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¢, Qué es coevolucion?

Coevolucién es aquel proceso por el cual dos 0 mas organismos ejercen presion de seleccion mutua y
sincronica (en tiempo geoldgico) que resulta en adaptaciones especificas reciproca.

Janzen 1980

Requisitos del proceso de coevolucion

1) Especificidad: la evolucion de cada rasgo en una especie es debida a presiones selectivas de otros
rasgos de las otras especies del sistema.

2) Reciprocidad: los rasgos en ambos participantes del sistema evolucionan conjuntamente.

3) Simultaneidad: los rasgos en ambos participantes del sistema evolucionan al mismo tiempo.

Rl = h12S1 (¢2)

Rz = h22S2 (¢1)

¢, is the genotypic distribution of species i
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What it is coevolution

/ N
Species A evolves an Species B evolves in
adaptation in response to response to the adaptation
species B of species A
k /

What it isn’t coevolution

— "
Species B evolves in
response to that trait in
species A

Species A has some trait
unrelated to species B
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El proceso coevolutivo puede generar

1) Coadaptacion: ajuste microevolutivo reciprocos de unos organismos a otros (Micro-
coevolucion).

2) Coespeciacion: cladogénesis reciproca como fruto de la interaccion (Macro-coevolution).
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MicroCoevolution

The outcome of the coevolutionary process largely depends on:

1. The type of ecological interaction. The interactions differ in the form of reciprocal selection

2. The genetic mediation of the interaction

« Competitive interactions lead to divergence
 Antagonistic interactions lead to cycles or escalation

» Mutualistic interactions lead to convergence

D. Futuyma y M. Slatkin 1983. Coevolution. Sinaur
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MicroCoevolution

Coevolution in competitive interactions
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(e.g., beak size)

Reciprocal Selection:

* The fitness of Species 1 individuals is decreased by
interacting with Species 2

* The fitness of Species 2 individuals is decreased by
interacting with Species 1

* Reciprocal selection favors traits in each species that
reduce the efficacy or frequency of the interaction

Coevolutionary dynamics:

* Divergence in traits mediating the interaction
(i.e., character displacement)
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MicroCoevolution

Coevolution in antagonistic interactions
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Reciprocal Selection:
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(e.g., running speed)

* The fitness of victim individuals is increased by not
interacting

* The fitness of exploiter individuals is increased by
interacting

* Reciprocal selection favors victim traits that decrease
the efficacy or frequency of interaction, but exploiter
traits that increase the efficacy or frequency of the
interaction

» Coevolutionary escalation — Reciprocal selection favors increased (or decreased) phenotypes in both

victim and exploiter. Selection is directional

» Coevolutionary matching — Reciprocal selection favors exploiters that match the phenotype of the victim,
but victims that mismatch the phenotype of the exploiter. Selection is time-delayed negative frequency-

dependent
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MicroCoevolution

Coevolution in antagonistic interactions: Coevolutionary escalation
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Coevolutionary dynamics:

+ Without cost: Endless escalation of phenotypes

» With cost: Phenotypic cycles

Examples:

» Concentration of plant defensive compounds

Probability of attack

 Concentration of insect detoxification enzymes

15 2 25
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MicroCoevolution

Coevolution in antagonistic interactions: Coevolutionary matching

Trait means (z))

1 1

Coevolutionary dynamics:

* Phenotypes cycle endlessly

* Exploiter adapts to common victim phenotypes

08 | Exploiter 08 |
— Victim
0.6 1 /_\,/ 0.6 -
0.4 \' 0.4 |
0.2 1 0.2 1
0 T T T 0
1000 2000 3000 4000 5000 1000
Generation
Example:

* Plant flowering time
* Insect emergence time

* Lice matching feather barb size

2000
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Probability of attack

» Should produce an advantage for rare victim phenotypes

5000

» Generate coevolving polymorphism

Parasite trait z, Host trait z,,

Small Small
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MicroCoevolution

Coevolution in mutualistic interactions
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Reciprocal Selection:

* The fitness of Species 1 individuals is increased by
interacting with Species 2 individuals

* The fitness of Species 2 individuals is increased by
interacting with Species 1 individuals

* Reciprocal selection favors traits in both species that
increase the efficacy or frequency of the interaction.

*Selection is positive frequency-dependent

Coevolutionary dynamics:

+ Coevolving complementarity in symbiotic
interactions.

