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Introduction

The process of evolution by natural selection can be

divided into two components, phenotypic selection

operating within a single generation and a genetic

response operating across generations (Fisher, 1930).

Over the past 15 years we have greatly re®ned our ability

to analyse phenotypic selection. Lande & Arnold (1983)

presented a fundamental methodological advance by

recognizing that phenotypic selection could be modelled

as a multivariate analysis of the covariance between trait

values and ®tness. Their initial effort concerned the

estimation of directional (linear) and stabilizing/disrup-

tive (nonlinear) selection on multiple traits. They pro-

posed the use of multiple regression to partition total

selection on a trait into components due to direct

selection on the trait of interest and those due to

correlated responses through selection on other traits

(indirect selection). Since that publication the method

has been re®ned and advanced by partitioning selection

into multiple episodes (Arnold & Wade, 1984; Wade &

Kalisz, 1989), recognizing nonlinear directional-selection

components (Mitchell-Olds & Shaw, 1987), adding meas-

urements of correlational selection (Phillips & Arnold,

1989), analysing selection on breeding values (Rausher,

1992), and the use of logistic regression (Janzen & Stern,

1998).

This paper extends those efforts to the analysis of

selection on complex life histories by the use of path

analysis. The critical difference between path analysis

and multiple regression is that in the former the

analytical model is built around a speci®c set of causal

relationships among traits that determine ®tness. In

contrast, a multiple regression assumes a simpler causal

relationship in which all traits affect ®tness directly. As

we show, this change in causal structure can substan-

tially alter conclusions about the strength of phenotypic

selection on given traits.

Path analysis has been used previously to examine

patterns of phenotypic selection (e.g. Arnold, 1983;

Crespi & Bookstein, 1989; Mitchell-Olds & Bergelson,
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Abstract

We expand current methods for calculating selection coef®cients using path

analysis and demonstrate how to analyse nonlinear selection. While this

incorporation is a straightforward extension of current procedures, the rules

for combining these traits to calculate selection coef®cients can be complex.

We demonstrate our method with an analysis of selection in an experimental

population of Arabidopsis thaliana consisting of 289 individuals. Multiple

regression analyses found positive directional selection and positive nonlinear

selection only for in¯orescence height. In contrast, the path analyses also

revealed positive directional selection for number of rosette leaves and positive

nonlinear selection for leaf number and time of in¯orescence initiation. These

changes in conclusions came about because indirect selection was converted

into direct selection with the change in causal structure. Path analysis has

great promise for improving our understanding of natural selection but must

be used with caution since coef®cient estimates depend on the assumed causal

structure.
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1990; Conner, 1996; Pugesek & Tomer, 1996; see review

in Kingsolver & Schemske, 1991). These authors make a

point that we reiterate here. Complex life histories

involve traits that are not directly linked to ®tness, but

rather are linked through other traits. An analysis of

selection on these traits requires accounting for these

causal relationships. Our paper makes two important

advances to these previous efforts. First, we show how a

path analysis provides clues about whether important

unmeasured traits have been left out of the analysis. The

issue of missing traits has been a persistent criticism

about multiple regression methods for analysing selec-

tion. We do this by examining the partition of total

selection into direct and indirect selection components,

an issue not examined in previous papers. Note that this

partition is different from direct and indirect effects (see

below). Second, we explicate methods for analysing

nonlinear components of selection, such as stabilizing

selection. Most previous path analyses have been limited

to linear selection components (but see McCall et al.,

1994; Conner, 1996). In Scheiner & Callahan (1999) we

extend these methods further to the measurement of

selection on phenotypic plasticity. We illustrate these

methods using data on selection in an experimental

population of Arabidopsis thaliana.

Selection in a path-analytical framework

Path analysis is a generalization of multiple regression

that allows one to estimate the strength and sign of

directional relationships for complicated causal schemes

with multiple dependent variables (Wright, 1920; Li,

1975). The causal scheme is usually considered an a priori

hypothesis of potential effects (but see Shipley, 1997),

and alternative hypotheses can be proposed and tested

against each other (Mitchell, 1993). Conversely, the

a priori causal scheme can be taken as a given and used to

make predictions about patterns of evolution. It is in this

latter sense that we use our method, where the pieces of

the causal scheme are built either from ®rst principles or

previous experimental and observational studies.

A path diagram (Fig. 1) is a scheme of causal relation-

ships. Consider an annual plant that grows vegetatively

for some period of time, then ceases growth, ¯owers, sets

seed and dies. More complex life cycles can be accom-

modated with this method; the example developed here

is for simplicity of presentation. Five traits are measured:

cotyledon size (z1), time of in¯orescence initiation

(bolting time; z2), number of rosette leaves at ¯owering

initiation (z3), in¯orescence height (z4) and number of

fruits (z5). In our causal scheme, cotyledon size affects

both time of in¯orescence initiation and number of

leaves, and both of them affect in¯orescence height.

In¯orescence height in turn in¯uences fruit production.

In this formulation, only ®rst-order effects are included.

That is, in¯orescence height at the end of the season

depends only on timing of in¯orescence initiation and

number of rosette leaves, not additionally on cotyledon

size. Such second-order effects could be added by

including additional paths.

