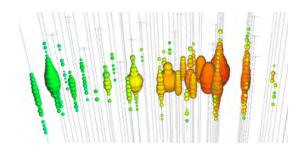
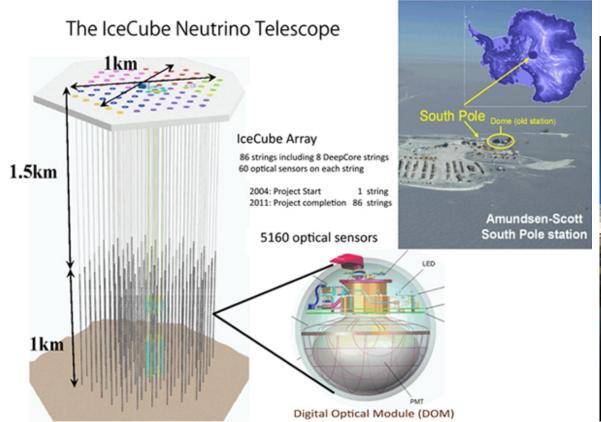
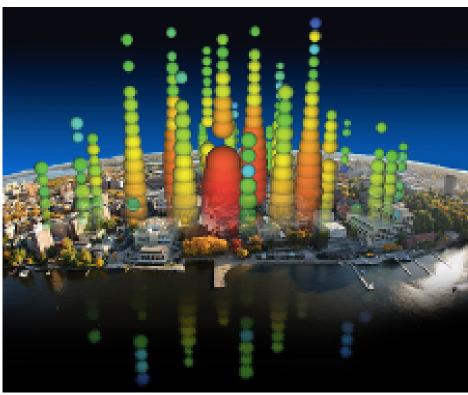

New physics from the high energy IceCube data?

José I. Illana



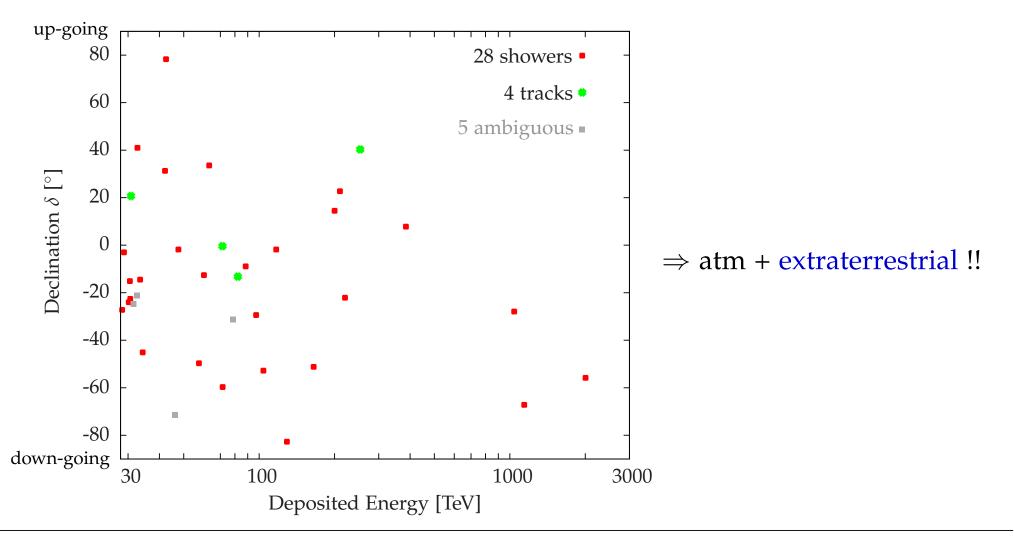
+ Manuel Masip (*ugr*), Davide Meloni (*Roma Tre*)




- 1. Motivation
- 2. Ingredients
- 3. Our analysis
- 4. Conclusions

AP **65** (2014) 64 [1410.3208]

IceCube



IceCube events

• 32 events of $E \gtrsim 30$ TeV in T = 988 days (2010–2013)

[IceCube '14]

(+5 μ background compatible with 8.4 \pm 4.2 expected: *ambiguous*)