*Coevolutionaty convergence in free-living
interactions.
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Modelos Genéticos microevolutivos

Gen-for-Gen Coevolution Table 1. Maltching allele model with n types (alleles). (+)
indicates resistance in the host and ( —) indicates susceptibility
host types

Rl R2 Rn

parasite Vi + N B -

12 - + — —

types — — + —

Vi - - - +

Matching allele

TABLE 1 The expected compatibility between homozygous genotypes in a
single-iocus gene-for-gene interaction

Host genotype
Pathogen genotype RR r
W Incompatible Compatible
vV Compatible Compatible

R is a dominant host gene conferring resistance to the pathogen and r
is a recessive host gene conferring susceptibility. V is a dominant pathogen

gene conferring avirulence and v is a recessive pathogen gene conferring
virulence.
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Coevolucion multispecifica o difusa
1) La interaccion con varios organismos esta genéticamente correlacionada.

2) La presencia/ausencia de otro organismo interactuante afecta a la
interaccion con nuestro organismo focal.

3) El impacto de un organismo en el fitness de su pareja se ve afectado por
la presencia/ausencia de un tercer organismo
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Geographic Mosaic Theory of Coevolution (GMTC)

a) Most species are formed by a collection of genetic and ecologically differentiated populations
inserted in a complex landscape.

b)  The ecological interactions and community context varies spatially, among populations

The coevolutionary dynamics is driven by three main components

1) Geographic selection mosaics: Natural selection on interspecific interactions
varies among populations.

2) Coevolutionary hotspots: Interactions are subject to reciprocal selection only
within some local communities.

3) Trait remixing: The genetic structure of coevolving species changes through new
mutations, gene flow across landscapes, random genetic drift, and extinction of local
populations.

http://bio.research.ucsc.edu/people/thompson
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Geographic Mosaic Theory of Coevolution (GMTC)

This theory visualizes the landscape as a mosaic of coevolutionary hotspots, populations
where reciprocal selection is strong and coevolution is ongoing, embedded in a broader matrix

of coevolutionary coldspots, where local selection is weak, non-reciprocal or where only one of
the participants occurs

Universal hotspots Complex mosaics
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Figure 1: Hypothetical examples of a geographic mosaic of coevolution between a pair of species. Arrows within circles (biological communities)
indicate selection on one or both species. Different arrow directions in different circles represent different (cojevolutionary trajectories. Arrows
between communities indicate gene flow. A, Interaction coevolves in all populations in which it occurs; B, coevolutionary hot spots (i.e., communities
in which reciprocal selection takes place) occur amid a matrix of coevolutionary cold spots.

http://bio.research.ucsc.edu/people/thompson
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Geographic Mosaic Theory of Coevolution (GMTC)

In cold spots, the fitness of (at least) one species is
indepandent of the other species’ phenotype.
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In hot spots, both species’ fitness depends on the
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Figure 3 Interspecitic frequency-dependent fimess surfaces in cold versus hot spots. Each point on a surface corresponds to the fitness ofan
individual of one species as a function of its own phenotype and the mean phenotype of the partner species with which it interacts. The
thicker lines on each surtace indicate the frequenoy-dependent fitness function tor a particular phenotype of one species (left column: species
1 fimess functions: right column: species 2 fimess functions). In cold spots (top row), the ftness functon of at least one species does not
depend on the mean phenotype ot the other species (top right, white ling). Fitnesses of both species depend on the other species’ mean
phenotype in hot spots {hottom row.
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Geographic Mosaic Theory of Coevolution (GMTC)

Hot Spot Cold Spot
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Figure 1: Types of coupled coevolutionary hot and cold spot habitats.
Curved arrows indicate interspecific effects on fitness. The fitness of a
species at the arrow tip is affected by the other species. Horizontal arrows
indicate species-specific patterns of gene flow between hot and cold spots.
Solid and dashed arrows indicate unlimited and limited levels of gene
flow, respectively.
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Un ejemplo
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Fic. 1. The distibution of lodgepole pine (black), locations of study sites, and representative crossbills and cones in the Focky Mountains
(lower right), in the Cypress Hills (upper right), and in the South Hills and Albion Mountains (lower left; modified from Benkman 1959,
The crossbills and cones are drawn to relative scale. Red squirrels (Tamiascinrus hudsenicus) are found throughout the range of lodzepole
pine except in some isolated mountains, including the South Hills (SH) and Albion Mountains (AW). Fed squirrels were absent from
the West Block (WEB) and Centre Block (CB) of the Cypress Hills until being introduced in 1950. One Focky Mountain study site not
shown was near Twin Lakes, Coloradoe approximately 630 km south-southeast of the Wind Fiver Eange (WE.) site. The two other Focky
Mountain study sites were Crow’s Nest Pass (CN) and Little Belt Mountains (LB).
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Modelos macro-coevolutivos

1 Escape y radiacion: fendmenos de especiacion sincréonicos en ambos
participantes. Especiacion ocurre cuando no hay interaccion

2 Coespeciacion: Existe especiacion simultanea

3 Coevolucion diversificadora: La propia interaccion induce especiacion
como consecuencia de adaptacion local reciproca

4 Rastreo filogenético: Un participante especia en funcion de la
diversificacion del otro participante

5 Escalada: El ambiente selectivo se hace mas severo, induciendo cambios
conjuntos en el fenotipo. Pero no hay proceso coevolutivo.

