (1) extensional collapse driven by convective removal of the lithosphere mantle [Platt and Vissers, 1989], (2) delamination of the lithosphere mantle in conjunction with asymmetric thickening of the lithosphere [García-Dueñas et al., 1992; Docherty and Banda, 1995], and (3) rapid rollback of a subduction zone [Royden, 1993; Lonergan and White, 1997], among others. However, these models do not provide a satisfactory explanation for the formation of the large-scale E-W open folds and for the recent evolution of the orogen.

3. Multiple Sets of Extensional Detachments

[11] As mentioned in section 2, the Alpujarride/Nevado-Filabride boundary, cropping out in the Sierra de los Filabres and Sierra Nevada, has been interpreted as a W-SW directed extensional detachment with associated listric normal faults [García-Dueñas and Martínez-Martínez, 1988; Galindo-Zaldívar et al., 1989]. The detachment geometry and the nature of the associated fault rocks,
overlying Alpujarrides. Becomes increasingly pronounced toward the contact with the
with a penetrative NE-SW trending stretching lineation that
Kinematic indicators show top to the WNW sense of shear [et al., 1988; Martínez-Martínez and Azañón, 1997] has a low-
angle footwall ramp geometry cutting 5 km of the Nevada-
Filabride stack downsection in a westward direction. This footwall
ramp can be observed in the map of Figure 1, where the
Alpujarrides (upper plate) progressively overlie toward the west
the uppermost Nevada-Filabride unit (Bédar-Macael unit) around
Lijar, the Paleozoic/Permo-Triassic boundary of the intermediate
Nevado-Filabride unit (Calar Alto unit) in the Tetica area, and
finally, north of Fiñana, they are very close to the top of the Ragua
unit, the lowermost Nevado-Filabride unit. In the Sierra de los
Filabres, large-scale wedges thinning westward are defined in
the footwall between the detachment and the eastward dipping regional
reference surfaces, which include two large-scale ductile shear
zones (500 m thick) subparallel to both the main foliation and the
lithological contacts. The boundaries between the three major
Nevado-Filabride units lie within these shear zones, which are
synmetamorphic, and they are characterized by moderate-temper-
ature (450°–550°C) mylonites exhibiting ESE-WNW stretching
lineation and penetrative foliation associated with recrystallization
and grain-growth microstructures [Bouchez and Pêcher, 1981].
Kinematic indicators show top to the WNW sense of shear [Soto et
al., 1990; González-Casado et al., 1995]. In contrast, deformation
related to the Filabrides detachment is brittle, producing cataclasites,
fault gouges, and tectonic breccias. On the other hand, the largest
segment of the Alpujarride/Nevado-Filabride contact cropping out
in the western Sierra Nevada (termed the Mecina detachment by
Galindo-Zaldívar et al. [1989]) shows a footwall flat and a hanging
wall ramp geometry. Cataclasites, fault gouges, and tectonic brec-
cias are the fault rocks associated to the detachment. In the footwall
there are low-temperature (350°C) mylonites and ultramylonites
with a penetrative NE-SW trending stretching lineation that
becomes increasingly pronounced toward the contact with the
overlying Alpujarrides.

The Filabres and Mecina detachments, since they coincide
with the Alpujarride/Nevado-Filabride contact, have been inter-
preted as the eastern and western sections of the same detachment,
respectively [García-Dueñas et al., 1992; Jabaloy et al., 1993].
Nevertheless, the structural position of the detachment in the western
Sierra de los Filabres, near the top of the Ragua unit, and in the
western Sierra Nevada, overlying the Bédar-Macael unit, is inconsis-
tent with the interpretation of a unique W-SW directed extensional
detachment. New cartographic and structural data carried out in the
Sierra Nevada have allowed us to resolve this contradiction (Figures 2
and 3). One of the most noteworthy points is that the lowest Nevado-
Filabride unit, the so-called Veleta unit [Diaz de Federico et al.,
1979], is less extensive than is shown in previous maps [see, e.g.,
Jabaloy et al., 1993]. Even the Veleta peak (3398 m), after which the
unit is named, is capped by Calar Alto unit rocks. In this work we have
therefore changed the name of the lower unit to the Ragua, after the
Puerto de la Ragua region where it is very well represented (Figure 2).

Two different structural domains can be defined in the Sierra
Nevada area, the western domain comprising the region located
west of the Guadix-Trevélez line and the eastern domain comprising
the region between this line and Fiñana village (Figure 1). In the
western domain beneath the Mecina detachment, the Calar Alto unit
is 3.5 km thick, which is nearly as thick as in the Sierra de los
Filabres area. Internally, this unit is marked by folds with axial
planes parallel to the schistosity, which developed significant
reverse limbs consisting of Permo-Triassic light-colored schist
(Tahal formation) below Paleozoic graphite-rich mica-schist (Monten-
egro formation). These folds are crosscut by the Calar Alto-
Ragua boundary (Figure 3). Throughout the western Sierra Nevada
the Tahal formation of the Calar Alto unit conformably overlies the
Montenegro formation in a normal sequence.

Mylonitic deformation (Figure 4) developed in the Mecina
detachment footwall in a band ~100 m thick, affecting the entire
Bédar-Macael unit and the top of the Permo-Triassic rocks of the
Calar Alto unit. The Ragua/Calar Alto contact is a brittle shear zone
(decimetric to metric), associated with cataclasites and fault gouges.
Striations in the fault rocks trend NE-SW. Overlying the contact, a
band of rocks several hundred meters thick is systematically
affected by shear bands and extensional crenulation cleavage that

Figure 3. Structural cross sections showing the three-dimensional geometry of the Sierra Nevada elongated dome in
the western sector of this mountain range. Same symbols as in Figure 1.
are more penetrative near the contact. The asymmetry of the shear bands is consistent with top to the SW sense of shear (Figure 5). In this domain, the Ragua/Calar Alto contact shows a footwall flat and low-angle hanging wall ramp geometry (Figure 3).

[15] In the eastern domain, both the Alpujarride complex and the Bédar-Macael and Calar Alto units become strongly attenuated to a few hundred or even a few tens of meters. Attenuation is evident in Figures 2 and 3 on the northern slope of the Sierra Nevada. On the

Figure 4. Footwall mylonitic gneiss of the Mecina extensional detachment showing ultramylonitic bands in a section parallel to the stretching lineation. The sense of shear is top to the left. Scale bar corresponds to 1 cm.