IceCube events

• The event rate is neutrino flavor (ν) and interaction (int) dependent:

$$N_{\nu,\text{int}} = TN_A \int d\Omega \int_{E_{\text{thres}}} dE_{\nu} M_{\text{eff}}^{\nu,\text{int}}(E_{\nu}) \frac{d\phi_{\nu}}{d\Omega dE_{\nu}} P_{\text{surv}}^{\nu}(\theta_z, E_{\nu}) \int_{y_{\text{min}}}^{y_{\text{max}}} dy \frac{d\sigma_{\text{int}}}{dy}$$
$$d\Omega = 2\pi d\cos\theta_z \qquad \qquad y = 1 - E'/E_{\nu} \text{ (inelasticity)}$$

- Two interpretations depending on which interactions/flux:
 - 1. <u>Usual</u>: SM physics and astrophysical $E_{\nu}^{-\gamma}$ flux (*fit* to the excess to atm)
 - 2. <u>Ours</u>: New physics (generic) and cosmogenic neutrino flux (predicted):
 - Model of TeV gravity:

$$\langle y \rangle \sim 10^{-5}$$
 (eikonal interactions)

- Cosmogenic neutrinos from scattering of CRs off CMB radiation

$$E_{\nu} \sim 10^8 - 10^{10} \text{ GeV}$$

Extra dimensions?

• If gravity can propagate in n spatial flat extra dimensions of size R

Gauss's law
$$\Rightarrow$$
 $F_4S_4 = F_DS_D$, $D = 4 + n$
 $r \gtrsim R$: $F_4 \sim -\frac{1}{M_P^2} \frac{m_1 m_2}{r^2}$
 $r \lesssim R$: $F_D \sim -\frac{1}{M_D^{2+n}} \frac{m_1 m_2}{r^{2+n}}$

 \Rightarrow

- Gravity gets stronger ($\propto r^{-2+n}$) for $r \leq R$ with

$$R \sim rac{1}{M_D} \left(rac{M_P}{M_D}
ight)^{rac{2}{n}}$$

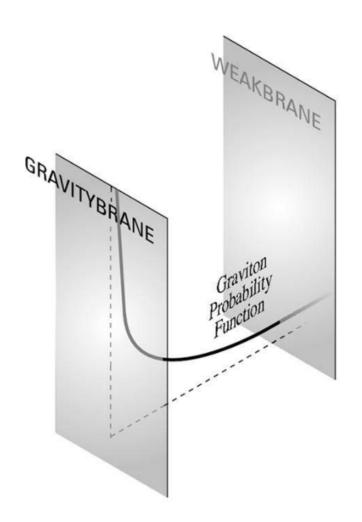
- Planck scale M_P (derived) = M_D (fundamental) times a volume factor

$$M_P^2 \sim M_D^{2+n} R^n$$

TeV gravity (flat extra dimensions)

• If $M_D \sim 1$ TeV flat model ruled out:

n	R		
1	$\sim 1 \text{ AU}$	(solar system)	$(10^{-27} \text{ GeV})^{-1}$
2	$\sim 1 \text{ mm}$	(torsion-balance)	
3	$\sim 1 \ \mathrm{nm}$	*	
• • •			
7	$\sim 10~ ext{fm}$	*	$(20 \text{ MeV})^{-1}$


- * Astrophysical and cosmological constraints:
 - Compact dimension(s) \Rightarrow KK gravitons with masses $m_i = jm_c$, $m_c = R^{-1}$
 - ⇒ Supernovas and primordial nucleosynthesis would require

$$m_c > 50 \text{ MeV}$$

Note: gravity gets stronger when KK gravitons can be excited, i.e. at $r \lesssim m_c^{-1}$

TeV gravity (one slightly warped extra dimension)

• D=5 (n = 1): Two branes (4D slices separated by πR in the fifth dimension y)

$$ds^2 = e^{k|y|} \eta_{\mu\nu} dx^{\mu} dx^{\nu} - dy^2$$

Then

$$M_P^2 \sim M_5^3 \, \frac{{
m e}^{2k\pi R} - 1}{k}$$

(large warping $e^{2\pi kR}$ compensates small $k^{-1} \ll R$)

