Exercise 1: Covariant derivative

Defining the covariant derivative and the gauge fields by

$$
D_{\mu} \equiv \partial_{\mu}-\mathrm{i} g \widetilde{W}_{\mu}, \quad \widetilde{W}_{\mu} \equiv T_{a} W_{\mu}^{a}
$$

prove that the term $\bar{\Psi} \not D \Psi$ is invariant under gauge transformations:

$$
\begin{aligned}
\Psi & \mapsto U \Psi, \quad U=\exp \left\{-\mathrm{i} T_{a} \theta^{a}(x)\right\} \\
\widetilde{W}_{\mu} & \mapsto U \widetilde{W}_{\mu} U^{\dagger}-\frac{\mathrm{i}}{g}\left(\partial_{\mu} U\right) U^{\dagger}
\end{aligned}
$$

Exercise 2: Non abelian gauge transformations

The Yang-Mills Lagrangian is

$$
\mathcal{L}_{\mathrm{YM}}=-\frac{1}{2} \operatorname{Tr}\left\{\widetilde{W}_{\mu v} \widetilde{W}^{\mu v}\right\}
$$

where

$$
\widetilde{W}_{\mu \nu} \equiv T_{a} W_{\mu \nu}^{a}=D_{\mu} \widetilde{W}_{v}-D_{\nu} \widetilde{W}_{\mu}=\partial_{\mu} \widetilde{W}_{v}-\partial_{\nu} \widetilde{W}_{\mu}-\mathrm{i} g\left[\widetilde{W}_{\mu}, \widetilde{W}_{v}\right], \quad \widetilde{W}_{\mu} \equiv T_{a} W_{\mu}^{a}
$$

and T_{a} are the N generators of a Lie group with algebra $\left[T_{a}, T_{b}\right]=\mathrm{i} f_{a b c} T_{c}$.
i) Check that under a gauge transformation of the fields:

$$
\widetilde{W}_{\mu} \mapsto U \widetilde{W}_{\mu} U^{\dagger}-\frac{\mathrm{i}}{g}\left(\partial_{\mu} U\right) U^{\dagger}, \quad U=\exp \left\{-\mathrm{i} T_{a} \theta^{a}\right\}
$$

the $\widetilde{W}_{\mu v}$ transforms as

$$
\widetilde{W}_{\mu v} \mapsto U \widetilde{W}_{\mu v} U^{\dagger}
$$

and therefore $\mathcal{L}_{Y M}$ is gauge invariant.
ii) Check that one may write

$$
\mathcal{L}_{\mathrm{YM}}=-\frac{1}{4} W_{\mu v}^{a} W^{a, \mu v}
$$

that contains kinetic terms and cubic and quartic interactions among the gauge fields.
iii) Check that

$$
W_{\mu \nu}^{a}=\partial_{\mu} W_{v}^{a}-\partial_{\nu} W_{\mu}^{a}+g f_{a b c} W_{\mu}^{b} W_{v}^{c}
$$

iv) Check that under infinitesimal gauge transformations:

$$
W_{\mu}^{a} \mapsto W_{\mu}^{a}-f_{a b c} W_{\mu}^{b} \theta^{c}-\frac{1}{g} \partial_{\mu} \theta^{a}
$$

Exercise 3: Feynman rules of general non-Abelian gauge theories

Obtain the Feynman rules for cubic and quartic self-interactions among gauge fields in a general non-Abelian gauge theory, as well as those for the interactions of Faddeev-Popov ghosts with gauge fields:

Exercise 4: Faddeev-Popov ghosts and gauge invariance

Consider the 1-loop self-energy diagrams for non-Abelian gauge theories in the figure. Calculate the diagrams in the 't Hooft-Feynman gauge and show that the sum does not have the tensor structure $g_{\mu v} k^{2}-k_{\mu} k_{v}$ required by the gauge invariance of the theory unless diagram (c) involving ghost fields is included.

Hint: Take Feynman rules from previous excercise and use dimensional regularization. It is convenient to use the Passarino-Veltman tensor decomposition of loop integrals:

$$
\begin{aligned}
\frac{\mathrm{i}}{16 \pi^{2}}\left\{B_{0}, B_{\mu}, B_{\mu \nu}\right\} & =\mu^{\epsilon} \int \frac{\mathrm{d}^{D} q}{(2 \pi)^{D}} \frac{\left\{1, q_{\mu}, q_{\mu} q_{\nu}\right\}}{q^{2}(q+k)^{2}} \\
\text { where } B_{0} & =\Delta_{\epsilon}+\text { finite } \\
B_{\mu} & =k_{\mu} B_{1}, \quad B_{1}=-\frac{\Delta_{\epsilon}}{2}+\text { finite } \\
B_{\mu \nu} & =g_{\mu v} B_{00}+k_{\mu} k_{\nu} B_{11}, \quad B_{00}=-\frac{k^{2}}{12} \Delta_{\epsilon}+\text { finite }, \quad B_{11}=\frac{\Delta_{\epsilon}}{3}+\text { finite }
\end{aligned}
$$