Figure 5. Ductile shear bands associated with the Filabres extensional detachment. The sense of shear is top to the left.
southern slope, the Calar Alto unit, although thin (around 200 m), crops out extensively because of the fact that the contacts bounding on it dip southward at nearly the same degree as the topographic incline. In this area the Alpujarrides are also thinned (<200 m thick), particularly north of the Ugijar basin. Further south, in the Sierra de Gádor, the Alpujarride units are thicker; however, this range belongs to a block that is structurally different from the Sierra Nevada, as they are separated by a right-handed strike-slip fault zone known as the Alpujarras strike-slip corridor [Sanz de Galdeano et al., 1985]. Both the geometry of the Ragua/Calar Alto contact and the fault rocks associated with it are similar to those described in the western domain. It has a footwall flat geometry and a gently variable dip with a subhorizontal envelope. In the hanging wall there are listric fans and highly extended riders consisting of very attenuated Alpujarride, Bédar-Macael, and Calar Alto units tilted toward the east. In these riders, fragments of the Mecina detachment are cut by hanging wall splays of the Ragua/Calar Alto contact (Figure 6). This contact is connected toward the east with the Filabres extensional detachment.

Altogether, this suggests that the so-called Filabres detachment is, in fact, a second detachment that developed in the footwall of the Mecina detachment. A cross section trending close to the direction of extension, from the western Sierra Nevada to the eastern Sierra de los Filabres, shows the large-scale geometry of the extensional system (section C-C'; Figure 7). The section exhibits an upward arched structure with a relatively uplifted,

Figure 6. (a) Panoramic view and (b) drawing of the splay faults in the Filabres detachment hanging wall cutting the Mecina detachment, north of Fiñana village (see Figure 1). The Filabres detachment is a few meters below the section. There are two persons at the center of the photograph for scale.
highly extended central domain between two flexured, less extended eastern and western marginal domains, where major rock wedges thicken in opposite senses. These marginal domains must correspond to the proximal and distal blocks of the Filabres extensional detachment, respectively. In the distal block (western Sierra Nevada), the Mecina and Filabres detachments are separated by more than 3.5 km of unextended Nevado-Filabride rocks. In the central domain the two detachments are very close, with the Mecina detachment cut and fragmented by hanging wall splays of the Filabres detachment (Figure 6). Finally, in the proximal block, the Filabres detachment cuts the Nevado-Filabride units down-section. The boundaries of these units, two ductile shear zones prior to the detachment, are tilted toward the east.

4. Amount of Extension

[17] A sequentially restored cross section parallel to the direction of extension illustrates the prominent characteristics of extensional fault kinematics in the extended domain (Figure 7). The restoration considers the geometric and kinematics facts described in the section above, including the thickness of the Alpujarride and Nevado-Filabride sequences in the less extended domains, the dimension and location of highly extended zones, and the distribution of mylonites and related fault rocks. The preextensional Nevado-Filabride thickness is deduced from the footwall of the Filabres detachment low-angle footwall ramp. A minimum thickness of 10 km has been assumed for the Alpujarride complex, taking into account its thickness in the less extended blocks and the load necessary to generate low-temperature mylonites directly below the Mecina detachment. Several hanging wall and footwall cutoff lines belonging to both detachments have also been detected (Figure 8a). All the cases represent the site where the detachment cuts the selected reference surfaces (e.g., the Tahal/Montenegro boundary) for the first time (from east to west). Westward of each represented “cutoff line,” extensional horses developed in the highly extended central domain (striped zone in Figure 8b) giving rise to slices of the Bédar-Macael unit and of the Tahal and Montenegro formations of the Calar Alto unit. We have also included the location of the earthquake hypocenters along the section [Serrano et al., 1996 and Morales et al., 1997].

[18] The extended domain contains a core complex, with distal and proximal antiformal hinges separated by around 60 km and with fold amplitude of ~6 km. A first detachment (the Mecina detachment) exhumed the Alpujarride complex and the top of the Nevado-Filabride complex. The formation of a second detachment (the Filabres detachment) must be considered to account for the exhumation of the middle and lower Nevado-Filabride units; it cut back toward the footwall as extension proceeded as a result of footwall unloading. Both the distributions of the earthquake hypocenters and the focal mechanisms [Serrano et al., 1996; Galindo-Zaldívar et al., 1999] suggest that a third detachment is currently active below the distal block of the Filabres detachment. Pliocene to Recent high-angle normal faults, which are very common in the western Sierra Nevada and the Granada basin (Figure 7), could be related to the third detachment.

[19] The theoretical basis and details of the application to reconstruct the amount of extension in the Sierra Nevada core complex are given in Appendix A. The geometrical relationships presented there and the horizontal distance (measured parallel to the regional direction of extension) between the distal antiform and the proximal synform hinges were applied to obtain a extension of 109–116 km, corresponding to a stretching factor (3) of around...
5. Geometry of the Elongated Domes

It should noted that the initial situation in the undeformed stage of the reconstruction has been considered without significant topographic elevation. This interpretation is in accordace with data from regional geology, according to which the Alpujarride complex would have been the basement of a shallow marine basin during the Burdigalian-lower Langhian [García-Dueñas et al., 1992]. If this were indeed the case, there has been uplift of the distal and proximal blocks as well as of the widely extended domain, especially the distal hinge anticline and the rest of the distal zone of the system (around 3 km).

5. Geometry of the Elongated Domes

The contacts between the formations studied, as well as the orientation and traces of the main foliation, define elongated domes and basins. These structures have been produced, depending on the sector, either by the interference of two trends of large-scale open folds (approximately E-W and N-S, respectively) or by noncylindrical folds that die out rapidly along the fold hinge.

[21] The Nevado-Filabride outcrops between 2°W and 3°30 W (Figures 1 and 8b) largely show a structure of E-W elongated domes of different order, with a ratio between the longitudinal and transverse fold wavelength of 1.5 to 3. Two first-order domes are recognized: the Sierra Nevada and Sierra de los Filabres, separated by the Fiuana syncline. The former corresponds very closely to the main relief of the Sierra Nevada in both areal extent and three-dimensional geometry, whereas the latter includes not only the Sierra de los Filabres but also a sector south of this mountain chain (Figure 8b). Also worth noting is the double plunging anticline of the Sierra Alhamilla, connected to the elongated dome of the Sierra de los Filabres by a set of NW–SE E folds that affect Serravallian to Tortonian sediments (Figures 1 and 8a).
In the Filabres dome, two domains can be distinguished:

1. The eastern domain has two E-W, double-plunging antiforms that are upright or box-shaped. Associated reverse faults (in places resulting in map-scale lithostratigraphic duplications) and sub-horizontal tension joints commonly develop. The hinge lines of the two antiforms form an en echelon pattern. The western end of this domain gives way to the Finéna plunging syncline, partially hidden by Pliocene sediments (Figure 1).