A path diagram, besides showing the nature and

direction of causal relationships, also includes estimates

of the strength of those relationships, the path coef®-

cients (p). A path coef®cient is the standardized slope of

the regression of the dependent variable on the inde-

pendent variable in the context of the other independent

variables. For example, in¯orescence height (z4) is

regressed on bolting time (z2). The slope (b42) is then

standardized (p42) by multiplying it by the ratio of the

standard deviations of the independent and dependent

variables, respectively. If there is only a single indepen-

dent variable, this standardized coef®cient is a Pearson

product-moment correlation; if there are additional

independent variables, it is a standardized partial regres-

sion coef®cient. The standardization acts to remove

differences in scale among variables. Typically these

relationships are assumed to be monotonic and linear,

possibly after transformation. However, nonmonotonic

(e.g. quadratic) relationships can be included by adding

squared traits (see below). If a trait is transformed, the

same transformation must be used for that trait as both a

dependent and an independent variable.

Terminology

When moving from the multiple regression formula-

tion of Lande & Arnold (1983) to a path-analytical

Fig. 1 Two different models of trait effects on ®tness. A. Multiple

regression model showing each trait operating simultaneously on

®tness. B. Path analysis model showing ®ve traits at four time

periods. The path coef®cients are standardized regression coef®-

cients. Variation due to error (U) is not included for simplicity.
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framework, we run into a terminology discrepancy

between statisticians and evolutionary biologists. To

avoid confusion it is necessary to re®ne previous word

usage. In doing so we bring precision while avoiding

unnecessary jargon.

In Lande & Arnold's multiple regression framework

there are only two ways a trait can affect ®tness, a direct

connection between the two traits, and a connection that

proceeds backwards through a correlation with another

trait and then forward to ®tness (Fig. 1A). Lande &

Arnold refer to these two possible pathways as direct and

indirect effects, respectively. A path-analytical frame-

work adds a third possibility. A trait appearing early in

the model may have its effect through an intermediate

trait or traits and ultimately in¯uence ®tness. In standard

path analysis parlance (Pedhazur, 1982; see also

Mitchell-Olds & Bergelson, 1990), a forward connection

through an intermediate trait is referred to as an indirect

effect (or a mediated effect), while a backward connec-

tion is a noncausal effect that includes both spurious

effects due to shared causes and correlated effects due to

correlated causes (e.g. in Fig. 1B, cotyledon size is a

shared cause for leaf number and bolt date, while in

Fig. 1A ®tness is affected by four correlated causes). To

add to the confusion, in selection analysis, correlational

selection refers to simultaneous selection on a combina-

tion of traits (Phillips & Arnold, 1989).

In order to avoid misunderstanding while not straying

too far from previous usage, we propose the following

terminology which replaces `effect' with `selection' when

referring to the measures described by Lande & Arnold,

and reserves the term `effect' for describing paths or

connections between traits. Direct selection is any

forward connection between a trait and ®tness, whether

through an intermediate trait or not. In path analysis

terminology this is the sum of all direct and indirect

effects associated with a given trait. Indirect selection is

any backward connection between a trait and ®tness. In

path analysis this is often called the noncausal effect.

Total selection is the sum of direct and indirect selection.

Correlational selection is de®ned as above (Phillips &

Arnold, 1989). A direct effect is any direct connection

between traits. An indirect effect is any forward connec-

tion between two traits that goes through an intermedi-

ate trait. The causal effect is the sum of the direct and

indirect effects (also known as the total effect or the total

causal effect of Mitchell-Olds & Bergelson, 1990). A

noncausal effect is any backward connection between

two traits, including both spurious and correlated effects.

Partitioning the selection differential

The covariance between a trait and ®tness is the selection

differential (s). Such a covariance might develop for

several reasons (Arnold, 1983). In a multiple regression

framework, there might be direct or indirect selection on

the trait, i.e. s describes total selection. In a path-

analytical framework, it might develop because of direct

effects, indirect effects or noncausal effects (Pedhazur,

1982; Schemske & Horvitz, 1988). Given the de®nitions

mentioned earlier, it is therefore possible to use path

analysis to partition the selection differential into direct

selection (direct + indirect effects) and indirect selection

(noncausal effects).

Partitioning an observed selection differential into

these components depends on the causal model applied

to the system. Consider the multiple regression model

used in a typical selection analysis (Fig. 1A). In this

model there is no hierarchy of relationships among traits;

all four of the observed traits in¯uence ®tness directly,

and are correlated with one another. This model there-

fore only allows direct and noncausal effects on ®tness,

since there are no intermediate traits through which

indirect effects might arise. Contrast the path model

(Fig. 1B). In this model only one trait (height) has a path

leading directly to ®tness with no intermediate steps, but

all other traits may have indirect (mediated) or noncausal

effects on ®tness (Table 1). In this example, direct

selection on in¯orescence height is straightforward,

p54 º b*4, the regression of fruit production on in¯ores-

cence height. We use b to symbolize the selection

coef®cient to maintain consistency with the conventions

established by Lande & Arnold (1983), but add the

asterisk to indicate that the value may differ from that

estimated using multiple regression (see below).

Direct selection coef®cients (b*i ) are calculated as the

sum of the direct and indirect effects for a trait; while the

noncausal effects estimate indirect selection. Consider

Table 1 Decomposition of the correlation between different traits and ®tness under multiple regression and path analysis models (Fig. 1).

