

Los hadrones y el modelo de quarks

Introducción

Conceptos básicos de Teoría de Grupos

El grupo SU(2)

El grupo SU(3)

El modelo de quarks

Bariones

Mesones

Masas y momentos magnéticos de los hadrones

Los quarks pesados

] Introducción

- En la década de 1960 se descubrieron un gran número de hadrones.
 Sus propiedades pudieron entenderse al *postular* que no eran elementales sino compuestos de quarks lo que permitió su clasificación
- Los hadrones forman multipletes de una simetría *aproximada* SU(*m*) de sabor
 - * Los bariones están compuestos por tres quarks
 - * Los mesones están compuestos por un quark y un antiquark
- Los quarks (antiquarks) viven en la representación $m (m^*)$ de SU(*m*)
- Los quarks son fermiones de espín $\frac{1}{2}$ bajo rotaciones SU(2)
- Las interacciones fuertes no distinguen el sabor: partículas idénticas
- Para respetar el postulado de simetrización se introduce el grupo SU(3) de color
- Nos centraremos en m = 3 sabores: u, d, s

Conceptos básicos de Teoría de Grupos

Grupo ↔ Simetrías

	Espaciotemporales:	Continuas	traslaciones, rotaciones, Lorentz,
		Discretas	paridad, inversión temporal,
	Internas:	Globales	conservación de la carga,
		Gauge	interacciones fundamentales
	Bajo permutaciones:	Intercambio	partículas idénticas,
Ejemplo:	Modelo de quarks ←	→ Simetría in	nterna global y bajo permutaciones

• Representaciones (irreps):

Transformaciones de simetría \leftrightarrow Operadores

Sistema físico \leftrightarrow Espacio vectorial (invariante e irreducible)

- El grupo S_n = {permutaciones de *n* elementos} [ciclos: *e*, (12), (132), ...]
- Grupos de Lie (continuos): Generadores (J_a) y álgebra de Lie [J_a , J_b] = i $f^{abc}J_c$
- El grupo $\overline{SU(m)} = \{ \text{matrices } m \times m \text{ complejas unitarias con det. unidad} \}$

- Representación fundamental de SU(*m*): $\Box = \mathbf{m}$ (sobre V_m)
- Representación producto directo (sobre V_m^n) descomponible gráficamente en irreps (tanto de SU(*m*) como de S_n) mediante Tableros de Young de *n* casillas

$$|i\rangle \in \text{base de } V_m$$
, $|\alpha\rangle = |i_1i_2...i_n\rangle \in \text{base de } V_m^n$, $i_k = 1,...,m$

• Cada Tablero de Young θ_{λ}^{p} tiene asociado una irrep λ de SU(*m*) de dimensión $\frac{F}{H}$ Al Tablero de Young Normal θ_{λ} se asocia el simetrizador irreducible e_{λ}

Ejemplo con
$$n = 3, m = 2$$
:
Hay $2 = \frac{n!}{H}$ de dimensión $2 = \frac{F}{H} = \frac{2 \times 3 \times 1}{3 \times 1 \times 1}$

• Los siguientes subespacios vectoriales de V_m^n son invariantes e irreducibles

$$\boxed{T'_{\lambda}(a)} = \{ pe_{\lambda} | \alpha \rangle; | \alpha \rangle \in V_m^n, \ p \in \theta_{\lambda}^p \text{ fijo} \} \equiv \left\{ |\lambda \alpha a \rangle; \ \alpha = 1, \dots, \frac{F}{H} \right\} \text{ bajo SU}(m)$$

El grupo SU(2)

$$2^{2} - 1 = 3$$
 generadores : $J_{i} = \frac{1}{2}\sigma_{i}$ $i = 1, 2, 3$
 $2 - 1 = 1$ generador diagonal : J_{3}
Matrices de Pauli σ_{i} : $\sigma_{1} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ $\sigma_{2} = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$ $\sigma_{3} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$
Álgebra de SU(2): $[J_{a}, J_{b}] = i\epsilon^{abc}J_{c}$ ($\epsilon^{abc} = s$ ímbolo de Levi-Civita)
 \Rightarrow SU(2) es isomorfo a SO(3) = rotaciones en 3D

- Los vectores base $|j, j_3\rangle$ de una irrep son propios de $J = \sum_{i=1}^{3} J_i^2$ y de J_3 $J^2 |j, j_3\rangle = j(j+1) |j, j_3\rangle, \quad J_3 = j_3 |j, j_3\rangle$ $j \in \{0, \frac{1}{2}, 1, \frac{3}{2}, \dots\}, \quad j_3 \in \{j, j-1, \dots, -j\}$

Operador escalera $J_{\pm} = J_1 \pm iJ_2$: sube/baja j_3 en 1 unidad, ya que $[J_3, J_{\pm}] = \pm J_{\pm}$

– Cada irrep se caracteriza por j y tiene dimensión d = 2j + 1

– Las irreps de SU(2) son reales (equivalentes a sus complejo-conjugadas)