2. The western domain of the Filabres dome coincides with a large doubly plunging antiform with an arcuate axial surface trace. This fold is asymmetric in cross section and is characterized by a subvertical northern flank associated with reverse faults with consistent vergence. To the west, this antiform becomes more rounded and the interlimb angle increases, suggesting that the fold dies out to the west.

The Sierra Nevada dome (Figures 2 and 8) is 70\(\times\)30 km (on a horizontal plane at an elevation of 1400 m) and comprises two parts with somewhat different characteristics. The eastern sector has the overall geometry of a north vergent antiform plunging gently eastward. Within the antiform can be found several second-order en echelon folds trending N100°E. Moreover, there are other, smaller, N-S folds of limited extent (synclines SW and east of Alquife; Figure 2). The western sector has various moderately elongated second-order domes aligned N-S to NNE-SSW whose main axis roughly converges with the culmination zone of the principal dome of Sierra Nevada (Figures 2 and 8). In this zone, coinciding with the area of highest relief (Caballo-Mulhacén crest), the profile of the main fold reaches its greatest size (half wavelength is 30 km; fold amplitude is 6 km; both values refer to the Mecina detachment; Figures 2 and 9). At its western closure, the Sierra Nevada dome plunges 15°–20°. This fold dies out rapidly toward the west, as evidenced by the unfolded Alpujarride units and Neogene sediments.

6. Discussion

We discuss our results from several viewpoints. Although we have several lines of evidence to support a continuous folding event, progressing in time from folding linked to tectonic denudation along the Mecina and Filabres extensional detachments, to younger folding under N-S contraction, we will separate the arguments to discuss the origins of both folds, and, finally, we will present a model for the formation of the whole elongated domal system.

6.1. Extensional Detachments and N-S Trending Folds

In the elongated domes of the Sierra de los Filabres and Sierra Nevada, anticlinal axes trending N-S to NNE-SSW are roughly perpendicular to the average direction of extension of the detachments (both the Mecina and the Filabres detachments). These folds are particularly well developed in the western Sierra Nevada, where the highest topographic elevations occur (Figure 9). Moreover, taking into account their westerly position in the Nevado-Filabride outcrop with respect to the sense of movement of the hanging wall along the detachments (roughly WSW), these longitudinal folds (in...
the sense of Janecke et al. [1998]) could be interpreted as a rolling-hinge anticline [see Axen and Bartley [1997]. Other observations also support this interpretation, namely, (1) the folds affect the detachments and are confined to the lower plate rocks of the two extensional systems (i.e., the Nevada-Filabride units in western Sierra Nevada; Figures 1 and 2); (2) their interlimb angle decreases and their fold amplitude increases westward, in agreement with the fold geometry observed in other field examples and predicted in rolling-hinge models [e.g., Manning and Bartley, 1994; Wdowinski and Axen, 1992; Axen et al., 1995; Dinter, 1998]; and (3) cooling to near-surface temperatures becomes progressively younger in footwall rocks toward the west; it occurred during the middle Serravallian in eastern Sierra de los Filabres (12 ± 1 Ma) and was completed by the early Tortonian in western Sierra Nevada (9–8 Ma) [Johnson, 1997; Johnson et al., 1997]. Younging in cooling ages in the direction of slip is consistent with the progressive tectonic demudation of footwall rocks and rolling-hinge folding below crustal-scale extensional detachments [e.g., Foster et al., 1993; John and Foster, 1993; John and Howard, 1995; Howard and Foster, 1996].

[26] The trend of some of these longitudinal folds (NNE-SSW), nevertheless, is not strictly perpendicular to the direction of extension (WSW-ENE) deduced from striations, grooves, and other slickenlines in fault surfaces and shear bands (Figures 2 and 5), although they are subparallel to the footwall cutoff lines of the detachment surfaces (Figure 8a). The obliquity (≈70°–80°) between the footwall cutoff lines and the direction of extension indicates that the extensional detachments are oblique with a left-handed strike-slip component of displacement. This observation supports our case in naming the folds with respect to their cutoff lines, regardless of their angular relationships with the direction of extension. In this case, longitudinal folds designate folds approximately parallel to footwall cutoff lines. [27] There are two end-member kinematic models to explain rolling-hinge footwall uplift in response to extension: (1) subvertical simple shear, as might result from local Airy isostatic compensation [Axen and Wernicke, 1991; Axen et al., 1995], or (2) elastically controlled deformation (by flexural failure), where the footwall is treated as a viscous plate [Buck, 1988, 1993; Weisell and Karner, 1989; Block and Rydon, 1990; King and Ellis, 1990; Lavier et al., 1999]. The two mechanisms predict a different deformation history and structures, although there is a general consensus that they need not be mutually exclusive [Manning and Bartley, 1994; Axen and Bartley, 1997]. In our case, several observations favor the simple shear model: (1) the near-vertical dip of the axial plane of the rolling-hinge anticline in western Sierra Nevada (Figure 7); (2) the presence of small-scale folds, with both SE and NW vergence, trending subparallel to this anticline [Galindo-Zaldívar, 1993]; and (3) the occurrence of pervasive, postmylonitic subvertical joints in the proximity of this fold. The absence of structures denoting the occurrence of layer-parallel slip and the lack of a conjugate set of faults (both west down and east down) would be, in addition, more indicative of unroofing via subvertical simple shear rather than via elastic processes [Selverstone et al., 1995, Figure 1].