Direct selection includes both direct and indirect effects, and indirect selection includes noncausal (spurious and correlational) effects. The sum

of direct and indirect selection is the total selection accounted for by the model.

Multiple regression Path analysis

Trait Total selection Direct selection Indirect selection Direct selection Indirect selection

Seedling size s1 p51 r21 p52 + r32 p53 + r41 p54 p21 p42 p54 + p31 p43 p54

Bolting time s2 p52 r21 p51 + r32 p53 + r42 p54 p42 p54 p21 p31 p43 p54

Leaf number s3 p53 r31 p51 + r32 p52 + r43 p54 p43 p54 p31 p21 p42 p54

Height s4 p54 r41 p51 + r42 p52 + r42 p54 p54
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selection on leaf number. In this model, leaf number has

no direct effect on ®tness, but the indirect effect of leaf

number on fruit production through in¯orescence height

estimates the strength of direct selection, and is calculated

as b*3 º p43 p54. Indirect selection goes along a second

pathway through a shared cause, seedling size. It is

calculated by following the path backwards from leaf

number to seedling size, then forward through bolting

time to ®tness (p31 p21 p42 p54). Total selection on leaf

number can be calculated by adding together direct and

indirect selection: s*3 º p43 p54 + p31 p21 p42 p54 (the

asterisk indicates that this estimate relates to a path

diagram, as above). Along a single path, coef®cients are

multiplied, while separate paths are summed. See Li

(1975) for details on combining path coef®cients. In

complicated path diagrams there may be many pathways;

however, the rules for calculating path coef®cients are

straightforward (Li, 1975; Pedhazur, 1982). Several

computer programs calculate path coef®cients automat-

ically [e.g. Procedure CALIS (SAS Institute 1989a,b),

LISREL (JoÈ reskog & SoÈ rbom, 1988), EQS (Bentler, 1993),

RAMONA (SYSTATSYSTAT for Windows, SPSS, Inc.)], and the

more sophisticated versions offer a variety of estimation

options, including ordinary least squares and maximum

likelihood. Most major software packages calculate both

standardized and unstandardized coef®cients, so one

must take care when reading the output to make sure

which coef®cients are being reported where.

We notate the model-implied covariance between a

trait and ®tness as s* (the `predicted' covariance; Cohen &

Cohen, 1983), to distinguish it from the observed

selection differential (s) which does not depend on the

causal model. Likewise, we distinguish between selection

gradients estimated from a path model (b*i ; see also

Koenig et al., 1991) and those estimated from a linear

regression (bi). Structural equation modelling programs

readily calculate s* and b*i values as part of the model-

dependent predicted covariance matrix.

The sum of direct and indirect selection estimates the

selection differential (s*) for a trait. The model-implied

selection differential (s*) need not equal the observed

selection differential (s) when the path diagram is `over-

identi®ed' (Pedhazur, 1982; Hayduk, 1987; see below).

For example, our model (Fig. 1B) implies a covariance

between leaf number and ®tness of s*3 (Table 1), a value

which may deviate from the observed covariance (s3) for

a variety of reasons, including misspeci®cation of the

causal model and sampling error.

In this fashion a path-analytical framework differs

from a multiple regression framework, which will of

necessity exactly recreate the original covariance matrix

from the selection coef®cients because it is `just-identi-

®ed' (Pedhazur, 1982; Hayduk, 1987), having just

enough information to estimate the regression coef®-

cients. In contrast, many path models are over-identi®ed,

in that they contain more information than is needed to

estimate the path coef®cients. For example, in the linear

path model (Fig. 1B) there are 10 correlations among the

®ve traits, but the path model only estimates ®ve path

coef®cients.

This redundancy of information due to over-identi®-

cation has two consequences. First, it means that the

observed covariance between variables may differ from

that implied by the model (Table 2). These deviations are

an indication of the extent to which the data are

consistent with the path diagram. Second, these devia-

tions can be used to test the goodness-of-®t between the

model and the data (Pedhazur, 1982; Loehlin, 1987;

Hayduk, 1988; Mitchell, 1993).

As a result, statistical signi®cance testing plays a

different role in a path-analytical framework. When a

direct selection coef®cient comes from combining direct

and indirect effects, its statistical signi®cance is not

directly tested. One can only test the signi®cance of

individual path coef®cients (JoÈ reskog & SoÈ rbom, 1988).

Instead, one tests the statistical signi®cance of the entire

model and compares alternative models (Loehlin, 1987;

Hayduk, 1988; Mitchell, 1993). After a model is chosen,

the selection coef®cients are calculated and their relative

magnitudes compared. There are no unambiguous

guidelines about how to interpret such selection coef®-

cients. Magnitudes of <|0.2| are typically considered

Table 2 Linear selection analyses showing direct and indirect selection coef®cients for multiple regression and path analysis models.

Coef®cients in bold type are statistically signi®cant at P < 0.0001. Statistical signi®cance can be assessed for all traits for total selection and direct

selection in the multiple regression model. In the path analysis model, signi®cance can be assessed only for direct selection on height because

only this trait is directly connected to ®tness. Indirect selection in the path analysis model is calculated by subtracting direct selection (total

effects) from s* (the model-implied correlation between the trait and ®tness). R2 for the multiple regression model = 0.761. R2 values for the

path model are: Bolting time = 0.045, Leaf number = 0.011, Height = 0.359, Fitness = 0.749.

