Departamento de Análisis Matemático, Universidad de Granada
 Análisis Matemático, Grado en Ingeniería de Tecnologías de Telecomunicación
 Convocatoria de septiembre de 2014

Ejercicio 1. (2 puntos) Calcula los siguientes límites:
a) $\lim _{x \rightarrow+\infty} \frac{\int_{3}^{x e^{x}} \log (t) \sqrt{1+\frac{1}{t^{2}}} d t}{x^{2} e^{x}}$
b) $\lim _{x \rightarrow 0} \frac{\tan (x)-\operatorname{sen}(x)}{x^{3}}$

Ejercicio 2. (3 puntos)

a) Estudiar la existencia de extremos relativos de la función $f(x, y)=x^{3}+y^{3}-x y$ en \mathbb{R}^{2}.
b) Determinar el punto del elipsoide $2 x^{2}+4 y^{2}+5 z^{2}=70$ que verifica que la suma de las coordenadas primera y tercera es máxima.

Ejercicio 3. (2 puntos) Calcular $\iint_{A} y d(x, y)$ donde $A=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2} \leqslant 2 y\right\}$.

Ejercicio 4. (1 punto) Pruébese la siguiente desigualdad para todo $0<x<1$:

$$
\operatorname{arcsen}(x)<\frac{x}{\sqrt{1-x^{2}}}
$$

Ejercicio 5. (2 puntos) Una persona situada en un punto A de la orilla de un lago circular de radio 2 km quiere llegar al punto C diametralmente opuesto a A en el menor tiempo posible. Suponiendo que en el punto A dispone de un bote en el que puede remar a 2 km por hora y que puede andar por la orilla a 4 km por hora, ¿cómo debe proceder?

Granada, 16 de septiembre de 2014