Take
$$R^{-1} \ll k \ll M_5$$
 hybrid model

[Giudice, Plehn, Strumia '04 (E: '11)]

If $k \ll R^{-1}$ (small 5D curvature) one recovers flat case: $M_P^2 \sim M_5^3 R$

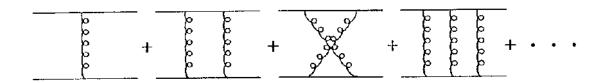
Consistent model of TeV gravity in 5D

(How it works)

	Flat	Hybrid				
	$M_P^2 \sim M_5^3 R$	$M_P^2 \sim M_5^3 (e^{2k\pi R} - 1)/k$				
1st KK mass	$m_c \sim R^{-1}$	$m_c \sim k \gg R^{-1}$ (much larger)				
# KK at scale μ	$N \sim \frac{\mu}{m_c}$ (too many!)	$N \sim \frac{\mu}{m_c}$ (much less)				
coupling KK-matter	$\sqrt{\alpha} \sim \frac{\mu}{M_P}$ (very small)	$\sqrt{lpha} \sim \sqrt{rac{k}{M_5^3}} \mu$ (much larger)				
gravi strength	$lpha_{ m eff} \sim N lpha \sim rac{\mu}{m_c} rac{\mu^2}{M_P^2}$	$\alpha_{\rm eff} \sim N\alpha \sim \frac{\mu}{m_c} \frac{k}{M_5^3} \mu^2$				
at $\mu \sim M_5$	$\alpha_{ m eff} \sim 1$	$lpha_{ m eff} \sim 1$				

In fact, in the Hybrid model (n = 1) m_c is free and one can have

 $M_5 \sim 1 \text{ TeV} \text{ and } m_c = 50 \text{ MeV} = (4 \text{ fm})^{-1} \text{ with } R = 40 \text{ fm} \quad (k = 10R^{-1})$

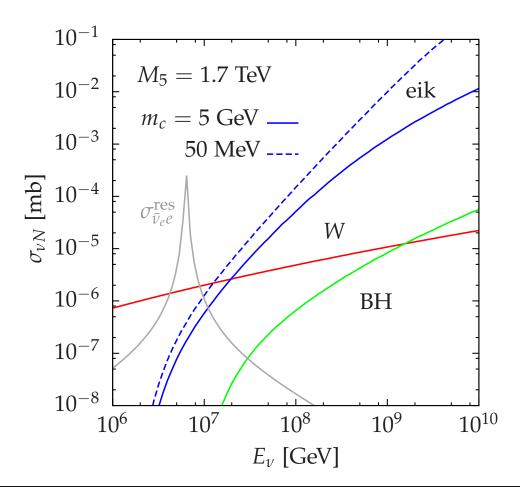

For $Q = \sqrt{y\hat{s}} \sim r^{-1} \gg m_c$ gravity is 5D and XD \sim flat. Otherwise $e^{-m_c/Q}$ supp

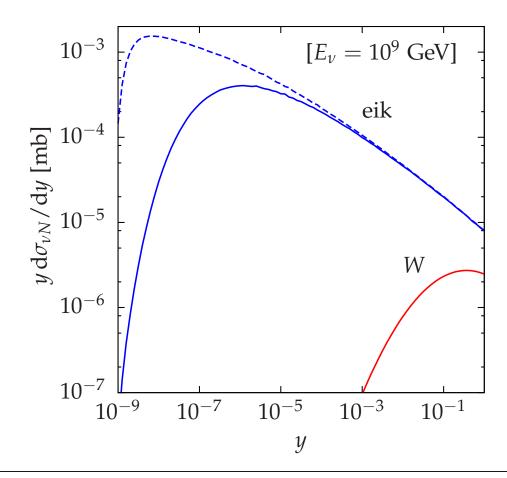
Consistent model of TeV gravity in 5D (How it works)

• Phenomenology of transplanckian collisions ($\sqrt{\hat{s}} \gg M_5$)