Multiple regression Path analysis

Trait Total selection (s) Direct selection (b) Indirect selection Predicted covariance (s*) Direct selection (b*) Indirect selection

Seedling size 0.216 0.004 0.212 0.070 0.070 ±

Bolting time )0.153 )0.081 )0.072 )0.094 )0.084 )0.010

Leaf number 0.589 0.130 0.459 0.512 0.510 0.002

Height 0.865 0.780 0.085 0.865 0.865 ±
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small, those from |0.2| to |0.4| are considered moderate

and greater values are considered large.

Nonlinear and stabilizing/disruptive selection

Above we presented a path-analytical framework for

directional selection, representing selection which

changes population means. Selection can also be non-

linear, representing selection which changes population

variances. Such nonlinear selection coef®cients are typ-

ically symbolized as c. To incorporate selection on

variances into a path analysis, one creates new traits,

which are squares of the original traits (Fig. 2). Such

analysis requires that the original trait be centred to a

mean of 0 by subtracting the population mean from each

observation. In the analyses below we used z-scores,

calculated by subtracting the mean and then dividing by

the standard deviation, in order to simplify interpretation

(Pedhazur, 1982; Lande & Arnold, 1983). Our use of

squared traits to indicate quadratic paths is actually

equivalent to what is done in a multiple regression

analysis. Such an analysis, however, is seldom illustrated,

only shown in equation form. Thus, the relationship is

not immediately apparent.

The path diagram indicates that these squared traits are

correlated with (rather than caused by) the original trait

from which they are calculated, since neither is concep-

tually nor biologically antecedent to the other. The paths

from and to the squared traits are designated as q, to

differentiate them from linear paths (p) and correlations

(r). To distinguish paths through traits from those

through squared traits, we indicate the latter with a

prime. For example, the path from z1 to z2
3 is q3¢1. While

we do not deal with the calculation of the path

coef®cients here, we note that the linear and nonlinear

models must be estimated separately (Cohen & Cohen,

1983; Lande & Arnold, 1983; Brodie et al., 1995). In a

nonlinear (quadratic) model, it is the combination of the

variable and its square that is of interest, not either one in

isolation. The linear coef®cient in a quadratic analysis

does not necessarily equal the coef®cient in a linear

analysis because of the shared variance between the trait

and its squared trait. The linear analysis provides the best

estimate of directional selection, so in a nonlinear

analysis the linear coef®cients are typically ignored.

These new path coef®cients through the squared traits

measure nonlinear selection, selection on the variance

(Lande & Arnold, 1983; Mitchell-Olds & Shaw, 1987). If

there is an internal maximum (minimum), then they

measure stabilizing (disruptive) selection in the classic

sense. Otherwise they represent selection which decreases

(increases) the phenotypic variance. In standard linear

path analysis these terms would not exist. If there were

no internal maximum or minimum, a suitable transfor-

mation would be found to linearize the relationship. The

case of an internal maximum or minimum is simply

ignored in most cases. Linearization is typically justi®ed

on the grounds that the researcher is simply trying to

create the most useful, predictive model with no epistem-

ological import being given to the exact form of the

equations. However in the case of natural selection, the

nonlinear terms have real meaning. Thus, we need a

method for incorporating them into the analysis.

Path and selection coef®cients in this model are

calculated as before, but involve a slightly more compli-

cated decomposition of the selection differential because

of the more complicated model. Selection directly on

quadratic components is assessed simply by the direct

and indirect effect coef®cients (direct selection) for the

squared traits as described above. Thus, direct nonlinear

selection on leaf number is c*3 � q4¢3¢ q54¢ + q43¢ p54.

Because there are no nonlinear (or linear) terms con-

necting leaf number with bolting time, this latter trait

does not contribute to direct nonlinear selection on leaf

number. Direct nonlinear selection is quanti®ed by the

total effect of each of the squared traits. Indirect selection

involves the noncausal effect and can be complicated

and tedious to calculate. For example, as part of the

Fig. 2 The same path diagram as in

Fig. 1(B), but with nonlinear path coef®-

cients (q) now shown. These nonlinear

coef®cients are regressions on squares of the

trait values and are indicated by squared

traits, z2 terms. To distinguish paths through

traits and squared traits, the latter are

indicated with a prime. For example, the

path from z1 to z2
3 is q3¢1. Variation due to

error (U) is not included for simplicity.

Conventions follow Fig. 1. Grey is used to

denote elements that are also in the model in

Fig. 1(B).
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calculation of indirect nonlinear selection on seedling

size, you would include the path from z1
2 through z1, z2 and

z4 to z5 (r1 p21 p42 p54). In practice, it is easiest to calculate

the indirect selection coef®cient by subtracting the direct

selection coef®cient of the trait (b*) from the model-

implied covariance between the trait and ®tness (s*).

In a similar fashion, correlational selection can be

incorporated into a path-analytical framework. Estimat-

ing the interaction terms for such an analysis requires

construction of new traits by multiplying together any

pair of traits that have a direct effect on a third trait. The

analysis is analogous to that described above, but is

beyond the scope of this paper.

Selection on Arabidopsis thaliana

Materials and methods

To demonstrate our method, we use data from a study of

A. thaliana conducted at the University of Tennessee

Agricultural Experiment Station in Knoxville, Tennessee.