 $3^2 - 1 = 8$ generadores : $F_i = \frac{1}{2}\lambda_i$ $i = 1, \dots, 8$

3-1=2 generadores diagonales : F_3 , F_8 (conmutan entre sí) Matrices de Gell-Mann λ_i :

$$\begin{split} \lambda_{1} &= \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ \hline 0 & 0 & 0 \end{pmatrix} \quad \lambda_{2} = \begin{pmatrix} 0 & -i & 0 \\ i & 0 & 0 \\ \hline 0 & 0 & 0 \end{pmatrix} \quad \lambda_{3} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ \hline 0 & 0 & 0 \end{pmatrix} \quad \Leftrightarrow \mathrm{SU}(2) \subset \mathrm{SU}(3) \\ \lambda_{4} &= \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix} \quad \lambda_{5} = \begin{pmatrix} 0 & 0 & -i \\ 0 & 0 & 0 \\ i & 0 & 0 \end{pmatrix} \\ \lambda_{6} &= \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \quad \lambda_{7} = \begin{pmatrix} 0 & 0 & -i \\ 0 & 0 & -i \\ 0 & 0 & -i \\ 0 & i & 0 \end{pmatrix} \quad \lambda_{8} = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -2 \end{pmatrix} \end{split}$$

Álgebra de SU(3): $[F_a, F_b] = if^{abc}F_c$. Las constantes de estructura no nulas son: $f^{123} = 1, f^{458} = f^{678} = \frac{\sqrt{3}}{2}, f^{147} = f^{156} = f^{246} = f^{247} = f^{345} = -f^{367} = \frac{1}{2}$ y perm. cícl. Los vectores base $|I, I_3, Y\rangle$ de una irrep son propios de $I = \sum_{i=1}^{3} F_i^2, I_3 = F_3, Y = \frac{2}{\sqrt{3}}F_8$

Hay tres operadores escalera (tres subgrupos con simetría SU(2)): $I_{\pm} = F_1 \pm iF_2$: sube/baja I_3 en 1 unidad y no cambia Y

 $U_{\pm} = F_6 \pm iF_7$: baja/sube I_3 en $\frac{1}{2}$ unidad y sube/baja Y en 1 unidad $V_{\pm} = F_4 \pm iF_5$: sube/baja I_3 en $\frac{1}{2}$ unidad y sube/baja Y en 1 unidad

 $[I_3, I_{\pm}] = \pm I_{\pm} \qquad [Y, I_{\pm}] = 0$ $[I_3, U_{\pm}] = \pm \frac{1}{2}U_{\pm} \qquad [Y, U_{\pm}] = \pm U_{\pm}$ $[I_3, V_{\pm}] = \pm \frac{1}{2}V_{\pm} \qquad [Y, V_{\pm}] = \pm V_{\pm}$

Notación de pesos:

Cada irrep se caracteriza por dos números naturales (p,q)La dimensión de la irrep es $d = \frac{(p+1)(q+1)(p+q+2)}{2}$. La irrep complejo-conjugada de la (p,q) es la (q,p) y no son equivalentes, en general. Cada irrep (p,q) está generada por los estados dados por los puntos en el plano (I_3, Y) cuya frontera son el hexágono o triángulo siguientes:

Puede haber más de un estado con los mismos (I_3, Y) (tienen distinto *I*).

Los estados del borde exterior de (p,q) tienen ocupación 1, los de la capa siguiente (p-1,q-1) ocupación 2, y así sucesivamente hasta que se alcanza un nivel en el que la ocupación permanece q + 1 si p > q o p + 1 si p < q:

Ejemplos:

Ejemplos:

Relación entre la notación de pesos (p,q) y los tableros de Young:

p es el número de casillas de la primera fila que sobrepasan a las de la segunda fila y*q* es el número de casillas de la segunda fila que sobrepasan a las de la tercera fila.Ejemplos:

$$\Box = 3 = (1,0)$$

$$\Box = 8 = (1,1)$$

$$\Box = 1 = (0,0)$$

$$\Box = 3^* = (0,1)$$

$$\Box = 10 = (3,0)$$

$$\Box = 6 = (2,0)$$

$$\Box = 6^* = (0,2)$$

El modelo de quarks

- Los quarks (u, d, s) son base de la representación fundamental de SU(3) Sus números cuánticos (isospín *I* e hipercarga *Y*) son: [Se toma: $I_3 = \frac{1}{2}\lambda_3 = \text{diag}\{\frac{1}{2}, -\frac{1}{2}, 0\}, Y = \frac{2}{\sqrt{3}}\frac{1}{2}\lambda_8 = \text{diag}\{\frac{1}{3}, \frac{1}{3}, -\frac{2}{3}\}$]

SU(2): Tres quarks de espín $\frac{1}{2}$ { \uparrow , \downarrow }

	×	×	=	= 2 🛇	$2\otimes$	2 =	4_{S}	\oplus	2_{M_S}	\oplus	2_{M_A}
--	---	---	---	-------	------------	------------	---------	----------	-----------	----------	-----------