[28] On the other hand, there are abundant high-angle, west dipping (i.e., synthetic) normal faults that produced a net extension parallel to the regional foliation (ε ≈ 0.25; Figure 10). These structures most likely result from the combination of isostatically induced stresses in the hinge zone with far-field extensional stresses driven by the movement of the detachments. This combination would cause net horizontal extension in the footwall, which can produce synthetic faulting accompanying subvertical shear structures [Manning and Bartley, 1994; Axen et al., 1995]. However, for this combination of local and far-field stresses, Manning and Bartley [1994] showed that synthetic faulting must be small compared with subvertical structures, younger faults would be steep, their cutoff angles with the regional footwall foliation should be small (approximately <20°–30°) and, once the footwall surpasses the rolling hinge, foliation would dip subhorizontally or toward the detachment (i.e., westerly). Many of these predictions fail in our case, because the faults dip moderately toward the west (≈40°) and have relatively high cutoff angles (≈45°). The gentle eastward dip of the foliation (≈15°) on the eastern side of these faults (i.e., once they have passed through the rolling hinge; Figure 10) suggests that apart from a deviation of isostatically driven simple shear from the vertical as a result of interaction with far-field extensional stresses, other processes were also taking place in the region. We interpret one of these processes as being represented by new detachments, which backcut the footwall (i.e., toward the east), generate rollover folds, and accentuate the dip of the eastern fold limb of the rolling-hinge anticline, diminishing its interlimb angle.

[29] The calculated prolongation to depth of one of these faults (Figure 10), using several length-balancing methods to determine fault shapes in-depth (in particular the Suppe [1983] method or the inclined, synthetic shear-constant heave method of Jackson and Galloway [1984]), suggests they must flatten out at 13–15 km. The determined fault shape is consistent with the depth-distribution of recent earthquake hypocenters in the westernmost Sierra Nevada area (from Serrano et al. [1996] and Morales et al. [1997]) and with the brittle-ductile transition deduced from a strength profile calculated using local heat flow data taken from Fernández et al. [1998]. Seismicity, strength estimates, and surface structural data clearly indicate that the Mecina and Filabres detachment systems are currently inactive and that a new, active extensional detachment deforms a previous rolling hinge structure (Figure 10). This interpretation is in disagreement with previous suggestions by other authors, who postulate that the Mecina detachment continues currently inactive and that a new, active extensional detachment deforms a previous rolling hinge structure [Figure 10], using several length-balancing methods to determine fault shapes in-depth (in particular the Suppe [1983] method or the inclined, synthetic shear-constant heave method of Jackson and Galloway [1984]), suggests they must flatten out at 13–15 km. The determined fault shape is consistent with the depth-distribution of recent earthquake hypocenters in the westernmost Sierra Nevada area (from Serrano et al. [1996] and Morales et al. [1997]) and with the brittle-ductile transition deduced from a strength profile calculated using local heat flow data taken from Fernández et al. [1998]. Seismicity, strength estimates, and surface structural data clearly indicate that the Mecina and Filabres detachment systems are currently inactive and that a new, active extensional detachment deforms a previous rolling hinge structure (Figure 10). This interpretation is in disagreement with previous suggestions by other authors, who postulate that the Mecina detachment continues deepening further to the west, is still active, and determines present-day upper crustal seismicity [e.g., Galindo-Zaldívar et al., 1997, 1999].

[30] If we assume that the subvertical simple shear model could essentially explain this rolling-hinge structure, the original dip of the detachment systems can be reconstructed. This value can first be estimated using the interlimb angle (Θ = 68°; see Figure A3) of the domal antiform shown in Figure 7. Using the geometrical relationships presented in Appendix A, the initial dip of the detachment is ≈32° (i.e., 90°–Θ). We can also improve the precision of this estimate by using the footwall cutoff angles of the detachment systems. The footwall cutoff angles observed in the central Sierra de los Filabres are 15°–18°, which is the average regional dip (toward the east) of the foliation in that region. In the western Sierra Nevada, footwall mylonitic rocks and the Mecina and Filabres extensional systems themselves dip ≈27°–30° west on average. The latter angles represent the maximum original dip of both detachments, as they are at the top of the limb that has not yet passed the rolling hinge anticline. The difference between these values (27°–30°) and the cutoff angles measured in the eastern sector of the section (15°–18°) can be interpreted as (1) an original feature of the detachment
systems consisting of an imbricated listric fan, comprising progressively younger and steeper faults away from the initial fault breakaway or, alternatively, (2) an indication of the maximum change in the footwall surfaces as they passed through the rolling hinge. In the latter case, bending at the rolling-hinge anticline was certainly $<12^\circ$, in agreement with the small amount of bending ($<5^\circ$–10°) estimated in other low-angle normal faults [Axen et al., 1995; Axen and Bartley, 1997]. The initial dips of the detachment systems were, in summary, probably $<27^\circ$–30°. We suggest that the Mecina and Filabres detachments presently flatten above 13–15 km depth, which corresponds to the depth where a new and active detachment seems to root. This depth would also correspond to the maximum depth of the lower hinge of the ramp (rolling-hinge syncline). Using the horizontal extension estimated above (109–116 km, see Appendix A) and the suggested initial dip of the detachment faults, we deduce an average downdip displacement of about $122–134$ km. Such a high amount of extension, common to other low-angle normal faults [e.g., Wernicke, 1992], is possible for faults initially dipping $<20^\circ$ [Forsyth, 1992] (Figure 7).

The total extension (109–116 km) produced by the two detachment systems was accommodated by upward doming in the upper crust, with lateral and vertical flow of all the Nevado-Filabride section initially situated below 10 km. Any rolling-hinge model requires an intracrustal level of compensation to explain crustal flow and a final subhorizontal Moho geometry in regions under differential values of extension [Block and Royden, 1990; Melosh, 1990; Wdowinski and Axen, 1992; Wernicke, 1992]. The presence of a subhorizontal Moho under the core complex [e.g., Banda et al., 1993], the absence of any geological or geophysical evidence to suggest the participation of magmatic flow from the mantle of the right age and amount under these elongated domal structures [e.g., Torne et al., 2000], together with the observation of a subhorizontal intracrustal discontinuity in deep seismic profiling [García-Duertas et al., 1994; Martínez-Martínez et al., 1997a], have been used by Martinez-Martínez et al. [1997b] to suggest that these domes are compensated in depth by the lateral and vertical influx of buoyant midcrustal material, fluid in an asthenospheric sense [Wernicke, 1990, 1992]. The compensation depth would most likely have occurred above a prominent midcrustal decoupling level that is presently at 16.5–21 km (Figure 11).