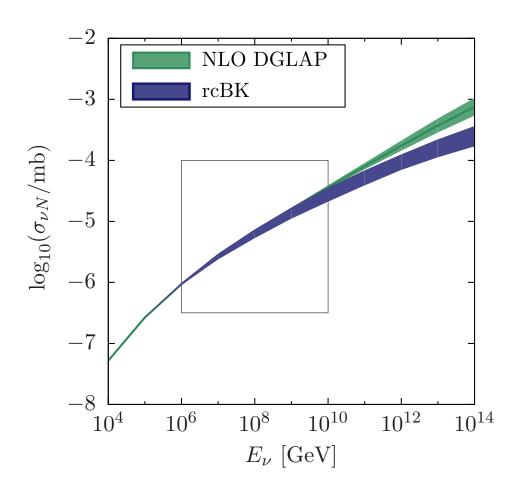
$$\sqrt{\hat{s}} \gg M_5 \quad \Rightarrow \quad \text{(Schwarzschild)} \ R_S > \lambda_P = M_5^{-1} \ \text{(Planck length)}$$

- Short distance ($r \lesssim R_S$): black hole formation (BH) ν destroyed, $\sigma \simeq \pi R_s^2$
- Long distance ($r \gg R_S > \lambda_P$): eikonal (eik) quasielastic (low Q^2), higher σ , classical gravity, dominant


- Astrophysical and cosmological bounds: evaded when $\sim m_c \gtrsim 50 \text{ MeV}$
- Collider bounds:

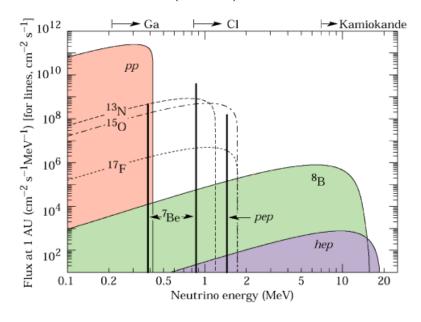

from BH (high multiplicity events and large MET) $\Rightarrow M_5 \gtrsim 1.5 - 2.4$ TeV [LEP] BUT model dependent (fermion localization in extra dimension) and ultraforward physics remains unconstrained

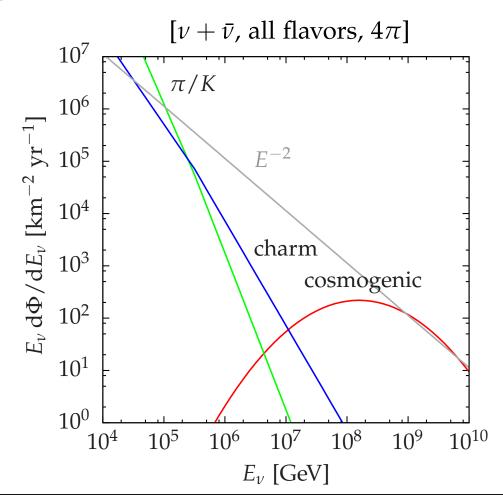
Cross sections


- Standard Model (νN) interactions: $\sigma_{\rm int} = \sigma_{\nu N}^{\rm CC}$ (W–exchange), $\sigma_{\nu N}^{\rm NC}$ (subdominant) (and $\sigma_{\bar{\nu}_e e}^{\rm res}$ at $E_{\nu} = M_W^2/(2m_e) \sim 6.3$ PeV)
- Eikonal (νN) interactions: $\sigma_{\rm int} = \sigma_{\nu N}^{\rm eik}$

[large for $E_{\nu} \gg M_5^2/(2m_N) \gtrsim 3 \text{ PeV}$]

• At UHE, Bjorken $x \lesssim 10^{-7}$ is probed. Compare DGLAP (usual) to BK (includes saturation effects)