λ		$\{ \lambda \alpha a\rangle\}$	Bases ortonormales	Espín S
		$e_{\scriptscriptstyle S} \left \uparrow\uparrow\uparrow ight angle$	$\chi_S(+\frac{3}{2}) = \uparrow\uparrow\uparrow\rangle$	
Simétrica	4_{S}	$e_{s}\left \uparrow\uparrow\downarrow ight angle$	$\chi_{S}(+\frac{1}{2}) = \frac{1}{\sqrt{3}}(\uparrow\uparrow\downarrow\rangle + \uparrow\downarrow\uparrow\rangle + \downarrow\uparrow\uparrow\rangle)$	$\frac{3}{2}$
		$e_{s}\left \downarrow\downarrow\uparrow\uparrow ight angle$	$\chi_{S}(-\frac{1}{2}) = \frac{1}{\sqrt{3}}(\downarrow\downarrow\uparrow\rangle + \downarrow\uparrow\downarrow\rangle + \uparrow\downarrow\downarrow\rangle)$	
		$e_{s}\left \downarrow\downarrow\downarrow\downarrow ight angle$	$\chi_S(-\frac{3}{2}) = \downarrow\downarrow\downarrow\rangle$	
	2_{M_S}	$e_m \left \uparrow\uparrow\downarrow ight angle$	$\chi_{M_S}(+\frac{1}{2}) = \frac{1}{\sqrt{6}} (2 \uparrow\uparrow\downarrow\rangle - \downarrow\uparrow\uparrow\rangle - \uparrow\downarrow\uparrow\rangle)$	
		$e_m \left \downarrow \downarrow \uparrow \right\rangle$	$\chi_{M_S}(-\frac{1}{2}) = \frac{1}{\sqrt{6}}(2 \downarrow\downarrow\uparrow\rangle - \uparrow\downarrow\downarrow\rangle - \downarrow\uparrow\downarrow\rangle)$	$\frac{1}{2}$
Mixtas	2 _{MA} #	$(23)e_m \uparrow\uparrow\downarrow\rangle$	$\chi_{M_A}(+\frac{1}{2}) = \frac{1}{\sqrt{2}}(\uparrow\downarrow\uparrow\rangle - \downarrow\uparrow\uparrow\rangle)$	
		$(23)e_m \left \downarrow \downarrow \uparrow \right\rangle$	$\chi_{M_A}(-\frac{1}{2}) = \frac{1}{\sqrt{2}}(\downarrow\uparrow\downarrow\rangle - \uparrow\downarrow\downarrow\rangle)$	

[#] Con $|1\rangle \equiv e_m |\alpha\rangle |2\rangle \equiv (23)e_m |\alpha\rangle$ se construye el vector unitario $\frac{|2\rangle - \langle 1|2\rangle |1\rangle}{\||2\rangle - \langle 1|2\rangle |1\rangle \|} \perp |1\rangle$

SU(3): Tres quarks $q_1q_2q_3$ con sabores $q_i \in \{u, d, s\}$

$$\square \times \square \times \square = \mathbf{3} \otimes \mathbf{3} \otimes \mathbf{3} = \mathbf{10}_S \oplus \mathbf{8}_{M_S} \oplus \mathbf{8}_{M_A} \oplus \mathbf{1}_A$$

λ		$\{ \lambda \alpha a\rangle\}$	Base ortonormal
		$e_{s}\left \mathrm{uuu}\right\rangle$	$\psi_S(\mathrm{uuu}) = \mathrm{uuu}\rangle$
Simétrica	10_S	$e_{s}\left \mathrm{uud} ight angle$	$\psi_{S}(\mathrm{uud}) = \frac{1}{\sqrt{3}}(\mathrm{uud}\rangle + \mathrm{udu}\rangle + \mathrm{duu}\rangle)$
		$e_{s}\left \mathrm{ddu} ight angle$	$\psi_{S}(\mathrm{ddu}) = \frac{1}{\sqrt{3}}(\mathrm{ddu}\rangle + \mathrm{dud}\rangle + \mathrm{udd}\rangle)$
		$e_{s}\left \mathrm{ddd} ight angle$	$\psi_S(\mathrm{ddd}) = \mathrm{ddd}\rangle$
		$e_{s}\left \mathrm{uus} ight angle$	$\psi_S(\mathrm{uus}) = rac{1}{\sqrt{3}}(\mathrm{uus} angle + \mathrm{usu} angle + \mathrm{sus} angle)$
		$e_{s}\left \mathrm{uds} ight angle$	$\psi_S(\mathrm{uds}) = rac{1}{\sqrt{6}}(\mathrm{uds} angle + \mathrm{dus} angle + \mathrm{usd} angle + \mathrm{sdu} angle + \mathrm{sud} angle + \mathrm{dsu} angle)$
		$e_{s}\left \mathrm{dds} ight angle$	$\psi_S(\mathrm{dds}) = rac{1}{\sqrt{3}}(\mathrm{dds} angle + \mathrm{dsd} angle + \mathrm{sds} angle)$
		$e_{s}\left \mathrm{ssu} ight angle$	$\psi_S(\mathrm{ssu}) = rac{1}{\sqrt{3}}(\mathrm{ssu} angle + \mathrm{sus} angle + \mathrm{uss} angle)$
		$e_{s}\left \mathrm{ssd} ight angle$	$\psi_S(\mathrm{ssd}) = rac{1}{\sqrt{3}}(\mathrm{ssd} angle + \mathrm{sds} angle + \mathrm{dss} angle)$
		$e_s \ket{ m sss}$	$\psi_S(\mathrm{sss}) = \mathrm{sss} angle$