[32] Another intriguing aspect is the elevation achieved by the anticline culmination in the western Sierra Nevada (>3 km high), since the different mechanical models developed to explain the evolution of topography, footwall and detachment geometries during tectonic denudation predict that footwall rocks should reach maximum average elevations in the range of 1–1.7 km with a gentle topography [Sonder et al., 1987; Block and Royden, 1990; Kruse et al., 1991; Wdowinski and Axen, 1992; Stüwe and Barr, 2000]. The age and the westerly younging direction of the fission track cooling ages [Johnson, 1997; Johnson et al., 1997] indicate a short tectonic unroofing of the Nevado-Filabride units, progressing toward the west, from the middle Serravallian (12 ± 1 Ma) to early Tortonian (9–8 Ma). A comparable short-lived or “catastrophic” (in <5 Ma) denudation has recently been found in other extensional
6.2. E-W Trending Folds

In contrast to the localized westerly location of the N-S, longitudinal folds, E-W trending, large-scale, open folds have been recognized and described throughout the region. Although these folds have been interpreted as lateral folds formed by the collapse of culmination structures over west directed thrusts [Frizon de Lamotte et al., 1989, 1995] or even as real isostatic structures due to tectonic unroofing below detachment faults [Galindo-Zaldívar et al., 1989; Galindo-Zaldívar, 1993], other authors interpret them as folds produced in a N-S contractional event [e.g., Platt et al., 1983; Weijermars et al., 1985; Crespo-Blanc et al., 1994; Martínez-Martínez et al., 1997a]. The first two interpretations can be discarded since no related fold-parallel, west directed thrusting structures are observed in the region, nor is the current elevation (>2 km) and nature (deposited under shallow-marine conditions) of the Serravallian synrift, marine sediments [Martínez-Martínez and Azañón, 1997] consistent with a single isostatic origin for the folds.

There are different arguments to support the contractional origin of the E-W folds and their timing: (1) These folds are subparallel to the direction of extension of the two detachment systems [e.g., Foster et al., 1993; John and Howard, 1995; Beutner and Craven, 1996; Craddock et al., 2000].

Figure 11. Three-dimensional diagram showing the upper and deep crustal structure of the Sierra Nevada elongated dome, from surface geology and deep-seismic reflection and refraction profiling. Locations of upper crustal cross sections (C-C’ and D-D’) are in Figure 1. Refraction profile (Profile II), trending subparallel to the direction of extension, is taken from Banda et al. [1993]. A simplified line drawing of the deep-seismic reflection profile, ESCI-Béticas 2, is shown with a tentative depth-conversion from García-Dueñas et al. [1994]. In the lower upper crust there is a marked subhorizontal discontinuity (for example the MCR reflector), which has been interpreted as a midcrustal decoupling level [Martínez-Martínez et al., 1997b]. Above this level, lateral and vertical flow of a buoyant crust occurred during the formation of the elongated dome.
Filabres, where, in addition, large-scale, down-slope gravitational gliding and related structures have been reported [Voet, 1964; Leine, 1966; Langenberg, 1973; Orozco et al., 1999]; (4) paleostress estimates suggest approximate NNW-SSE, constant contraction since the Tortonian in nearby areas [Estévez and Sanz de Galdeano, 1983; Galindo-Zaldívar et al., 1993, 1999; Stapel et al., 1996; Herraiz et al., 2000]; and (5) upper Miocene (upper Tortonian to Messinian) to lower Pliocene sediments were deposited in the surrounding Neogene basins (e.g., the Tabernas, Sorbas, and Almanzor basins) under shallow-marine to continental conditions, indicating simultaneous uplift and folding of the surrounding mountain ranges [e.g., Kleverlaan, 1989; Ott D’Esteveu and Montenat, 1990; Fernández and Guerra-Merchán, 1996; Martín and Braga, 1996; Pascual, 1997; García-García et al., 1999].

The subsidence history reconstructed in some of these basins reveals an abrupt change in the shallow-marine sedimentation during the upper Tortonian, which became continental, with an estimated uplift rate of 0.1–0.3 mm/yr [Soria et al., 1998; Rodríguez-Fernández et al., 1999].

A fold profile of the two major antiforms in the region (coinciding with the Sierra Nevada and the Sierra de los Filabres topographic culminations) (D-D’ in Figure 11) shows a deduced total N-S shortening of 8 km. Structural data, constrained by deep-seismic reflection profiling along this section, were used by Martínez-Martínez et al. [1997a] to suggest a fault bend fold and fault propagation fold structure. The two aforementioned antiforms therefore correspond to hanging wall anticlines related to footwall ramps.

The contractional origin of the E-W trending folds could explain some of the open questions in the previous section regarding the origin of N-S trending folds. A late uplift stage during this N-S contractional episode would explain the following key observations: (1) the current elevation of the rolling hinge anticline in western Sierra Nevada (fold hinge of the Filabres detachment at ≈3–3.5 km high, Figure 10); (2) the final geometry of the two detachment systems with two major open and north facing folds; together with (3) the final elevation above sea level (on average ≈1–1.5 km high) of the Serravallian-Tortonian coarse conglomerates deposited above the detachment systems, once they were isostatically readjusted. Moreover, the contribution to the topography of this folding event would explain how regions with maximum unroofing (e.g., the highly extended central domains; see striped band in Figure 8b) have both maximum and minimum elevations and why in parts of these areas, E-W synclines were nucleated, yielding a relative maximum sinking (e.g., Finána syncline). The 1–1.5 km high, final elevation of the sediments deposited over the detachment faults cannot be used to directly estimate the uplift related to the E-W folding event. Until the contribution of a likely isostatic component to the recent tectonics of the region can be quantified, the contribution to the surface uplift of the E-W folding will remain incompletely understood.

6.3. Model for the Origin of the Elongated Domal Structure

The final geometry of these domes is characterized by two main observations: (1) the doubly plunging geometry of both the N-S and E-W trending folds and (2) the extension-parallel (E-W) elongated geometry of the folds, which is particularly well depicted in domal culminations, formed by the interference between two antiforms, as for example in the western Sierra Nevada between the rolling hinge and the E-W antiforms.

