Photon to axion conversion during Big Bang Nucleosynthesis

José I. Illana High Energy Theory

+ A.J. Cuesta, M.E. Gómez, M. Masip

[JCAP 04 (2022) 009, 2305.16838]

- An Axion-Like Majoron (ALM) model
- Cosmological evolution: *H*₀
- BBN: deuterium, helium, lithium

Motivation

• **ACDM** very successful, which underlines some tensions:

CMB observablesCMB $(\Omega_b h^2)$ $H_0 = 67.71 \pm 0.44 \text{ km/s/Mpc}$ $\eta_{10} \equiv 10^{10} \frac{n_b}{n_{\gamma}} = 6.14 \pm 0.04$ SNe-IaPrimordial deuterium $H_0 = 73.01 \pm 0.99 \text{ km/s/Mpc}$ $\eta_{10} = 5.98 \pm 0.07$ Primordial lithium

 $\eta_{10} = 3.28 \pm 0.29$

• Neutrino sector not yet understood: Dirac fermions with EW masses? or tiny masses revealing a new scale? $SM - y_{\nu} \overline{L} \widetilde{H} \nu_R$ Why is y_{ν} so small? What protects ν_R ? $SM - \frac{1}{\Lambda_{\nu}} \overline{L} \widetilde{H} \widetilde{H}^T L^c$ Seesaw with $M_X \approx 10^{10}$ GeV or $M_X \approx \text{TeV} + \text{symmetry}$?

ALM model

• SM + 3 Majorana singlets (N_L , N_R^c , n_L) + scalar singlets (s_1 , s_2 , s_3 , ...), valid below cutoff $\Lambda \approx 10$ TeV, invariant (up to grav effects) under global $U(1)_X$ spontaneously broken by a VEV $\langle s \rangle = v_X / \sqrt{2} \approx$ TeV:

	$L_i = (\nu_{iL} \ e_{iL})^T$	e_{iR}^c	N_L	N_R^c	n_L	$H = (h^+ h^0)^T$	$s_1, s_2, s_3, s_4, \ldots$	
Q_X	+1	-1	-2	-1	0	0	1, 2, 3, 4,	$e^{-iQ_X\theta}$
Z ₃	α	α*	α	α*	1	1	α, α*, 1, α,	$\alpha \equiv e^{i\frac{2\pi}{3}}$

pNGB
$$\phi$$
: $s = \frac{1}{\sqrt{2}}(v_X + \rho) e^{i\frac{\phi}{v_X}} = \frac{1}{\sqrt{2}}(v_X + \rho + i\phi + ...)$

In particular : $\langle s_3 \rangle$ breaks $U(1)_X$ but preserves Z_3

 \Rightarrow $s = s_3$ would *not* generate neutrino masses *nor* couplings to ϕ

Take : $s = s_3 + \epsilon s_4 \Rightarrow \text{light } m_\nu \propto \epsilon v_X$ as in inverse seesaw models while the others are heavy with masses of order v_X , except for the Majoron (approximate symmetry)

ALM model
$$\begin{bmatrix} s \equiv s_3 + \epsilon s_4 \\ s' = -\epsilon s_3 + s_4, \quad \langle s' \rangle = 0 \end{bmatrix} \Rightarrow \langle s_4 \rangle = \epsilon \langle s_3 \rangle = \frac{\epsilon v_X}{\sqrt{2}} \quad (\epsilon \ll 1)$$

$$\begin{aligned} -\mathcal{L} \supset y \overline{L}_{3} \widetilde{H} N_{R} + y' s_{3}^{\dagger} \overline{N}_{L} N_{R} + \frac{1}{2} \Lambda_{n} \overline{n}_{L} n_{L}^{c} + y_{IS} s_{4}^{\dagger} \overline{N}_{L} N_{L}^{c} + \frac{\widetilde{y}}{\Lambda^{2}} s_{3} s_{4}^{\dagger} \overline{L}_{2} \widetilde{H} N_{L}^{c} + \frac{\widetilde{y}'}{\Lambda^{2}} s_{3}^{\dagger} s_{4} \overline{L}_{1} \widetilde{H} n_{L}^{c} + \text{h.c.} \\ \\ & \vdots & \ddots & \ddots & 0 & 0 & \widetilde{\mu}' \\ \vdots & \ddots & \ddots & \widetilde{\mu} & 0 & \vdots \\ \vdots & \ddots & \ddots & m & \vdots \\ 0 & \widetilde{\mu} & \vdots & \mu & M & \vdots \\ 0 & 0 & m & M & \ddots & \vdots \\ \widetilde{\mu}' & \vdots & \ddots & \ddots & \Lambda_{n} \end{pmatrix} \begin{pmatrix} v_{1L}^{c} \\ v_{2L}^{c} \\ v_{3L}^{c} \\ N_{L}^{c} \\ N_{L}^{c} \end{pmatrix} + \text{h.c.} - \underbrace{\mathbf{i} \lambda_{\nu'_{i}} \phi \overline{\nu}_{i}' \gamma_{5} \nu_{i}'}_{i} \\ \\ & \vdots \\ N_{R} \\ n_{L}^{c} \end{pmatrix} \end{aligned}$$