λ		$\{ \lambda \alpha a\rangle\}$	Bases ortonormales
		$e_m \left uud \right\rangle$	$\psi_{M_S}(\mathrm{uud}) = \frac{1}{\sqrt{6}}(2 \mathrm{uud}\rangle - \mathrm{duu}\rangle - \mathrm{udu}\rangle)$
	8_{M_S}	$e_m \left \mathrm{ddu} ight angle$	$\psi_{M_S}(\mathrm{ddu}) = rac{1}{\sqrt{6}}(2 \mathrm{ddu} angle - \mathrm{udd} angle - \mathrm{dud} angle)$
Mixtas		$e_m \left uus \right\rangle$	$\psi_{M_S}(\mathrm{uus}) = rac{1}{\sqrt{6}}(2\ket{\mathrm{uus}} - \ket{\mathrm{suu}} - \ket{\mathrm{usu}})$
		$e_m \left \mathrm{dds} \right\rangle$	$\psi_{M_S}(\mathrm{dds}) = rac{1}{\sqrt{6}}(2 \left \mathrm{dds} ight angle - \left \mathrm{sdd} ight angle - \left \mathrm{dsd} ight angle)$
		$e_m \left \mathrm{uds} \right\rangle$	$\psi_{M_S}(\mathrm{uds}) = rac{1}{2}(\mathrm{uds} angle + \mathrm{dus} angle - \mathrm{sdu} angle - \mathrm{dsu} angle)$
		$e_m \left \mathrm{usd} \right\rangle$	$\psi^{\perp}_{M_S}(\mathrm{uds}) = rac{1}{2\sqrt{3}}(2\ket{\mathrm{usd}}+2\ket{\mathrm{sud}}-\ket{\mathrm{uds}}$
		$e_m \ket{\mathrm{ssu}}$	$\psi_{M_S}(\mathrm{ssu}) = rac{1}{\sqrt{6}}(2\ket{\mathrm{ssu}} - \ket{\mathrm{uss}} - \ket{\mathrm{sus}})$
		$e_m \ket{ m ssd}$	$\psi_{M_S}(\mathrm{ssd}) = rac{1}{\sqrt{6}}(2\ket{\mathrm{ssd}} - \ket{\mathrm{dss}} - \ket{\mathrm{sds}})$
		$(23)e_m uud\rangle$	$\psi_{M_A}(\mathrm{uud}) = rac{1}{\sqrt{2}}(\mathrm{udu} angle - \mathrm{duu} angle)$
	8 _{MA} #	$(23)e_m \left \mathrm{ddu} \right\rangle$	$\psi_{M_A}(\mathrm{ddu}) = rac{1}{\sqrt{2}}(\mathrm{dud} angle - \mathrm{udd} angle)$
		$(23)e_m uus\rangle$	$\psi_{M_A}(\mathrm{uus}) = rac{1}{\sqrt{2}}(\mathrm{usu} angle - \mathrm{suu} angle)$
		$(23)e_m \left \mathrm{dds} \right\rangle$	$\psi_{M_A}(\mathrm{dds}) = rac{1}{\sqrt{2}}(\mathrm{dsd} angle - \mathrm{sdd} angle)$
		$(23)e_m \mathrm{uds}\rangle$	$\psi_{M_A}(\mathrm{uds}) = rac{1}{2\sqrt{3}}(2\ket{\mathrm{usd}} - 2\ket{\mathrm{sud}} + \ket{\mathrm{uds}} - \ket{\mathrm{dus}} + \ket{\mathrm{dsu}} - \ket{\mathrm{sdu}})$
		$(23)e_m usd\rangle$	$\psi^{\perp}_{M_A}(\mathrm{uds}) = rac{1}{2}(\mathrm{uds} angle - \mathrm{dus} angle + \mathrm{sdu} angle - \mathrm{dsu} angle)$
		$(23)e_m \mathrm{ssu}\rangle$	$\psi_{M_A}(\mathrm{ssu}) = rac{1}{\sqrt{2}}(\mathrm{uss} angle - \mathrm{suu} angle)$
		$(23)e_m \mathrm{ssd}\rangle$	$\psi_{M_A}(ext{ssd}) = rac{1}{\sqrt{2}}(ext{dss} angle - ext{duu} angle)$

Estados simetrizados

Decuplete $J^P = \frac{3^+}{2}$

$$\psi_S(q_1q_2q_3)\chi_S(m_J)$$

$$m_J \in \{+\frac{3}{2}, +\frac{1}{2}, -\frac{1}{2}, -\frac{3}{2}\}$$

Barión	Quarks	Función de onda
Δ^{++}	uuu	$ uuu\rangle \chi_S(m_J)$
Δ^+	uud	$\frac{1}{\sqrt{3}}(\mathrm{uud}\rangle + \mathrm{udu}\rangle + \mathrm{duu}\rangle)\chi_S(m_J)$
Δ^0	udd	$\frac{1}{\sqrt{3}}(\mathrm{d}\mathrm{d}\mathrm{u}\rangle + \mathrm{d}\mathrm{u}\mathrm{d}\rangle + \mathrm{u}\mathrm{d}\mathrm{d}\rangle)\chi_S(m_J)$
Δ^{-}	ddd	$ \mathrm{ddd}\rangle \chi_S(m_J)$
Σ^{*+}	uus	$\frac{1}{\sqrt{3}}(uus\rangle + usu\rangle + sus\rangle)\chi_S(m_J)$
Σ^{*0}	uds	$\frac{1}{\sqrt{6}}(\mathrm{uds}\rangle + \mathrm{dus}\rangle + \mathrm{usd}\rangle + \mathrm{sdu}\rangle + \mathrm{sud}\rangle + \mathrm{dsu}\rangle)\chi_S(m_J)$
Σ^{*-}	dds	$\frac{1}{\sqrt{3}}(\mathrm{dds}\rangle + \mathrm{dsd}\rangle + \mathrm{sds}\rangle)\chi_S(m_J)$
H *0	uss	$\frac{1}{\sqrt{3}}(\mathrm{ssu}\rangle + \mathrm{sus}\rangle + \mathrm{uss}\rangle)\chi_S(m_J)$
H *-	dss	$\frac{1}{\sqrt{3}}(\mathrm{ssd} angle + \mathrm{sds} angle + \mathrm{dss} angle)\chi_S(m_J)$
Ω^{-}	SSS	$ sss\rangle \chi_S(m_J)$