with $\Delta_{\epsilon}=2 / \epsilon-\gamma+\ln 4 \pi$ and $D=4-\epsilon$. You may check that the ultraviolet divergent part has the expected structure or find the final result in terms of scalar integrals, that for massless fields read:

$$
B_{1}=-\frac{1}{2} B_{0}, \quad B_{00}=-\frac{k^{2}}{4(D-1)} B_{0}, \quad B_{11}=\frac{D}{4(D-1)} B_{0} .
$$

Do not forget a symmetry factor (1/2) in front of (a) and (b), and a factor (-1) in (c).

Exercise 5: Propagator of a massive vector boson field

Consider the Proca Lagrangian of a massive vector boson field

$$
\mathcal{L}=-\frac{1}{4} F_{\mu \nu} F^{\mu v}+\frac{1}{2} M^{2} A_{\mu} A^{\mu}, \quad \text { with } \quad F_{\mu \nu}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}
$$

Show that the propagator of A_{μ} is

$$
\widetilde{D}_{\mu v}(k)=\frac{\mathrm{i}}{k^{2}-M^{2}+\mathrm{i} \varepsilon}\left[-g_{\mu v}+\frac{k_{\mu} k_{v}}{M^{2}}\right]
$$

Exercise 6: Propagator of a massive gauge field

Consider the $\mathrm{U}(1)$ gauge invariant Lagrangian \mathcal{L} with gauge fixing $\mathcal{L}_{\mathrm{GF}}$:

$$
\begin{aligned}
\mathcal{L} & =-\frac{1}{4} F_{\mu \nu} F^{\mu v}+\left(D_{\mu} \phi\right)^{\dagger}\left(D^{\mu} \phi\right)-\mu^{2} \phi^{\dagger} \phi-\lambda\left(\phi^{\dagger} \phi\right)^{2} \\
\mathcal{L}_{\mathrm{GF}} & =-\frac{1}{2 \tilde{\xi}}\left(\partial_{\mu} A^{\mu}-\xi M_{A} \chi\right)^{2}, \quad \text { with } \quad D_{\mu}=\partial_{\mu}+\mathrm{i} e A_{\mu}, \quad F_{\mu v}=\partial_{\mu} A_{v}-\partial_{\nu} A_{\mu}
\end{aligned}
$$

where $M_{A}=e v$ after spontaneous symmetry breaking ($\mu^{2}<0, \lambda>0$) when the complex scalar field ϕ acquires a VEV and is parameterized by

$$
\phi(x)=\frac{1}{\sqrt{2}}[v+\varphi(x)+\mathrm{i} \chi(x)], \quad \mu^{2}=-\lambda v^{2} .
$$

Show that the propagators of φ, χ and the gauge field A_{μ} are respectively

$$
\begin{aligned}
& \widetilde{D}^{\varphi}(k)=\frac{\mathrm{i}}{k^{2}-M_{\varphi}^{2}+\mathrm{i} \varepsilon} \quad \text { with } M_{\varphi}^{2}=-2 \mu^{2}=2 \lambda v^{2} \\
& \widetilde{D}^{\chi}(k)=\frac{\mathrm{i}}{k^{2}-\xi M_{A}^{2}+\mathrm{i} \varepsilon}, \quad \widetilde{D}_{\mu \nu}(k)=\frac{\mathrm{i}}{k^{2}-M_{A}^{2}+\mathrm{i} \varepsilon}\left[-g_{\mu v}+(1-\xi) \frac{k_{\mu} k_{v}}{k^{2}-\xi M_{A}^{2}}\right]
\end{aligned}
$$

Exercise 7: The conjugate Higgs doublet

Show that $\widetilde{\Phi} \equiv i \sigma_{2} \Phi^{*}=\binom{\phi^{0 *}}{-\phi^{-}}$transforms under $\mathrm{SU}(2)$ like $\Phi=\binom{\phi^{+}}{\phi^{0}}$, with $\phi^{-}=$ $\left(\phi^{+}\right)^{*}$. What are the weak isospins, hypercharges and electric charges of $\phi^{0}, \phi^{0 *}, \phi^{+}, \phi^{-}$? Hint: Use the property of Pauli matrices: $\sigma_{i}^{*}=-\sigma_{2} \sigma_{i} \sigma_{2}$.