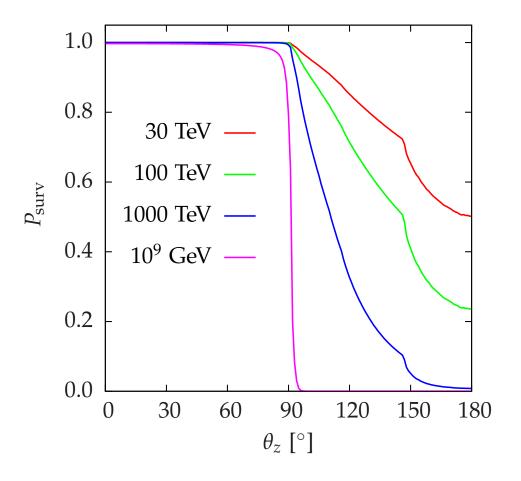

 $\Rightarrow \sigma_{\nu N}$ can be reduced by up to $\sim 50\%$ at 10^{10} GeV


Neutrino fluxes

		$\left \; (u_e : u_\mu : u_ au)_\oplus ight.$
Atmos	$\pi/K \text{ dcys } (\sim \cos^{-1} \theta_z)$	(1:17:0)
	Charm decays*	(48:48:2)
ET*	Cosmogenic	(1:1:1)
	E_{ν}^{-2}	(1:1:1)

^{*} isotropic

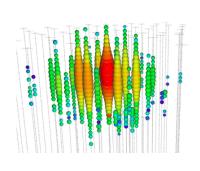
Note: Solar are $\mathcal{O}(MeV)$



Survival probability

• Neutrinos *stopped* by CC interactions and (for $E_{\nu} \gtrsim 10^9$ GeV) BH formation

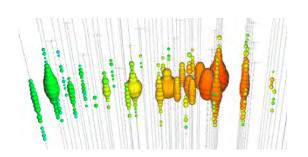
$$P_{
m surv}^{
u}(heta_z, E_{
u}) = \exp\left\{-N_A \sigma(E_{
u}) \int
ho_{\oplus}(heta_z) d\ell
ight\} , \quad \sigma = \sigma_{
uN}^{
m CC} + \sigma_{
uN}^{
m BH}$$



Earth opaque at UHE for $\theta_z \gtrsim 90^\circ$

Showers vs Tracks

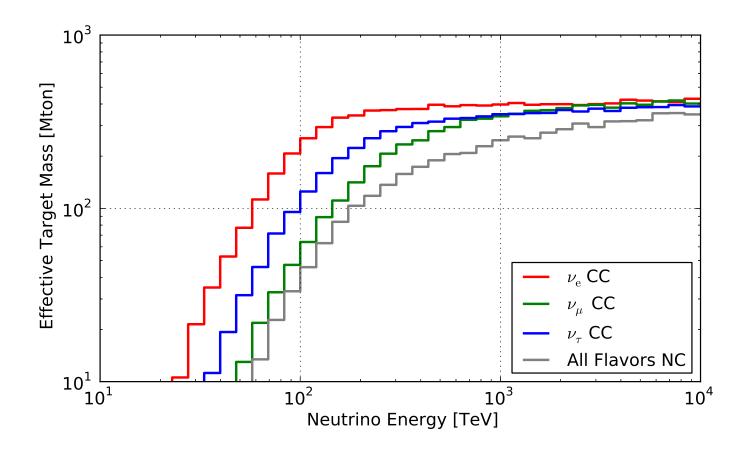
Deposited energy


Showers (by electrons and hadrons)

$$N_{\nu_i, NC}$$
 ; $E_{\rm sh} = yE_{\nu}$
 $N_{\nu_e, CC}$; $E_{\rm sh} = E_{\nu}$ $N_{\nu_i, {\rm eik}}$; $E_{\rm sh} = yE_{\nu}$
 $N_{\nu_{\tau}, CC-{\rm had}}$ $NP \Rightarrow {\rm showers \ only}$