Octete $J^P = \frac{1}{2}^+ \left| \frac{1}{\sqrt{2}} \left[\psi_{M_S}(q_1 q_2 q_3) \chi_{M_S}(m_J) + \psi_{M_A}(q_1 q_2 q_3) \chi_{M_A}(m_J) \right] \right| m_J \in \{+\frac{1}{2}, -\frac{1}{2}\}$

Barión	Quarks	Función de onda ($m_J = +\frac{1}{2}$)
p	uud	$\frac{1}{3\sqrt{2}} \left\{ 2 \left(\left u^{\uparrow} u^{\uparrow} d^{\downarrow} \right\rangle + \left d^{\downarrow} u^{\uparrow} u^{\uparrow} \right\rangle + \left u^{\uparrow} d^{\downarrow} u^{\uparrow} \right\rangle \right)$
		$-\left(\left u^{\downarrow}u^{\uparrow}d^{\uparrow}\right\rangle+\left d^{\uparrow}u^{\uparrow}u^{\downarrow}\right\rangle+\left u^{\uparrow}d^{\uparrow}u^{\downarrow}\right\rangle\right)$
		$-\left(\left u^{\uparrow}u^{\downarrow}d^{\uparrow} ight angle+\left d^{\uparrow}u^{\downarrow}u^{\uparrow} ight angle+\left u^{\downarrow}d^{\uparrow}u^{\uparrow} ight angle ight) ight\}$
n	udd	$\frac{1}{3\sqrt{2}} \left\{ 2 \left(\left d^{\uparrow} d^{\uparrow} u^{\downarrow} \right\rangle + \left u^{\downarrow} d^{\uparrow} d^{\uparrow} \right\rangle + \left d^{\uparrow} u^{\downarrow} d^{\uparrow} \right\rangle \right)$
		$-\left(\left d^{\downarrow}d^{\uparrow}u^{\uparrow} ight angle+\left u^{\uparrow}d^{\uparrow}d^{\downarrow} ight angle+\left d^{\uparrow}u^{\uparrow}d^{\downarrow} ight angle ight)$
		$-\left(\left d^{\uparrow}d^{\downarrow}u^{\uparrow} ight angle+\left u^{\uparrow}d^{\downarrow}d^{\uparrow} ight angle+\left d^{\downarrow}u^{\uparrow}d^{\uparrow} ight angle ight) ight\}$
Σ^+	uus	$\frac{1}{3\sqrt{2}} \left\{ 2 \left(\left u^{\uparrow} u^{\uparrow} s^{\downarrow} \right\rangle + \left s^{\downarrow} u^{\uparrow} u^{\uparrow} \right\rangle + \left u^{\uparrow} s^{\downarrow} u^{\uparrow} \right\rangle \right) \right\}$
		$-\left(\left u^{\downarrow}u^{\uparrow}s^{\uparrow} ight angle+\left s^{\uparrow}u^{\uparrow}u^{\downarrow} ight angle+\left u^{\uparrow}s^{\uparrow}u^{\downarrow} ight angle ight)$
		$-\left(\left u^{\uparrow}u^{\downarrow}s^{\uparrow} ight angle+\left s^{\uparrow}u^{\downarrow}u^{\uparrow} ight angle+\left u^{\downarrow}s^{\uparrow}u^{\uparrow} ight angle ight) ight\}$
Σ^{-}	dds	$rac{1}{3\sqrt{2}} ig\{ 2 \left(\left d^{\uparrow} d^{\uparrow} s^{\downarrow} ight angle + \left s^{\downarrow} d^{\uparrow} d^{\uparrow} ight angle + \left d^{\uparrow} s^{\downarrow} d^{\uparrow} ight angle ight)$
		$-\left(\left d^{\downarrow}d^{\uparrow}s^{\uparrow} ight angle+\left s^{\uparrow}d^{\uparrow}d^{\downarrow} ight angle+\left d^{\uparrow}s^{\uparrow}d^{\downarrow} ight angle ight)$
		$-\left(\left d^{\uparrow}d^{\downarrow}s^{\uparrow} ight angle+\left d^{\uparrow}s^{\downarrow}d^{\uparrow} ight angle+\left d^{\downarrow}s^{\uparrow}d^{\uparrow} ight angle ight) ight\}$

El modelo de quarks

Bariones en SU(3)

Octete $J^P = \frac{1}{2}^+$ (cont.) Nota: Σ^0 y Λ^0 elegidas para dar isospín correcto