Several implications can be deduced for the timing of the two folding events on the basis of a review of the fission track ages from the region (published by Johnson et al. [1997] and Johnson [1997]) and taking into account the new kinematic and structural data provided here: (1) Near-surface cooling ages from the N-S trending rolling-hinge anticline in western Sierra Nevada occurred during the uppermost Tortonian and Messinian (average ages are 9.4 ± 0.9 Ma for zircon and 5.2 ± 2.3 Ma for apatite); (2) along the major, E-W, antiformal axial traces of Sierra Nevada and Sierra de los Filabres, fission track ages tend to be younger toward the west and contemporaneous with the middle Miocene (Serravallian; 13–10.5 Ma) extensional episode, (3) whereas in N-S traverses across E-W antiforms, fold cores were systematically exhumed before their adjacent limbs, which are progressively younger to the west, from middle Serravallian in eastern Sierra de los Filabres to Messinian in eastern Sierra Nevada (average apatite ages in E-W fold limbs are 9.1 ± 2.6 Ma and 5.7 ± 1.3 Ma, respectively); and (4) finally, extension is still active in western Sierra Nevada, where a west directed listric detachment, postdating the Filabres and Mecina extensional systems, seems to control the shallow crustal seismicity in the eastern Granada basin (Figure 10).

These observations certainly indicate that the age of E-W folding becomes progressively younger toward the west, from middle Serravallian to middle Tortonian (∼9Ma) in the eastern Sierra de los Filabres, to uppermost Tortonian and Messinian (and even lower Pliocene) (∼6Ma) in its western sector and in the eastern Sierra Nevada. This interpretation is also consistent with the distribution and age of sediments in the region, where the first occurrence of Nevado-Filabride detritus are marine middle Serravallian sediments in the north of the eastern Sierra de los Filabres [Lonergan and Mange-Rajetzky, 1994], shallow-marine to continental, lower Tortonian sediments in the Tabernas basin [e.g., Pascual, 1997], and shallow-marine to continental, uppermost Tortonian to lower Pliocene in the western Sierra Nevada and in Granada basin (Figure 1) [Rodríguez-Fernández and Sanz de Galdeano, 1992; García-García et al., 1999].

E-W folding progressed therefore in a similar fashion to the extensional unroofing, i.e., toward the west. We suggest that E-W folding started to take place in areas behind the extensional unroofing, coexisting, from the middle Serravallian to the uppermost Tortonian and Pliocene, with tectonic demudation (related to the low-angle extensional detachments and the rolling-hinge antiform in a westerly position). Perpendicular contraction also occurred at the same time behind the extensional front, both progressing toward the west. This system would have produced progressive superposition and migration toward the west of contractional structures in previously extended domains, uplifting the inactive and isostatically readjusted portions of the low-angle detachment systems and their relative lower plate rocks.

The inferred compression perpendicular to the direction of extension requires the consideration of three-dimensional models to explain the formation of this dome-and-basin geometry [e.g., Axen et al., 1998]. Taking into account the model presented by Yin [1991], the geometry and dominant wavelength (55–70 km and 20–25 km, measured parallel and perpendicular to the direction of extension, respectively) of these elongated domes (Figure 8b) could have formed with a thin effective elastic crust,
probably <10 km, a relatively high ratio between deviatoric extension-parallel and perpendicular stresses, and a laterally changing vertical load. Lateral variations in the vertical force could be due to the existence of an uncompensated and nonuniform crustal root during extension [Yin, 1991]. Present-day crustal thickness under the Sierra Nevada and Sierra de los Filabres region [Torne et al., 2000], moreover, demonstrates that these domes are built over crust that distinctly thins toward both the east and south. If some of these crustal thickness variations occurred during the middle Miocene, a complex distribution of laterally changing vertical forces would have accompanied the extension, enhancing domal-forming processes. On the other hand, lateral variations in the vertical forces could also be produced by the NNW-SSE plate convergence boundary conditions during the west directed asymmetric extension, still active after the footwall was significantly unloaded. The middle-Miocene to Pliocene formation of the Sierra Nevada elongated dome at the core of the Betic hinterland therefore constitutes another example of the coexistence of extension and contraction during continued overall convergence and mountain building.

7. Conclusions

[42] The following points summarize our conclusions.

1. Miocene extension and consequent exhumation of the lower metamorphic complexes in the hinterland of the Betics was accommodated by two sequentially developed WSW directed extensional detachments associated with low-angle normal faults. Both detachments have an overall low-angle ramp geometry cutting their respective footwalls downsection toward the west. They were initially shallowly dipping faults, initial dip probably <27°–30°, being active during a short period of time (from 12 to 8 Ma), as indicated by fission track data.

2. The total amount of extension across the core complex is ~109–116 km (β = 3.5–3.9), according to the distance between the axial surfaces of faulting-related folded in the lower plate (distal antiform and proximal synform hinges) and using a geometrical model for subvertical simple shear deformation during footwall denudation.

3. Extensional detachments, together with their respective footwall reference surfaces, are similarly folded, showing an E-W elongated dome-and-basin noncylindrical geometry (doubly plunging upright or box-shaped open en echelon folds with amplitude of ≈6 km and half wavelength of ≈30 km, and longitudinal to transverse wavelength ratio of 1.5–3). Antiform axial surface traces run subparallel or coincide with the main topographic culminations of the region, where the maximum elevations of the Iberian Peninsula are found (e.g., the Mulhacen and Veleta peaks, at 3482 and 3398 m, respectively). This suggests a close link between the structural relief of these domes and the topography. Elongated domes are interpreted as being formed by interference between two suborthogonal fold sets, trending subperpendicular and subparallel to the direction of extension (WSW-ENE).

4. The longitudinal folds are interpreted as forming part of a rolling-hinge anticline taking into account the westerly position and abundance of the longitudinal (N-S) folds in the Sierra Nevada elongated dome, their angular relationships to the direction of extension (subparallel to footwall cutoff lines), their confinement to the detachments and their respective lower plates, and the decrease in the interlimb angle and increase in the fold amplitude, both westward. Other structural observations suggest a subvertical simple shear mechanism (interacting with far-field stresses) to form this rolling-hinge anticline, with a relatively small degree of bending (<5°–10°) as footwall rocks passed through it. The age of this longitudinal fold set is still not well constrained, although available fission track cooling ages [Johnson, 1997; Johnson et al., 1997] indicate simultaneous longitudinal folding as the extensional unroofing took place (i.e., mid-Serravallian to late Tortonian). Several lines of evidence suggest a contractional origin for the E-W folds, namely, (1) they are north facing asymmetric folds; (2) they affect the overlying sediments and both lower and upper detachment plates; and (3) they control the present-day topography, determining an overall surface uplift once the extensional detachments unroofed footwall rocks to near sea level.