$$N_{
u_{ au}}$$
,CC—had $N_{
u_{ au}}$,CC—electrons

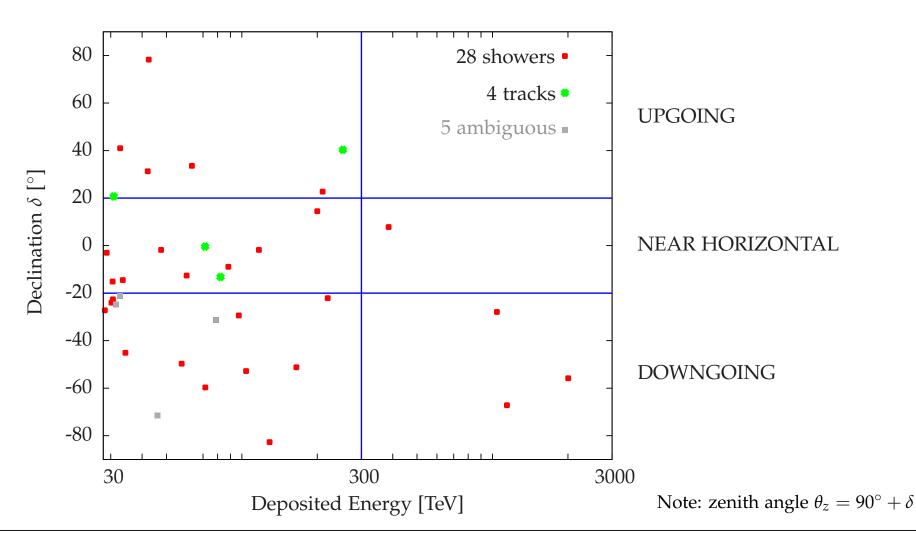
$$N_{\nu_i, \text{eik}}$$
 ; $E_{\text{sh}} = yE_{\nu}$


Tracks (by muons)

$$N_{
u_{\mu}, \text{CC}}$$
 ; $E_{\text{sh}} = y E_{
u}$ $N_{
u_{\mu}, \text{eik}} = 0$ $N_{
u_{\tau}, \text{CC-muons}}$

Effective IceCube mass

• The effective mass is interaction, flavor and energy dependent:


[IceCube '14]

 \Rightarrow About 500 Mton, that is 0.5 km³ of ice, at ultrahigh energy

• 2×3 bins of energy and angle

3 angular bins $(\Delta \cos \theta_z \approx 2/3) \Rightarrow$ disentangle cosmogenic from E_{ν}^{-2} neutrinos

Tracks from atmospheric ν

	Data	Atm		Data	Atm		
Tracks	2	0.8		0	0.0		UPGOING
							Gr Gon (G
Tracks	2	3.5		0	0.0		NEAR HORIZONTAL
							NEAR HORIZONTAL
Tracks	0	0.2		0	0.0		DOWNGOING
							2 6 1 1 1 0 0 2 2 1 0
		30 - 3	00 TeV		300 – 3	000 TeV	

• Number and distribution of tracks *roughly* explained by atmospheric neutrinos (4.5 expected, 4 observed)

Showers from atmospheric ν

	Data	Atm		Data	Atm			
Showers	5	2.7		0	0.0			UPGOING
								NICAD HODIZONITAL
Showers	8	5.9		1	0.2			NEAR HORIZONTAL
								DOWNGOING
Showers	11	0.6		3	0.0			20111001110
		30 – 30	00 TeV		300 – 3	8000 TeV	7	

• Shower excess (extraterrestrial) especially significant in downgoing direction:

$$11 - 0.6 = 10.4$$
 (30 – 300 TeV) $3 - 0 = 3$ (30 – 300 TeV)

Astrophysical E_{ν}^{-2} hypothesis

	Data	Atm	E_{ν}^{-2}	Data	Atm	E_{ν}^{-2}		
Tracks	2	0.8	0.6	0	0.0	0.1		UPGOING
Showers	5	2.7	3.6	0	0.0	0.7		OI GOING
Tracks	2	3.5	1.5	0	0.0	0.5		
Showers	8	5.9	6.4	1	0.2	2.6		NEAR HORIZONTAL
Tracks	0	0.2	1.6	0	0.0	0.6		DOWNGOING
Showers	11	0.6	6.5	3	0.0	2.9		DOWNGOING
		30 - 3	00 TeV		300 – 3	000 TeV	,	

- Provides extra (\checkmark) showers and extra (?) tracks: ~ 4 or 5 showers per track
- Same number extra showers from downgoing and near-horizontal directions
- How about Glashow resonance: \sim 2 evts expected at $E \sim$ 6 PeV, none observed