Barión	Quarks	Función de onda $(m_J = +\frac{1}{2})$
Σ^0	uds	$\frac{1}{6}\{(usd\rangle + sdu\rangle)(2 \uparrow\uparrow\downarrow\rangle - \downarrow\uparrow\uparrow\rangle - \uparrow\downarrow\uparrow\rangle)$
		$(\text{dus} angle+ \text{usd} angle)(2\left \downarrow\uparrow\uparrow angle- \uparrow\downarrow\uparrow angle- \uparrow\uparrow\downarrow angle)$
		$(sdu angle + dus angle)(2 \uparrow\downarrow\uparrow angle - \uparrow\uparrow\downarrow angle - \downarrow\uparrow\uparrow angle)\}$
Λ^0	uds	$\frac{1}{2\sqrt{3}}\{(usd\rangle - sdu\rangle)(\uparrow\downarrow\uparrow\rangle - \downarrow\uparrow\uparrow\rangle)$
		$(\mathrm{dus} angle - \mathrm{usd} angle)(\uparrow\uparrow\downarrow angle - \uparrow\downarrow\uparrow angle)$
		$(\mathrm{sdu} angle - \mathrm{dus} angle)({\downarrow\uparrow\uparrow} angle - \uparrow\uparrow\downarrow angle)\}$
Ξ^0	uss	$rac{1}{3\sqrt{2}}ig\{2\left(\left \mathbf{s}^{\uparrow}\mathbf{s}^{\uparrow}\mathbf{u}^{\downarrow} ight angle+\left \mathbf{u}^{\downarrow}\mathbf{s}^{\uparrow}\mathbf{s}^{\uparrow} ight angle+\left \mathbf{s}^{\uparrow}\mathbf{u}^{\downarrow}\mathbf{s}^{\uparrow} ight angle ight)$
		$-\left(\left \mathrm{s}^{\downarrow}\mathrm{s}^{\uparrow}\mathrm{u}^{\uparrow} ight angle +\left \mathrm{u}^{\uparrow}\mathrm{s}^{\uparrow}\mathrm{s}^{\downarrow} ight angle +\left \mathrm{s}^{\uparrow}\mathrm{u}^{\uparrow}\mathrm{s}^{\downarrow} ight angle ight)$
		$-\left(\left \mathrm{s}^{\uparrow}\mathrm{s}^{\downarrow}\mathrm{u}^{\uparrow} ight angle +\left \mathrm{u}^{\uparrow}\mathrm{s}^{\downarrow}\mathrm{s}^{\uparrow} ight angle +\left \mathrm{s}^{\downarrow}\mathrm{u}^{\uparrow}\mathrm{s}^{\uparrow} ight angle ight) ight\}$
Ξ ⁻	dss	$rac{1}{3\sqrt{2}}ig\{2\left(\left s^{\uparrow}s^{\uparrow}d^{\downarrow} ight angle+\left d^{\downarrow}s^{\uparrow}s^{\uparrow} ight angle+\left s^{\uparrow}d^{\downarrow}s^{\uparrow} ight angle ight)$
		$-\left(\left \mathrm{s}^{\downarrow}\mathrm{s}^{\uparrow}\mathrm{d}^{\uparrow} ight angle+\left \mathrm{d}^{\uparrow}\mathrm{s}^{\uparrow}\mathrm{s}^{\downarrow} ight angle+\left \mathrm{s}^{\uparrow}\mathrm{d}^{\uparrow}\mathrm{s}^{\downarrow} ight angle ight)$
		$-\left(\left \mathrm{s}^{\uparrow}\mathrm{s}^{\downarrow}\mathrm{d}^{\uparrow} ight angle +\left \mathrm{d}^{\uparrow}\mathrm{s}^{\downarrow}\mathrm{s}^{\uparrow} ight angle +\left \mathrm{s}^{\downarrow}\mathrm{d}^{\uparrow}\mathrm{s}^{\uparrow} ight angle ight) ight\}$

- El estado fundamental tiene momento angular orbital L = 0. Por tanto el momento angular total del barión (su espín) *J* coincide con la suma vectorial de los espines de los tres quarks *S*. Su paridad es $P = (-1)^L$
- La total simetría del estado fundamental [espacial] × [espín] × [sabor] ocasiona un conflicto con el postulado de simetrización: esperamos que bajo el intercambio de fermiones idénticos la función de onda debe ser antisimétrica.

Para solucionar este problema se supone que los quarks son la representación fundamental de una **simetría SU(3) de color** que, a diferencia de la SU(3) de sabor, es **exacta**: los quarks puden tener color rojo (**R**), verde (**G**) o azul (**B**). Se postula que los hadrones son neutros de color, es decir, pertenecen a la representación singlete de SU(3) de color.

Así los bariones pertenecen a la representación antisimétrica $\mathbf{1}_A$ de SU(3) de color:

$$e_a |\mathbf{RGB}\rangle = \frac{1}{\sqrt{6}} (|\mathbf{RGB}\rangle - |\mathbf{GRB}\rangle - |\mathbf{RBG}\rangle - |\mathbf{BGR}\rangle + |\mathbf{BRG}\rangle + |\mathbf{GBR}\rangle)$$

de modo que la función de onda [espacial] × [espín] × [sabor] × [color] es en efecto antisimétrica.