These data are a portion of a 2-year, two-site reciprocal

transplant study (Callahan & Pigliucci, unpublished

data). The example presented here is not meant to be a

de®nitive analysis of selection in this system. Rather, we

examined a deliberately simpli®ed version in order to

make the methodology easy to understand. A full

analysis would result in the methodological forest being

lost among the ecological trees.

In May 1996, seeds were collected from two popula-

tions, from 60 plants in a very large population (>500

plants) at the UT Agricultural Experiment Station Plant

Sciences Unit in Knox County (83°57¢W, 35°56¢N), and

from 40 in a smaller population (»150 plants) in Sharps

Ridge Park, Knox County (83°56¢W, 36°N). Bulk collec-

tions of these seeds are available from the Arabidopsis

Information Management System stock centre at Ohio

State University.

Seed families were maintained in separate envelopes

and stored dry until 16 October 1997. We then imbibed

the seeds in the dark at 4 °C for 1 week on moist ®lter

paper. From 29 October to 2 November, we randomly

planted four seeds per family in each of ®ve 200-cell

germination trays (20 seeds per family total), 25 families

from each population. Prior to transplanting into the

®eld, seeds were pregerminated on moist vermiculite

under arti®cial light, two 4-foot 40-W ¯uorescent tubes

combined with two 25-W incandescent bulbs, placed

10 cm from the seedlings. We used an 11:13 h photope-

riod to approximate ®eld conditions. We added 1 mL of

standard Hoagland's solution to each seedling on 10

November, and transferred growth racks from room

temperature (20±22 °C) to a 4 °C cold room on 16

November.

Before transplanting to the ®eld we thinned to a single

seedling per cell and measured the distance between the

apical edges of the cotyledons to estimate seedling size.

On 19±20 November, we transplanted the seedlings into

extant vegetation, spaced about 10 cm apart in a

randomized array, individually marking each plant.

Approximately 80% of the seedlings survived or could

be tracked successfully until the following March.

Beginning on 27 February 1998 we monitored the plants

every other day for time of in¯orescence initiation

(bolting time) and counted the number of rosette leaves.

We monitored all in¯orescences until ¯owering had

ceased, harvested in¯orescences, and measured in¯ores-

cence height and the number of matured fruits. Seed

number per plant is strongly correlated with the number

of fruits (Westerman & Lawrence, 1970; Mauricio &

Mojonnier, 1997).

Estimation of linear and nonlinear selection
coef®cients

We analysed the data using both linear and quadratic

formulations. In each case, we analysed selection using

both a multiple regression analysis and a path analysis.

We performed the multiple regressions with Procedure

REG and the path analyses with Procedure CALIS (SAS

Institute, 1989a,b; see also Mitchell, 1993). In the

analyses we used data from only the 289 plants that

survived to harvest and for which we had records of all

®ve traits in our model (listwise deletion). Because a

preliminary analysis showed a minimal effect of the

source population, the populations were pooled in the

analyses shown here.

Standard linear selection analyses indicate strong

selection differentials for all traits, since all four morpho-

logical and phenological traits covaried signi®cantly with

our measure of ®tness, number of fruits (Table 2). The

multiple regression indicates that direct selection was

strongest on in¯orescence height, and was signi®cant for

all traits except cotyledon size (Table 2). Direct selection

on leaf number was small, while indirect selection was

substantially larger. The conclusions from this analysis

are that height is the primary trait directly in¯uencing

®tness, and that most of the effect of leaf number is due

to its correlation with height.

The path analysis generates different conclusions

(Fig. 3, Table 2). Now height is the only trait allowed to

Fig. 3 Solved path diagram for the linear analysis. Dashed lines

indicate negative coef®cients, and the width of the arrow indicates

the strength of the effect. Variation due to error (U) is not included

for simplicity.
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directly affect ®tness, and that effect is very strong. Yet

the path analysis indicates that direct selection of leaf

number is also considerable, because it strongly affects

height (Fig. 3). Thus, though leaf number has no direct

effect on ®tness, it has a strong indirect effect resulting in

direct selection mediated by height. What was a corre-

lated effect in the multiple regression is now part of direct

selection because of the change in causal structure. This

may seem to be only a nuance, but it may be a better way

of examining how the strength of selection on leaf

number differed between the two sites and the two years

of the study. This is especially true because the correla-

tion between height and leaf number varied consider-

ably, especially in the study's second season, when it was

0.37 at the Agricultural Experiment station site and 0.74

at the other site (Callahan & Pigliucci, unpublished data).

In contrast, direct selection of bolting time and seedling

size is about equally small in both analyses. Thus, the

conclusion from this analysis is that both height and leaf

number experience substantial direct directional selec-

tion.

Note that s* for seedling size (the model-implied

covariance for seedling size and ®tness, calculated as

p21 p42 p54 + p31 p43 p54) differs markedly from that

observed, an indication that the model fails to capture

some of the important ecology for this part of the life

cycle. This difference is perhaps unsurprising, since

seedling size was both expressed and measured in a

laboratory environment, while all of the later traits were

expressed and measured in the ®eld. When environ-

mental change is important, it can be taken into account

using a modi®ed version of path analysis, as discussed in

Scheiner & Callahan (1999). For the other traits, s* is

reasonably close to the observed value (s). As seedling

size is the earliest trait expressed, this difference suggests

that unmeasured early growth traits might have import-

ant ®tness effects.