5. We conclude that orthogonal folding of detachment faults and their respective footwalls is produced by the interference between a westerly moving rolling-hinge anticline and E-W folding behind the extensional front, progressively affecting to the west the isostatically readjusted segments of the detachments once they are inactive. This system was active from the Serravallian to the lower Pliocene, and extension is still active from the rolling-hinge anticline in Sierra Nevada to the west. The mid-Miocene to Pliocene formation of the Sierra Nevada elongated dome at the core of the Betic hinterland therefore constitutes another example of the coexistence of extension and contraction during continued overall convergence and mountain building.

Appendix A: Extension Calculation Using Rolling-Hinge Geometries

[43] Assuming a distributed subvertical simple shear mechanism to form rolling-hinge structures, Axen and Wernicke [1991] first analyzed the geometry of footwall uplift resulting from tectonic denudation along low-angle normal faults. Footwall uplift in this model results in local isostatic compensation (or pure Airy), as contrasted with plate-bending behavior in the elastic-plastic flexural-failure model [e.g., Block and Royden, 1990; Manning and Bartley, 1994]. In simple staircase normal fault geometry, and assuming that the hanging wall block is rigid, they showed how four axial surfaces form upon the onset of faulting and how finite strain in footwall rocks is directly related to fault dip, determining layer-parallel thinning (and antithetic reverse shearing) followed by thickening (and synthetic normal shearing) as footwall denudation progresses, passing through the rolling-hinge anticline. We have expanded the model presented by Axen and Wernicke [1991] in order to evaluate horizontal extension using the final geometry of the rolling-hinge structure.

[44] Figure A1 shows the evolution of a rolling-hinge structure with progressive extension along a hypothetical low-angle normal fault (α, fault dip). For the sake of simplification we assume that this fault has a simple staircase geometry, with a gently dipping ramp (α = 30° toward the left) and flattens out at depth, z. In the reconstruction in Figure A1, this depth is shown at 15 km, coinciding with the brittle-ductile transition calculated in the area (see Figure 10). Since the start of faulting, four axial surfaces have formed, linked to the top and bottom of the ramp in the footwall (axial surfaces A and B) or in the hanging wall (C and D). As pointed out by Axen and Wernicke [1991], the two axial surfaces
tied to the footwall were only active at the onset of faulting, affected only surrounding footwall rocks, and subsequently lay passively in the footwall. Axial surface C, at the top of the hanging wall ramp, corresponds to the rolling-hinge structure as all the footwall rocks pass through it as they are unroofed.

The amount of horizontal extension can be estimated with respect to the horizontal projection of the fault ramp, prior to faulting \(d \) or after faulting \(f \). The distance, \(f \), corresponds to the horizontal distance between the bottom ramp of the hanging wall (solid half-circle) and the exhumed, upper ramp in the footwall (open half-circle). The amount of horizontal extension \(e \) or the stretching factor \(\beta \) could therefore be related to the dip-slip component of the fault, given by the vertical component (or fault throw, \(t \)) and to the horizontal component of dip slip (or fault heave, \(h \)) by

\[
e = \frac{f - d}{d} = \frac{h}{d} \quad (1)
\]

\[
\beta = \frac{f}{d} = 1 + \frac{h}{d} \quad (2)
\]

These parameters can also be expressed as a function of the fault dip \(\alpha \), considering the depth at which the fault flattens out \(z \), by the following expressions:

\[
e = \frac{h \tan \alpha}{z} \quad (3)
\]

\[
\beta = 1 + \frac{h \tan \alpha}{z} \quad (4)
\]

As shown in Figure A1, the fault heave \(h \) coincides with the horizontal distance between the upper footwall and hanging wall ramps (distance AC; open half-dots), or the relative lower ramps (distance BD; solid half-dots). The first of these distances can be simply estimated in extension-parallel cross sections, because it corresponds to the distance between the rolling anticline and the passive synform linked to the footwall at the initial fault breakaway.

[46] Let us first calculate the width of the dome culmination \(w \), which always turns out to be the distance between the lower footwall and the upper hanging wall fault ramps (B and C, respectively). When the fault heave is lower than \(d \) (Figure A1b), this width is

\[
w = d - h \quad (5)
\]
whereas when it is larger than \(d \) (Figure A1c), it is
\[
w = h - d.
\]

These two equations can also be given as a function of the fault dip by the following relative expressions:
\[
w = \frac{z}{\tan \alpha} - h
\]
and
\[
w = \frac{z}{\tan \alpha}.
\]

The shape of the resulting dome, comprised of the four axial surfaces, can be defined by the fold amplitude \((A) \) and half of the fold wavelength \((W/2) \). These geometrical parameters can be deduced by using the trigonometric relationships depicted in Figure A1 and expressions (5) to (8). For low amounts of extension \((h < d) \), these fold parameters are
\[
\frac{W}{2} = \frac{2h}{2} + w = d = \frac{z}{\tan \alpha}
\]
and
\[
A = \frac{h \tan \alpha}{2} = \frac{hz}{2d} - \frac{t}{2},
\]
whereas for higher amounts of extension \((h > d) \), they are given by
\[
\frac{W}{2} = \frac{2d}{2} + w = h = \frac{z}{\tan \alpha} + w
\]
and
\[
A = \frac{d \tan \alpha}{2} - \frac{z}{2}.
\]

It should be noted that in this model the interlimb angle (half of the interlimb angle equals \(\theta \)) of the domal antiform remains constant, regardless of the amount of extension or of the reference surface taken in the footwall, at it is exclusively a function of the fault dip \((\Theta = 90 - \alpha) \).

[47] To illustrate the variations in these relationships with the amount of horizontal extension, we have represented in Figure A2

\[
\text{Figure A2. Evolution of the fold amplitude (A), half of the fold wavelength (W/2), and dome “width” (w) parameters as a function of horizontal extension (fault heave, h), for faults with constant dip of 30° and flattening out at two different depths of brittle-ductile transition (10 and 15 km). Shaded boxes show the fold values measured in the section of Figure 7 (see also Figure A3).}
\]

and
\[
w = h - \frac{z}{\tan \alpha},
\]

\[
\text{Figure A3. Extension-parallel cross section (simplified from Figure 7) showing the different fold parameters used to estimate the total horizontal extension, applying the equations of Appendix A.}
\]
the geometry of a domal structure in the footwall of a low-angle normal fault, dipping 30°, and flattening out at two different brittle-ductile transition depths (placed at reasonable depths of 15 km and 10 km). It can be seen that the domes resulting from this rolling-hinge model are upright and with a box-fold shape, tending to have a narrower (w decreases and W remains constant) and more pointed culmination (A increases; A ∼ 2), that it is producing a more chevron-like fold, as extension comes closer to the critical value d. In contrast, for higher amounts of extension, domes become progressively broader (w and W increase), with a constant fold amplitude (A = z/2). The critical extension value (d = h), where domes become chevron-like folds, with a maximum fold amplitude and a minimum fold wavelength, is a function of the depth, z (h = z/ tan α), at which the fault flattens out.