Los números cuánticos de los multipletes de bariones

Decuplete $J^P = \frac{3^+}{2}$ $(L = 0, S = \frac{3}{2})$

	Quarks	Ι	I ₃	Ŷ	M [MeV]
Δ^{++}	uuu	<u>3</u> 2	<u>3</u> 2	1	1232
Δ^+	uud	<u>3</u> 2	$\frac{1}{2}$	1	1232
Δ^0	udd	<u>3</u> 2	$-\frac{1}{2}$	1	1232
Δ^{-}	ddd	<u>3</u> 2	$-\frac{3}{2}$	1	1232
Σ^{*+}	uus	1	1	0	1383
Σ^{*0}	uds	1	0	0	1384
Σ^{*-}	dds	1	-1	0	1387
E *0	uss	$\frac{1}{2}$	$\frac{1}{2}$	-1	1530
<u></u> ±*-	dss	$\frac{1}{2}$	$-\frac{1}{2}$	-1	1530
Ω^{-}	SSS	0	0	-2	1672

Octete
$$J^P = \frac{1}{2}^+$$
 $(L = 0, S = \frac{1}{2})$

	Quarks	Ι	I_3	Ŷ	M [MeV]
p	uud	$\frac{1}{2}$	$\frac{1}{2}$	1	938
n	udd	$\frac{1}{2}$	$-\frac{1}{2}$	1	939
Λ^0	uds	0	0	0	1115
Σ^+	uus	1	1	0	1189
Σ^0	uds	1	0	0	1192
Σ^{-}	dds	1	-1	0	1197
Ξ^0	uss	$\frac{1}{2}$	$\frac{1}{2}$	-1	1314
Ξ-	dss	$\frac{1}{2}$	$-\frac{1}{2}$	-1	1321

SU(2): Un quark y un antiquark, ambos de espín $\frac{1}{2}$

$$\square \times \square = \mathbf{2} \otimes \mathbf{2} = \mathbf{3}_S \oplus \mathbf{1}_A$$

λ		$\{ \lambda \alpha a\rangle\}$	Base ortonormales	Espín S
		$e_{s}\left \uparrow\uparrow ight angle$	$\chi_S(+1) = \uparrow\uparrow angle$	
Simétrica	3_S	$e_{s}\left \uparrow\downarrow ight angle$	$\chi_S(0) = rac{1}{\sqrt{2}} (\!\uparrow\!\downarrow\rangle + \!\downarrow\!\uparrow angle)$	1
		$e_{s}\left \downarrow\downarrow\downarrow\right\rangle$	$\chi_S(-1) = \ket{\downarrow\downarrow}$	
Antisimétrica	1_A	$e_a \left \uparrow\downarrow ight angle$	$\chi_A(0) = rac{1}{\sqrt{2}} (\!\uparrow \downarrow \rangle - \!\downarrow \uparrow \rangle)$	0

SU(3): Un quark q y un antiquark \overline{q} de sabores $q \in \{u, d, s\}, \overline{q} \in \{\overline{u}, \overline{d}, \overline{s}\}$

$$\Box \times \Box = \mathbf{3} \otimes \mathbf{3}^* = \mathbf{8} \oplus \mathbf{1}$$

Nota: El grupo SU(3) de sabor posee un subgrupo SU(2) de isospín *I*. Los multipletes de isospín de las antipartículas deben ser definidos con cuidado (deben transformarse igual y tener *I*₃ opuesto). Así, por ejemplo:

$$\begin{pmatrix} \mathbf{u}' \\ \mathbf{d}' \end{pmatrix} = \underbrace{\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}}_{\mathbf{e}^{-\mathbf{i}\frac{\pi}{2}\sigma_2}} \begin{pmatrix} \mathbf{u} \\ \mathbf{d} \end{pmatrix} \quad \Rightarrow \quad \begin{pmatrix} -\overline{\mathbf{d}'} \\ \overline{\mathbf{u}'} \end{pmatrix} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} -\overline{\mathbf{d}} \\ \overline{\mathbf{u}} \end{pmatrix}$$

Por tanto:

Ι	I_3	Estado
1	1	$-u\overline{d}$
1	0	$rac{1}{\sqrt{2}}(u\overline{u}-d\overline{d})$
1	-1	du
0	0	$\frac{1}{\sqrt{2}}(u\overline{u}+d\overline{d})$

λ	Base ortonormal	Ι	I_3	Y	(No hay simetría de intercambio)	
	$ C\rangle \equiv \frac{1}{\sqrt{3}}(u\overline{u} + d\overline{d} + s\overline{s})$	0	0	0	← Este deber ser el singlete	
	$ B\rangle \equiv \frac{1}{\sqrt{6}}(u\overline{u} + d\overline{d} - 2s\overline{s})$	0	0	0	$\int Ortogonalos a C\rangle con L = V = 0$	
	$ A\rangle \equiv \frac{1}{\sqrt{2}}(u\overline{u} - d\overline{d})$	1	0	0	$\int O(10g) d(a) e^{-1} = 0$	
	$-u\overline{d}$	1	1	0	\downarrow Los seis estados restantes	
	dū	1	-1	0		
	us	$\frac{1}{2}$	$\frac{1}{2}$	1		
	ds	$\frac{1}{2}$	$-\frac{1}{2}$	1		
	sd	$\frac{1}{2}$	$\frac{1}{2}$	-1		
	sū	$\frac{1}{2}$	$-\frac{1}{2}$	-1		