$$\begin{split} m &= y \frac{v}{\sqrt{2}} \ll M = y' \frac{v_X}{\sqrt{2}} \qquad \frac{1}{2}\mu = y_{IS} \frac{\epsilon v_X}{\sqrt{2}} \qquad \frac{1}{2}\tilde{\mu} = \frac{\tilde{y}}{\Lambda^2} \frac{\epsilon v_X^2}{2} \frac{v}{\sqrt{2}} \qquad \frac{1}{2}\tilde{\mu}' = \frac{\tilde{y}'}{\Lambda^2} \frac{\epsilon v_X^2}{2} \frac{v}{\sqrt{2}} \\ \Rightarrow \boxed{m_{\nu_1'} \sim \frac{\tilde{\mu}'^2}{\Lambda_n} \quad m_{\nu_2'} \sim \frac{\tilde{\mu}^2}{\mu} \quad m_{\nu_3'} \sim \mu \frac{m^2}{M^2}} \ll m_{\nu_{4,5}'} \sim \sqrt{M^2 + m^2} \mp \frac{1}{2}\mu \qquad m_{\nu_6'} \sim \Lambda_n \qquad \boxed{\lambda_{\nu_{1,2,3}'} \sim \frac{m_{\nu_i'}}{v_X}} \\ \text{light neutrinos} \qquad \text{heavy neutrinos } (\gtrsim \text{ TeV}) \end{split}$$

Photon to axion conversion during BBN

ALM model

• Neutrino masses and couplings to Axion-Like-Majoron ϕ with (drop primes ')

$$\mathcal{L}_{
m int} \supset \mathrm{i}\lambda_{
u_i}\,\phi\overline{
u}_i\gamma_5
u_i - rac{1}{4}g_{\phi\gamma\gamma}\,\phi\widetilde{F}_{\mu
u}F^{\mu
u} - rac{1}{2}m_{\phi}^2\phi^2$$

INPUTS: $m_{\phi} = 0.5 \text{ eV}$, $g_{\phi\gamma\gamma} = 1.46 \times 10^{-11} \text{ keV}^{-1}$, $\lambda_{\nu_3} = 6.8 \times 10^{-14}$, $v_X = 900 \text{ GeV}$ $\tau_{\phi} = 3.5 \times 10^{12} \text{ s}$, $\mathcal{B}(\phi \to \nu_3 \overline{\nu}_3) = 0.96 \Leftrightarrow \mathcal{B}(\phi \to \gamma \gamma) = \frac{g_{\phi\gamma\gamma}^2 m_{\phi}^3}{16 \lambda_{\nu_i}^2 m_{\phi}} \sim 10^{-15}$ $\uparrow \Gamma(\phi \to \nu \overline{\nu}) \propto \lambda_{\nu}^2 m_{\phi}$ (decays before recombination)

• Note: This small $g_{\phi\gamma\gamma}$ (astrophysical bounds) can be generated at one loop introducing 2 heavy vectorlike charged lepton singlets (E_{1L}, E_{-1L}^c) and (E_{-4R}^c, E_{4R}) with $Q_X = \pm 1, \pm 4$:

$$-\mathcal{L} \supset y_E s_3^{\dagger} \overline{E}_{1L} E_{4R} + M \overline{E}_{1L} E_{-1L}^c + M \overline{E}_{-4R}^c E_{4R} + \text{h.c.} \supset -\overline{[i\lambda_E \phi \overline{E} \gamma_5 E]} \quad \lambda_E \sim y_E \frac{m'}{M} \sim y_E^2 \frac{v_X}{M}$$

$$\phi \cdots \phi = \int_E \frac{1}{\sqrt{\gamma}} \phi = g_{\phi\gamma\gamma} \sim \frac{\alpha \lambda_E}{\pi M} \sim \frac{\alpha y_E^2 v_X}{\pi M^2} \quad (m_{\phi}^2 \ll 4M^2)$$