Statistical signi®cance of the selection coef®cients

cannot be assessed for direct selection, except for traits

like height that directly affect ®tness. Instead we can

assess the total ®t of the model. In this instance, the

agreement between model and data is weak (the good-

ness-of-®t test shows a signi®cant difference between the

model and the data: v2
5 � 30.5, P < 0.0001), indicating

that further work is necessary to understand the under-

lying biology and ecology of this system.

In the quadratic analysis, we are only concerned with

the quadratic coef®cients and ignore the linear coef®-

cients, as explained above. The selection differentials and

the multiple regression show a signi®cant positive quad-

ratic coef®cient for height (Table 3), although the mul-

tiple regression indicates that much of it is indirect.

Because there is no local minimum (determined by

inspection, ®gure not shown), this is selection to increase

the variance; classical disruptive selection requires a local

minimum (Lande & Arnold, 1983; Mitchell-Olds & Shaw,

1987). Leaf number shows substantial positive selection

on its variance when looking at total selection, but this

relationship is also due to a large indirect selection

component through height. The conclusion from this

analysis is that both height and leaf number are under

quadratic selection, and most of that is indirect.

The quadratic path analysis shows a similar overall

picture, but with some important differences (Fig. 4,

Table 3). Height still experiences more indirect than

direct quadratic selection, with no evidence for a local

minimum for the direct quadratic effect of height (but see

Discussion), and seedling size still has little quadratic

effect on ®tness. However, the quadratic path analysis

shows moderate quadratic selection on bolting time and

leaf number. Furthermore, leaf number also shows much

weaker indirect selection than in the multiple regression.

Unlike the linear path analysis, in the quadratic model

seedling size and height can experience indirect effects

that trace through their respective linear terms. The

predicted covariances between ®tness and each trait (s*)

deviate only a little from the observed value (s), though

the overall agreement of the model and data is poor

(v2
14 � 54.6, P < 0.0001). Thus, the conclusions from this

analysis differ from the multiple regression analysis;

Table 3 Nonlinear selection analyses showing direct and indirect selection coef®cients for multiple regression and path analysis models. Effects

in bold type are signi®cant at P < 0.0001. Statistical signi®cance can be assessed for all traits for total selection and direct selection in the

multiple regression model. In the path analysis model, signi®cance can be assessed only for direct selection on height because only this trait is

directly connected to ®tness. Because this analysis is only concerned with the quadratic coef®cients, linear coef®cients are not shown. Indirect

selection in the path analysis is calculated by subtracting direct selection (total effect) from s* (the model-implied correlation between the trait

and ®tness). R2 for the multiple regression model = 0.792. R2 values for the path model are: Bolting time = 0.052, Leaf number = 0.033,

Height = 0.381, Bolting time2 = 0.029, Leaf Number2 = 0.016, Height2 = 0.212, Fitness = 0.776.

Multiple regression Path analysis

Trait Total selection (s) Direct selection (c) Indirect selection Predicted selection (s*) Direct selection (c*) Indirect selection

Seedling size2 )0.051 )0.033 )0.018 )0.028 )0.082 0.054

Bolting time2 )0.062 0.064 )0.126 )0.017 0.132 )0.149

Leaf number2 0.346 0.031 0.315 0.296 0.119 0.177

Height2 0.576 0.194 0.382 0.579 0.185 0.394
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height, bolting time and leaf number are all under

quadratic selection and the mix of direct and indirect

selection differs for the latter two traits.

Discussion

In this paper we accomplish three goals. First, we show

how to estimate selection on traits that are indirectly

connected to ®tness through intermediate traits. We thus

reiterate points made previously (e.g. Arnold, 1983;

Crespi & Bookstein, 1989; Mitchell-Olds & Bergelson,

1990; Kingsolver & Schemske, 1991; Conner, 1996;

Pugesek & Tomer, 1996). On ®rst glance this estimation

appears easy to implement, but actually involves a

number of practical complications which we explicate.

Second, we demonstrate how a discrepancy between

estimates of total selection (s) and the predicted covari-

ance (s*) provide clues about the possible importance of

unmeasured traits. This issue has dogged the use of

multiple regression to measure selection since it was ®rst

proposed by Lande & Arnold. Our method provides one

way to address these concerns. Third, we show how to

incorporate nonlinear path coef®cients in such an ana-

lysis so as to estimate nonlinear selection. To our

knowledge, relatively little attention has been paid to

such interpretations of the shape of nonlinear compo-

nents in other ®elds that make use of path analysis (e.g.

psychology, sociology, econometrics), perhaps because

only in the context of natural selection do such nonlinear

components have ready or informative interpretations.

Analysing selection in a path-analytical framework

promises to provide a better understanding of natural

selection by more accurately indicating when during the

life cycle selection is operating (Arnold, 1983). In our

example, the multiple regression analysis indicates that

selection was operating only on height, late in the life

cycle. However, the path analysis found that leaf number

was also under substantial selection. In addition, the

discrepancy between s and s* for seedling size suggests

that other early life cycle traits may be important.