NP and cosmogenic neutrinos hypothesis

	Data	Atm	NP	Data	Atm		NP	
Tracks	2	0.8	0.0	0	0.0		0.0	UPGOING
Showers	5	2.7	0.0	0	0.0		0.0	Or don'to
Tracks	2	3.5	0.0	0	0.0		0.0	NEAD HODIZONEAL
Showers	8	5.9	4.2	1	0.2		1.9	NEAR HORIZONTAL
		l .						
Tracks	0	0.2	0.0	0	0.0		0.0	DOWNGOING
Showers	11	0.6	8.0	3	0.0		3.5	DOWNGOING
		30 – 300 TeV			300 – 3	000 TeV		

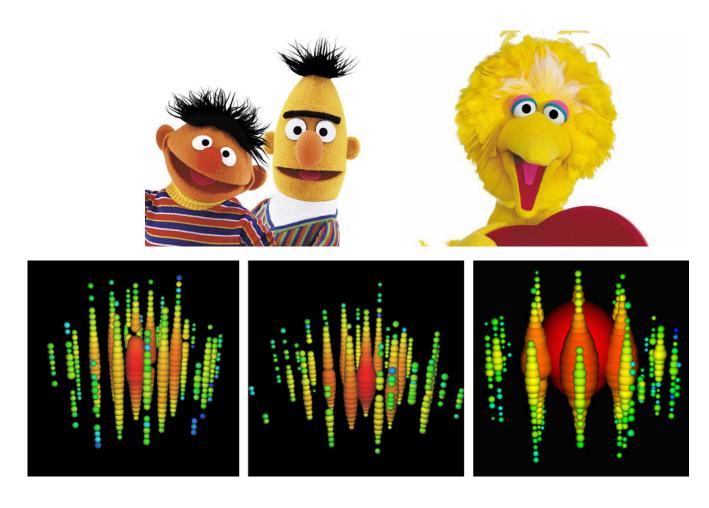
- Provides no extra tracks (√)
- Double extra showers from downgoing that from near-horizontal directions

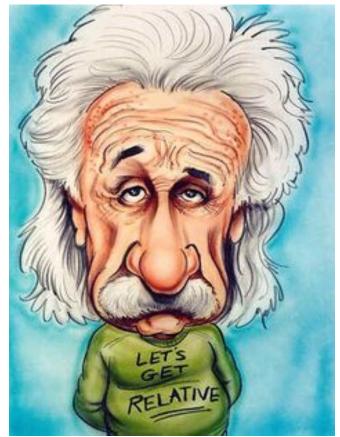
Comparison of both hypotheses

	Data	Atm	E_{ν}^{-2}	NP	Data	Atm	E_{ν}^{-2}	NP	
Tracks	2	0.8	0.6	0.0	0	0.0	0.1	0.0	UPGOING
Showers	5	2.7	3.6	0.0	0	0.0	0.7	0.0	
									1
Tracks	2	3.5	1.5	0.0	0	0.0	0.5	0.0	NICAD LIODIZONETAL
Showers	8	5.9	6.4	4.2	1	0.2	2.6	1.9	NEAR HORIZONTAL
									_
Tracks	0 (5)	0.2 (7.6)	1.6	0.0	0	0.0	0.6	0.0	DOWNGOING
Showers	11	0.6 (0.8)	6.5	8.0	3	0.0	2.9	3.5	DOMINGOING

$$30 - 300 \text{ TeV}$$

• Likelihood (E_i = prediction, X_i = data)


$$-2\ln\lambda = \sum_{i}^{\text{nbin}} 2\left(E_{i} - X_{i} + X_{i}\ln\frac{X_{i}}{E_{i}}\right) = \begin{cases} 5.9 & (7.3) \text{ for NP} \\ 15.4 & (15.1) \text{ for } E_{\nu}^{-2} \end{cases} \text{ excl. (incl.) 5 ambiguous } \mu$$


Conclusions

- So far, our scenario with NP + cosmogenic neutrinos provides a better fit to data [TeV gravity model is a particular realization of a generic type of models where UV physics is dominated by long wave lengths: classicalization] [Dvali et al, '10]
- How to discriminate between both interpretations?
 - Multiple bangs?
 - Glashow resonance?
- Wait for **more** statistics!
 - Check in particular the ratio of downgoing to near-horizontal showers:

(2:1) for NP versus (1:1) for E_{ν}^{-2} (lower energy SM int)

Conclusions