Exercise 8: Lagrangian and Feynman rules of the Standard Model

Try to reproduce the Lagrangian and the corresponding Feynman rules of as many Standard Model interactions as you can. Of particular interest/difficulty are [VVV] and [VVVV].

Exercise 9: $e^{+} e^{-} \rightarrow f \bar{f}$

Check that the differential and total cross-sections in the CM system for $e^{+} e^{-} \rightarrow f \bar{f}(f \neq e)$ in the SM at tree level are:

$$
\begin{aligned}
\frac{\mathrm{d} \sigma}{\mathrm{~d} \Omega} & =N_{c}^{f} \frac{\alpha^{2}}{4 s} \beta_{f}\left\{\left[1+\cos ^{2} \theta+\left(1-\beta_{f}^{2}\right) \sin ^{2} \theta\right] G_{1}(s)+2\left(\beta_{f}^{2}-1\right) G_{2}(s)+2 \beta_{f} \cos \theta G_{3}(s)\right\} \\
\sigma(s) & =N_{c}^{f} \frac{2 \pi \alpha^{2}}{3 s} \beta_{f}\left[\left(3-\beta_{f}^{2}\right) G_{1}(s)-3\left(1-\beta_{f}^{2}\right) G_{2}(s)\right], \quad \beta_{f}=\sqrt{1-4 m_{f}^{2} / s}
\end{aligned}
$$

with

$$
\begin{aligned}
& G_{1}(s)=Q_{e}^{2} Q_{f}^{2}+2 Q_{e} Q_{f} v_{e} v_{f} \operatorname{Re} \chi_{Z}(s)+\left(v_{e}^{2}+a_{e}^{2}\right)\left(v_{f}^{2}+a_{f}^{2}\right)\left|\chi_{Z}(s)\right|^{2} \\
& G_{2}(s)=\left(v_{e}^{2}+a_{e}^{2}\right) a_{f}^{2}\left|\chi_{Z}(s)\right|^{2} \\
& G_{3}(s)=2 Q_{e} Q_{f} a_{e} a_{f} \operatorname{Re} \chi_{Z}(s)+4 v_{e} v_{f} a_{e} a_{f}\left|\chi_{Z}(s)\right|^{2} \\
& \chi_{Z}(s) \equiv \frac{s}{s-M_{Z}^{2}+\mathrm{i} M_{Z} \Gamma_{Z}}, \quad N_{c}^{f}=1 \text { (3) for } f=\text { lepton (quark) }
\end{aligned}
$$

Exercise 10: Z pole observables at tree level

Show that
(a) $\Gamma(f \bar{f}) \equiv \Gamma(Z \rightarrow f \bar{f})=N_{c}^{f} \frac{\alpha M_{Z}}{3}\left(v_{f}^{2}+a_{f}^{2}\right), \quad N_{c}^{f}=1$ (3) for $f=$ lepton (quark)
(b) $\quad \sigma_{\text {had }}=12 \pi \frac{\Gamma\left(\mathrm{e}^{+} \mathrm{e}^{-}\right) \Gamma(\mathrm{had})}{M_{Z}^{2} \Gamma_{Z}^{2}}$
(c) $A_{F B}=\frac{\sigma(\cos \theta>0)-\sigma(\cos \theta<0)}{\sigma(\cos \theta>0)+\sigma(\cos \theta<0)} \frac{3}{4} A_{f}$, with $A_{f}=\frac{2 v_{f} a_{f}}{v_{f}^{2}+a_{f}^{2}}$

Exercise 11: Higgs partial decay widths at tree level

Show that
(a) $\quad \Gamma(H \rightarrow f \bar{f})=N_{c}^{f} \frac{G_{F} M_{H}}{4 \pi \sqrt{2}} m_{f}^{2}\left(1-\frac{4 m_{f}^{2}}{M_{H}^{2}}\right)^{3 / 2}, \quad N_{c}^{f}=1$ (3) for $f=$ lepton (quark)
(b) $\quad \Gamma\left(H \rightarrow W^{+} W^{-}\right)=\frac{G_{F} M_{H}^{3}}{8 \pi \sqrt{2}} \sqrt{1-\frac{4 M_{W}^{2}}{M_{H}^{2}}}\left(1-\frac{4 M_{W}^{2}}{M_{H}^{2}}+\frac{12 M_{W}^{4}}{M_{H}^{4}}\right)$

$$
\Gamma(H \rightarrow Z Z)=\frac{G_{F} M_{H}^{3}}{16 \pi \sqrt{2}} \sqrt{1-\frac{4 M_{Z}^{2}}{M_{H}^{2}}}\left(1-\frac{4 M_{Z}^{2}}{M_{H}^{2}}+\frac{12 M_{Z}^{4}}{M_{H}^{4}}\right)
$$