Because environments change during an organism's

lifetime, such insights may more clearly indicate the

ecological factors responsible for selection (Scheiner &

Callahan, 1999).

Answers depend on the causal structure

One important difference between path analysis and

multiple regression is that the former assumes a speci®c

causal structure among the variables, while the latter

assumes that all traits affect ®tness directly. The calcu-

lated selection coef®cients strongly depend on this

structure. For example, if we had instead used a model

based on a sequential ordering of events (seedling size ®
leaf number ® bolting time ® height ® ®tness), direct

selection on leaf number would be estimated as ±0.0006

instead of 0.510. However, the ®t of such a sequential

model to the data is much worse than the model which

we used (v2
6 � 168.2 vs. v2

5 � 30.5), an indication that the

sequential model is probably incorrect. Such a model

comparison, if decided on a priori, would be acceptable,

while any such comparison done a posteriori would be

considered data dredging (see below).

Because of the strong dependence of results on the

hypothesized causal structure of the system, it is import-

ant that one has con®dence in the path model. The

model can be built from a combination of logic, biological

knowledge, and experiments [but see Shipley (1997) for

another approach]. For example, on logical and physio-

logical grounds we hypothesized that the effect of

seedling size on height is mediated through effects on

leaf number, not through a direct connection. Likewise,

experimental manipulations of bolting time or leaf

number might suggest similar hypotheses and could be

incorporated into the model. Many different models

might be feasible for any given system, and path analysis

can help in choosing among them. Once one arrives at

one or more causal hypotheses, their usefulness can be

Fig. 4 Solved path diagram for the quadratic

analysis. Dashed lines indicate negative coef®-

cients, and the width of the arrow indicates the

strength of the effect. Variation due to error (U)

is not included for simplicity.
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assessed in at least three ways: (1) by the logical and

biological grounds used to construct the model, (2) by the

goodness-of-®t between the model and the data and (3)

by experimental tests of the predictions of the model. The

utility of these different methods is discussed in detail

elsewhere (e.g. Bollen, 1989), but we emphasize the

importance of experimental manipulations as a means to

con®rm the causal linkages embodied in the path

diagram. For example, our model predicts that manipu-

lation of leaf number should have strong effects on

height and, through those effects, should alter ®tness. If

one altered leaf number and did not affect height but did

affect ®tness, it would be worthwhile to re-think the path

model.

Several methods can be used to revise the model even

when additional data are not available. Such revision,

however, is controversial. One school of thought holds

that any revision should either be based on a priori

reasoning or experimental tests of the model assumptions

(i.e. causal relationships). An alternative approach

involves splitting the data in half (Loehlin, 1987). The

®rst half is used to build the model, modifying as needed

to improve ®t; then the second half is used to con®rm

that the good ®t is not simply the result of capitalization

on chance. This approach requires huge sample sizes, but

is usually considered the least biased. A third approach is

exploratory analysis (Shipley, 1997) which involves a

systematic search for those models that best ®t the data.

The fourth approach is often referred to as data dredging.

The original model is modi®ed using various criteria such

as modi®cation indices to improve ®t. This process

continues until either the best possible ®t or an accept-

able ®t is obtained. This approach is generally frowned

upon unless the ®nal model is used only as a hypothesis

for future data gathering and experimentation.

Unmeasured traits

Path analysis can provide guidelines about possible

unmeasured traits. Unmeasured traits have two mean-

ings in this context. In the criticisms of the Lande &

Arnold approach, unmeasured traits are other aspects of

the morphology, physiology, behaviour and so forth that

were not measured, but which might be under direct

selection. Estimates of selection on measured traits might

therefore attribute direct selection to the measured traits

when in fact the selection was indirect through the

unmeasured traits. The second meaning is of traits that

are inherently unmeasurable because they are not a trait

per se but rather a linear combination of measured traits

such as an overall size or shape factor. Such traits are

typically referred to as latent variables. Here we deal with

the former issue; for the latter see Crespi & Bookstein

(1989) and Pugesek & Tomer (1996).

In the previous section we discuss the revision of

models in the light of a lack of goodness-of-®t. The issue

here is similar except that the lack of ®t involves the

discrepancy of s and s* for a particular trait. Now any

model revisions can be more focused because a particular

part of the model has been identi®ed, while a new study

could be sure to measure additional traits associated with

that part of the model.

For example, our analysis found a substantial discrep-

ancy for seedling size, but not the other traits (Table 2).

Model changes should therefore involve this trait. We

could add a path from seedling size directly to height and

see if the ®t was substantially improved. In fact, struc-

tural equation modelling programs provide `modi®cation

indices' that indicate the extent to which adding a new

path would improve the ®t of model to data. In our case,

including a path from seedling size directly to height

would decrease the v2 value from 30.5 (5 d.f.) to 19.5

(4 d.f.), a signi®cant improvement in the ®t of the model.

However, this approach suffers from the same drawbacks

as the data dredging mentioned above. All of the

strategies for model improvement and associated caveats

hold as before.

As a further example of how missing traits may be

identi®ed, consider the following. Our analyses indicate

that number of leaves had an important, but indirect,

in¯uence on ®tness. Imagine that we had neglected to

measure that trait and analysed the data using a path

diagram like that in Fig. 1(B), but omitting leaf number.