[48] In summary, the shape of the dome formed by the rolling-hinge subvertical simple shear mechanism, observed in an extension-parallel cross section, can be used to estimate the amount of horizontal extension, once the location of the four axial surfaces and the fault geometry are adequately constrained. The principal observations used to estimate the amount of horizontal extension in our case are summarized in Figure A3, a simplification of the cross section shown in Figure 7. Using the geometrical relationships described previously in Appendix A, and assuming that this rolling-hinge mechanism is governing dome genesis (see section 5), we estimate a horizontal extension ranging from 82–94 km to 109–116 km (3 = 3.5–3.8 to 4.3–4.5, respectively). The higher estimate comes from introducing the distance between the axial surfaces C (the rolling-hinge anticline) and A (the passive-hinge syncline) (f = 142–149 km; d = 33 km), and the fold wavelength (W/2 = 102 km) in equation (11). If, in the same expression, we use the dome “width” (w ∼ 61 km) and the fault dip (α = 30°) values, we obtain a smaller estimate of horizontal extension. Measured fold amplitude (2d = 12 km) corresponds to the depth at which the detachment fault flattens out (equation (12)), in close agreement with our geometrical reconstruction of this depth (z = 11 km) shown in Figure A3.

[49] Acknowledgments. Financial support for this work was provided by projects MAR98-0981 and BTE2000-0581 (CICYT). We thank Craig Jones, Neil Mancktelow, Jon Spencer, and the editor, Brian Wernicke, for their constructive reviews and advice on improving the manuscript.

García-Dueñas, V., J. M. Martínez-Martínez, and F. Navarro-Vilá, La zona de falla de Torres Cartas, conjunto de fallas normales de bajo-ángulo entre Nevada-Filabride y Alpujarriera (Sierra de Alhamilla, Béticas Orientales), Geogaceta, 1, 17–19, 1986.

Herranz, M., et al., The recent (upper Miocene to Qua-ternary) and present tectonic stress distributions in the Iberian Peninsula, Tectonics, 19, 762–786, 2000.

Ranalli, G., and J. M. Bartley, Postmylonitic de-
formation in the Raft River metatorphic core com-

Martin, J. M., and J. C. Braga, Tectonic signals in the
Mesozoic stratigraphy of the Sorbas Basin (Almer-
ian, Betic Cordilleras, Spain). Tectonic Basins of Spain. The Strati-

Martínez-Martínez, J. M., and J. M. Azañón, Mode of
tectonic detachment in the southeastern Betics (SE Spain): Implications for the tec

Mazzoli, S., and M. Helmke, Neogene patterns of rela-
tional plate motion for Africa-Europe: some implica-

Melosh, H. J., Mechanical basis for low-angle normal

Miller, J. M. G. and B. E. John, Sedimentations pat-
terns support seismogenic low-angle normal faulting,

Monie, P., J. Galindo-Zaldívar, F. González-Lodeiro, B. Goffe, and A. Jabaloy, 40Ar/39Ar geochronology of Alhambra thrust and rauhwacke develop-
ment, mountain uplift and subaerial sliding of tec
tonic sheets (northern Sierra de los Filabres, Betic Cordilleras, Spain), Geol. Mijnbouw, 78, 103 – 117, 1999.

Morales, J., J. Serrano, F. Vidal, and F. Torcal, The

Nijhuis, H. J., Plurifacial Alpine metamorphism in the

Orózco, M., J. M. Molina, A. Crespo-Blanc, and F. M. Albolero, Mylonite and rauhwacke develop-
ment, mountain uplift and subaerial sliding of tec
tonic sheets (northern Sierra de los Filabres, Betic Cordilleras, Spain), Geol. Mijnbouw, 78, 103 – 117, 1999.

Ott D’Estévez, P., and C. Montenet, Le bassin des Tabernas, en

Pascual, A. M., La cuenca Neógena de Tabernas (Cor-

Platt, J. P., and R. L. M. Vissers, Extensional collapse of
thickened continental lithosphere: A working hy-

Platt, J. P., B. Van de Eckhout, E. Janzen, G. Konert, O. J. Simon, and R. Weijermars, The structure and tectonic evolution of the Aguilón nappe, Sierra Al-

Platt, J. P., J. H. Behrmann, J. M. Martínez-Martínez, and R. L. M. Vissers, A zone of mylonite and rel-
ant ductile deformation beneath the Alpujárda

Rehrig, W. A., and S. J. Reynolds, Geologic and geolo-
igraphic reconnaissance of a northwest-trending zone of metamorphic core complexes in southern

Royer, L. H., The tectonic expression of slab pull at
continental convergent boundaries, Tectonics, 12, 303 – 325, 1993.

Serrano, I., J. Morales, F. Vidal, and F. Torcal, Meca-

Sonder, L. I., P. C. England, B. P. Wernicke, and R. L. Christiansen, A physical model for Cenozoic exten-
sion of western North America, in Continental Ex-

Soria, J. M., C. Viseras, and J. Fernández, Late Mi-
cene-Pliocene tectono-sedimentary evolution and subsidence history of the central Betic Cordillera

Soto, J. I., Estructura y evolución metamórfica del com-
plejo Nevado-Fla Palmé de la tectónica de la Sierra de los Filabres, Betic Cordilleras, Spain, Geol. Mijnbouw, 78, 103 – 117, 1999.

Tari, G., P. Dovényi, I. Dunkl, F. Horváth, L. Lenkey, M. Stefánakou, P. Szafán, and T. Tóth, Lithospheric structure of the Pannonian basin derived from seis-
mic, gravity, and geothermal data, in The Mediter-

Yin, A., T. M. Harrison, M. A. Murphy, M. Grove, S. Nie, F. J. Ryerson, W. X. Feng, and C. Z. Le, Ter-
iary deformation history of southwestern and south-