Page, M. 2003. Tangled Trees: Phylogeny, Cospeciation, and Coevolution. University of Chicago Press
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Modelos macro-coevolutivos

A, Cospecialion

B. Lineage sorling

C. Duplication

D. Host jump

E. Fhriich & Raven

host tracking
cosvolution

F. Hybrid shift
host tracking
coavolution

defense-trait

— 5
=='Parasite

Time

Fiz. 1. Patterns of host-pathogen assoclation. (A) Cospeciation:
parasite and host speciate simultaneously. (B) Lineage sorting: here,
a parasite lineage becomes extinet. (C) Duplication: the parasite
splits into more than one species on the same host. (D) Host jump:
the parasite jumps to a new, unrelated host species. (E) Ehrlich and
Eaven (1964) host-tracking coevelution: At time 1, a clade of hosts
has no parasites becanse they are defended by a defense trat (at
arrow). At time 2, a mutation has evolved in a parasite allowing it
to attack a previously defended host species. By time 3, the parasite
has colonized more related hosts and has also speciated on these
hosts. (F) Hybnd shift host-tracking coeveolution: At fime 1, two
host species are parasitized by different parasite species. At time
2, the host species have crossed to form a hybrid. By time 3, a
parasite species exists that is capable of attacking the hybrids. Under
both kinds of host tracking coevolution (E F), the parasites shift to
closely related hosts.
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Escape and radiation coevolution (Ehrlich and Raven 1964)

v o

Step 1: A new mutation arises within a host (plant) lineage which confers resistance to
parasitism
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Escape and radiation coevolution (Ehrlich and Raven 1964)

Step 2: The resistant host lineage diversifies rapidly in the absence of parasitism
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Escape and radiation coevolution (Ehrlich and Raven 1964)

Step 3: A new mutation arises in the parasite allowing it to feed on the previously
resistant host lineages. Rapid parasite diversification follows.
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Escape and radiation coevolution (Ehrlich and Raven 1964)

% B

The result is rapid bursts of diversification, but NOT cospeciation
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Escape and radiation coevolution (Ehrlich and Raven 1964)

Esperamos congruencia filogenética
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Coespeciacién

The parallel evolution of two associated taxa (such as a host and a symbiont), such that speciation events in
the two taxa are coupled

b Aphid genes Symbiont trpB
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Host-shift and phylogenetic tracking in antagonism and mutualism

a Darwin's coevolutionary race b
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PRODOXIDAE (In part)

Lampronia

Tetragma

Greya punctiferella group

— Greya solenobiella group

|
MATING ON THE HOST

LOCAL HOST SPECIFICITY

-[|— A* Greya politella group

—— Mesepiola

A* Tegeticula

* Parategelicula

|
"AGAVACEAE FEEDING™

¢ Prodoxus
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FiG. 1. Reduced phylogenies (for illustrative purposes only) of the Prodoxidae (16) and a suite of monocots (9, 12) most of which have been
placed in the Agavaceae by various authors, The Prodoxidae phylogeny indicates that local host specificity and mating on the host are features that
unite the family, The character “Agavaceae feeding” was considered by Pellmyr and Thompson (16) to define the yucea moths. The molecular
phylogeny of Brown er al. (19) still recognized the existence of an Agavaceae feeding clade that consists of Mesepiola and its sister genera, but it
placed the Greya pollitella group as a basal lineage of Greya and Agavenema within Prodorus. The plant phylogeny on the right is that yielded from
the combined ITS1 and I'TS2 sequences. Bootstrap values =50% for the combined ITS data are given above the line and values for our cpDNA
restriction site study are given below the line (17). The placements by Cronguist (%) and Dahlgren ef al. (12) of the plant genera shown are shown
in Table 1. Astel., Asteliaceae; Convall., Convallariaceae; Drac., Dracaenaceac; Funk., Funkiaceae; Hyac., Hyacinthaceae; Nol., Nolinaceae.
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Fiz. 4. Companson of the rust fungus ITS phylogeny (A) with the host ITS phylogeny (B). The fungal species are abbreviated by Pt,
Pm, and Pe, which represent Puccinia thlaspeos, P.moneica, and P. consimilis, respectively. Other abbreviations as in Figure 3. Collection

numbers and host abbreviations correspond to the taxza listed in Table 1.
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