Such an analysis results in a poor ®t of model to data

(v2
3 � 20.4, P < 0.0001), and low R2 values (<4%) for

bolting date and height, indicating substantial room for

model improvement. The largest modi®cation index

involves seedling size and height, indicating that the

addition of a path between those traits would improve

the v2 by 13.8 (1 d.f.), a highly signi®cant improvement

in the ®t of the model to the data. This might therefore

lead investigators to suspect that some intermediary trait

may connect seedling size and height. Leaf number is one

such trait, but our analyses (Table 2; previous paragraph)

indicate that there are probably others. Such data

exploration provides a general idea of where to look for

missing traits, but gives no indication of which speci®c

trait(s) is(are) missing. That requires biological know-

ledge and intuition about the functional relationships

among traits, and can only be tested with more data.

Path analysis challenges

This change to a path-analytical framework also opens up

a new set of challenges. It is currently unclear how to

apply selection coef®cients estimated from a path ana-

lysis to equations for the response to selection. The

standard multivariate equations (e.g. Dz � Gb, Lande &

Arnold, 1983) are based on the assumption that total

selection on a trait can be decomposed into direct and

indirect components and then combined with a genetic

covariance matrix. However, the direct and indirect

selection coef®cients estimated from a path analysis do

not necessarily equal total selection for over-identi®ed
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models, that is, s and s* may not be equal. It may be that

the coef®cients from the path analysis are more infor-

mative in this context, but that is an open question.

Janzen & Stern (1998) discuss a similar issue with regard

to the use of logistic regression to estimate selection

coef®cients, instead of linear regression as is used here

and in typical multiple regression analyses. They recom-

mend using the experimental response to selection as a

test of the relative predictabilities of the two regression

methods. A similar procedure could be used here.

A further complication is that selection coef®cients

from a multiple regression and those from a path analysis

differ in how they are standardized. The former are

standardized for ®tness values only, while the latter are

also standardized for trait values. The doubly standard-

ized coef®cients provide information on responses in

standard deviation units, rather than trait-value units.

Because the distribution of trait values (standard devia-

tions) can change from one generation to the next, these

coef®cients are best for comparing selection among traits

within a generation, rather than for predicting long-term

evolutionary responses.

Additional challenges exist for nonlinear coef®cients.

First, the Lande±Arnold multiple regression framework

of selection requires that quadratic coef®cients (e.g. the

coef®cient for z1
2 but not z1z2) should be divided by two.

This is commonly achieved by dividing zi
2 by two before

analysis. How to accommodate this within a path analysis

framework is not clear, since standardization to unit

variance renders this transformation super¯uous, and

unstandardized results are dif®cult to interpret.

Second, it is dif®cult to determine whether the non-

linear selection coef®cients represent stabilizing or dis-

ruptive selection (a local maximum or minimum of the

response surface). While we can determine if there is a

local maximum or minimum for a single direct effect (or

for a pair of direct effects) by inspection (Phillips &

Arnold, 1989), doing so for a selection coef®cient that is a

combination of path coef®cients involves partial deriva-

tives of total selection equations that can involve many

variables (Tate, 1998) and more than three dimensions

(see also Brodie et al., 1995). For example, the equation

for direct selection on seedling size2 is the combination of

all direct pathways between seedling size2 and ®tness:

c�1 � q2010 q4020 q540 � q2010 q420 p54 � q210 q402 q540

� q210 p42 p54 � q310 q403 q540 � q310 p43 p54

� q3010 q4030 q540 � q3010 q430 p54:

The indirect selection pathways involve all pathways

from the correlation of seedling size2 with seedling size

(r1). The partial derivative of this equation is not simple

to calculate or interpret. How can we proceed in the

absence of a straightforward approach to determining the

local slope of these ®tness functions? If none of the direct

effects shows a local maximum or minimum we might

safely conclude that a particular causal pathway does not.

But if multiple local maxima or minima exist, they could

either cancel or enhance each other. Even worse, one

coef®cient might have a local minimum while another

has a local maximum. The resultant shape of the curve is

likely to be unpredictable and undeterminable. We are

not aware of any substantial discussion of this issue in the

path analysis literature (Tate, 1998), and this problem

therefore remains to be explored and solved.

Conclusions

Natural selection may often act on traits that have

sequential or structured causal relationships with one

another, and many biological processes have multiple

pathways through which they may affect ®tness. Path

analysis allows one to explicitly incorporate such devel-

opmental and temporal complexity in estimates of selec-

tion, and therefore should improve our ability to

understand natural selection and adaptive evolution.

For example, in the analyses shown here conclusions

concerning leaf number differed substantially with the

inclusion of a direct causal relationship from leaf number

to in¯orescence height. More complex scenarios are likely

to result in even more dramatic shifts in selection

coef®cients. The now classic example used in the devel-

opment of methods to estimate selection on multiple

traits is that of Bumpus' sparrows, which involves only

morphological traits (Lande & Arnold, 1983; Crespi &

Bookstein, 1989; Pugesek & Tomer, 1996; Janzen & Stern,

1998). For those data a multiple regression analysis is

suf®cient because none of the traits is obviously causal on

any other. As a result nearly all selection analyses to this

point have been done as multiple regressions. We

encourage others who have analysed multivariate selec-

tion to revisit their data and reconsider its causal struc-

ture. Our understanding of patterns of selection may be

substantially altered by that endeavour.
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