Cosmological evolution || T > 1 MeV

• ϕ starts decoupling at $T \sim 10^6$ GeV [$\gamma A \leftrightarrow \phi A$, $\gamma \ell \leftrightarrow \phi \ell$ and $\phi \leftrightarrow \nu \bar{\nu}$ inefficient] until $T \approx 500$ GeV [heavy neutrinos become NR]

Below $T \approx 500$ GeV, entropy transferred to lighter dof, not to ϕ . For $T \approx 1$ MeV: \triangleright

$$\underbrace{g_{\star s}(T \gtrsim m_{\text{top}})}_{\text{all SM dof}} T^3_{\phi} = \underbrace{g_{\star s}(1 \text{ MeV})}_{\gamma, e^{\pm}, \nu' s} T^3 \Rightarrow \frac{T_{\phi}}{T} = \left(\frac{10.75}{106.75}\right)^{1/3} \approx 0.463$$

 \triangleright So far: $T_{\nu} = T$ and majorons represent a small contribution to energy density:

$$\rho_{R} = \rho_{\gamma} + \rho_{\nu} + \rho_{\phi} \equiv \rho_{\gamma} \left[1 + \frac{7}{8} N_{\text{eff}} \left(\frac{T_{\nu}}{T} \right)^{4} \right], \ N_{\text{eff}} \equiv N_{\text{eff}}^{\nu} + \Delta N_{\text{eff}} \Rightarrow \Delta N_{\text{eff}} \approx 0.026$$

Neutrinos decouple at $T \sim 1$ MeV and soon later e^+ annihilate e^- . For $T < m_e$:

$$\underbrace{g_{\star s}(T > m_{\rm e})}_{\gamma, {\rm e}^{\pm}} T_{\nu}^{3} = \underbrace{g_{\star s}(T < m_{\rm e})}_{\gamma} T^{3} \Rightarrow \frac{T_{\nu}}{T} = \left(\frac{4}{11}\right)^{1/3}$$

In Λ CDM: Non-instantaneous ν decoupling and QED effects $\Rightarrow N_{eff}^{\nu} = 3.043$

Cosmological evolution || 1 MeV > T > 10 eV | (includes BBN)

- Photon-axion oscillations in presence of a magnetic field
 - ▷ Photons in a medium get an effective mass from interactions with free electrons
 - ▷ If primodial magnetic field $B_T \approx B_0 (T/T_0)^2$ ($B_0 = 3 \text{ nG}, \lambda_0 \gtrsim 1 \text{ Mpc}$)
 - \Rightarrow photon mass separated in $m_{+,\times}(T)$ (for A_+, A_{\times} parallel, perp to B)
 - \Rightarrow photon-axion mixing $m_{\phi\gamma}(T) = g_{\phi\gamma\gamma}B_T/2$ $m_a = -m_{\phi}^2/\omega$

Cosmological evolution || 1 MeV > T > 10 eV | (includes BBN)

- Resonant photon-axion oscillations in presence of a magnetic field
 - $\vdash \text{ If } \rho_{\phi} \ll \rho_{\gamma} \approx \rho_{\gamma}^{\text{eq}} \text{ and } \Gamma_{\phi} \approx 0$ $P_{\phi}(x,T) \approx -\left(\frac{2\pi}{3H}\right) \left.\frac{m_{\phi\gamma}^2}{m_a}\right|_{T=\overline{T}} \propto \omega = x\overline{T}$ [Ejlli, Dolgov (2014)]
 - (photons of any energy convert to axions at the same *T*)
 - ⇒ 4.4% of CMB γ carrying $r_{\gamma} \equiv 6.3\%$ of ρ_{γ} convert to ϕ at $T \approx 26$ keV (by averaging with BE number (energy) density distributions $\frac{\chi^{2(3)}}{e^{x} - 1}$ respectively) ⇒ Sudden drop of γ temperature: $\Delta T / T_{0} = 1 - (1 - r_{\gamma})^{1/4} = 1.6\%$ ⇒ Sudden increase of N_{eff} :

Cosmological evolution

• Neutrinos and ϕ enter in thermal contact at $T \approx m_{\phi}$ through $\phi \leftrightarrow \nu \bar{\nu}$

T < 10 eV

*n*_φ and *ρ*_φ of thermal (initial) plus non-thermal (after *γ* conversion) majorons at *T* = 10 eV replaced by those of equilibrium for given *T*_φ and *μ*_φ. Same for *ν*'s.
 Time evolution by solving numerically system of DE ⇒ *ρ_i*, *N*_{eff}, *Γ*_{int} [Escudero (2020)]

Cosmological evolution || T < 10 eV

- Neutrinos and φ enter in thermal contact at *T* ≈ *m*_φ through φ ↔ νν̄
 Increased *N*_{eff} ≈ 3.85 due to energy transfer from φ to ν's (mostly ν₃) when φ becomes NR (*T* ≤ 2*m*_φ) and later when it decays (*t* ≥ 10 τ_φ)
 - $ightarrow \Gamma_{int}$ peaks at $T \sim m_{\phi} \Rightarrow$ reduction of neutrino free streaming at recombination

Cosmological evolution

• Effect on CMB and cosmological parameters [CLASS + MontePython]

T < 10 eV

TT power spectrum (relative to Λ CDM)

—– $N_{\rm eff} = 3.043$, Γ _{int} $\neq 0$							
$N_{\rm eff} = N_{\rm eff}(T)$, $\Gamma_{\rm int} = 0$							
Parameter	ΛCDM	ALM					
		$m_{\phi} = 0.5 {\rm ev}$ $\tau_{\phi} = 3.5 \times 10^{12} {\rm s}$					
$100\Omega_b h^2$	2.242 ± 0.015	2.295 ± 0.014					
$\Omega_{ m cdm} h^2$	0.119 ± 0.001	0.129 ± 0.001					
$100 \theta_s$	1.0420 ± 0.0003	1.0407 ± 0.0003					

 3.046 ± 0.015

 0.967 ± 0.004

 0.055 ± 0.008

 67.71 ± 0.44

 3.062 ± 0.016

 0.991 ± 0.004

 0.056 ± 0.008

 71.4 ± 0.5

> H_0 in ALM model compatible with value from SNe-Ia !! (73.01 ± 0.99 km/s/Mpc) > $\Omega_b h^2$ in ALM model larger than in Λ CDM \Rightarrow how about BBN predictions !?

 $\ln(10^{10}A_s)$

 $H_0 \,[\mathrm{km/s/Mpc}]$

 n_s

 au_{reio}

BBN

 \Leftrightarrow primordial abundances as a function of $\eta_{10} \equiv 10^{10} \frac{n_b}{n_\gamma(T_0)} \approx 274 \,\Omega_b h^2$

BBN | **Deuterium** (2σ) problem

- ALM model photon cooling ($r_{\gamma} = 0.063$) at $\overline{T} = 26$ keV ($t \approx 1900$ sec $\approx \frac{1}{2}$ hour)

 - \triangleright From abundance of D and ⁴He [modified PRIMAT] (nucl react ~ untouched):

BBN | Lithium (10 σ) problem

Generalized ALM model

> Take higher \overline{T} that would require higher m_{ϕ} while keeping ϕ decay at recombination

▷ Use constraints to yield D/H within 1σ and ⁴He (Y_P) under control:

 \triangleright Extreme cooling ($r_{\gamma} = 0.9$) at $\overline{T} \approx 60$ keV does the job !! ($\Leftrightarrow \overline{\eta}_{10}^{\text{BBN}} = (1 - r_{\gamma})^{3/4} \eta_{10}^{\text{BBN}} \approx 11.4$)

BBN | Lithium (10 σ) problem

Generalized ALM model

▷ Larger $\overline{\eta}_{10} \Rightarrow \text{BBN starts earlier}$ than in ΛCDM

- \Rightarrow Excess of heavier nuclei (³He, ⁴He) relative to more reactive n, D, ³H
- \triangleright Production of ⁷Li and (particularly) ⁷Be interrupted after the sudden cooling at \overline{T}

Conclusions

- The smallness of neutrino masses may be explained:
 - by a large scale, *or*
 - by an approximate symmetry \Rightarrow one may expect a light ALM
- In the early universe a primordial magnetic field may induce the conversion of CMB photons into axions \Rightarrow larger N_{eff} and a larger η after BBN, than in Λ CDM
- The ALM becomes NR and decays into neutrinos near recombination
- The ALM model ($r_{\gamma} = 6.3\%$ and $\overline{T} = 26$ keV):
 - alleviates the H_0 tension
 - provides a *good* fit to CMB observables
 - yields the *right* deuterium abundance
- A generalized ALM model ($r_{\gamma} = 90\%$ and $\overline{T} \approx 60$ keV):
 - deuterium, helium and *also* lithium abundance *consistent* with observations