– Los estados $|B\rangle$ (octete) y $|C\rangle$ (singlete) no se mezclan bajo transformaciones de SU(3) pero tienen los mismos I = Y = 0. Pueden superponerse. Por ejemplo:

$$L = 0, \ S = 0: \qquad |\eta\rangle \approx \frac{1}{\sqrt{6}}(u\overline{u} + d\overline{d} - 2s\overline{s}), \qquad |\eta'\rangle \approx \frac{1}{\sqrt{3}}(u\overline{u} + d\overline{d} + s\overline{s})$$
$$L = 0, \ S = 1: \qquad |\omega\rangle \approx \frac{1}{\sqrt{2}}(u\overline{u} + d\overline{d}), \qquad \qquad |\phi\rangle \approx s\overline{s}$$

Los números cuánticos de los multipletes de mesones

- El espín *J* del mesón es la suma vectorial de *L* y *S* del sistema quark-antiquark *S*. La paridad es el producto de la paridad intrínseca y la extrínseca $P = -(-1)^L$
- Un mesón neutro es autoestado de conjugación de carga con $C = (-1)^{L+S}$

Nonete
$$J^P = 0^-$$
 (*L* = 0, *S* = 0)

(octete y singlete casi no se mezclan)

		Función de onda*	Ι	I_3	Ŷ	M [MeV]
	π^0	$\frac{1}{\sqrt{2}}(u\overline{u}-d\overline{d})$	1	0	0	135
$Y K^0 K^+$	π^+	$-u\overline{d}$	1	1	0	140
$1 - \bullet \bullet$	π^{-}	du	1	-1	0	140
$\pi^ \pi^0, \eta, \eta'$ π^+	η	$\frac{1}{\sqrt{6}}(u\overline{u}+d\overline{d}-2s\overline{s})$	0	0	0	547
	K^+	us	$\frac{1}{2}$	$\frac{1}{2}$	1	493
$K^ \bar{K}^0$	K^{-}	sū	$\frac{1}{2}$	$-\frac{1}{2}$	-1	493
	K^0	ds	$\frac{1}{2}$	$-\frac{1}{2}$	1	498
	\overline{K}^0	$-s\overline{d}$	$\frac{1}{2}$	$\frac{1}{2}$	-1	498
$-1 -\frac{1}{2} 0 \frac{1}{2} 1$	η'	$\frac{1}{\sqrt{3}}(u\overline{u}+d\overline{d}+s\overline{s})$	0	0	0	958
		*[multiplicar por χ	$\zeta_A(0)$	D)]		

Nota: π^0 , η y η' tienen $J^{PC} = 0^{-+}$

Nonete
$$J^P = 1^-$$
 (*L* = 0, *S* = 1)

(octete y singlete se mezclan)

		Función de onda*	Ι	I_3	Y	M [MeV]
	$ ho^0$	$\frac{1}{\sqrt{2}}(u\overline{u}-d\overline{d})$	1	0	0	775
$Y K^{*0} K^{*+}$	$ ho^+$	$-u\overline{d}$	1	1	0	775
	$ ho^-$	du	1	-1	0	775
$\rho^{-} \rho^{0}, \omega, \phi \qquad \omega^{+}$	ω	$\frac{1}{\sqrt{2}}(u\overline{u}+d\overline{d})$	0	0	0	782
	K^{*+}	us	$\frac{1}{2}$	$\frac{1}{2}$	1	892
K^{*-} \bar{K}^{*0}	K^{*-}	sū	$\frac{1}{2}$	$-\frac{1}{2}$	-1	892
	K^{*0}	ds	$\frac{1}{2}$	$-\frac{1}{2}$	1	892
$I \qquad I \qquad$	\overline{K}^{*0}	$-s\overline{d}$	$\frac{1}{2}$	$\frac{1}{2}$	-1	892
-1 $-\frac{1}{2}$ 0 $\frac{1}{2}$ 1	φ	SS	0	0	0	1020
		*[]	. (.)]		

[multiplicar por $\chi_S(m_I)$]

Nota: ρ^0 , ω y ϕ tienen $J^{PC} = 1^{--}$

Masas y momentos magnéticos de los hadrones Diferencias de masa en multipletes de isospín

Atribuirlas a la interacción eléctrica entre quarks constituyentes y $m_u \neq m_d \neq m_s$. Por ejemplo, para los *hiperones* Σ :

 $\Sigma^{+}(1189) = uus$ $\Sigma^{0}(1192) = uds$ $\Sigma^{-}(1197) = dds$

tendríamos, suponiendo interacción eléctrica entre pares de quarks,

$$\begin{split} M_{\Sigma^{+}} &= M_{0} + m_{s} + 2m_{u} + (Q_{u}^{2} + Q_{u}Q_{s} + Q_{u}Q_{s})\delta \\ M_{\Sigma^{0}} &= M_{0} + m_{s} + m_{d} + m_{u} + (Q_{u}Q_{d} + Q_{u}Q_{s} + Q_{d}Q_{s})\delta , \qquad \delta = \frac{1}{4\pi\epsilon_{0}}\frac{e^{2}}{r} \\ M_{\Sigma^{-}} &= M_{0} + m_{s} + 2m_{d} + (Q_{d}^{2} + Q_{d}Q_{s} + Q_{d}Q_{s})\delta \end{split}$$

de donde

$$m_d - m_u = \frac{1}{3} \left[M_{\Sigma^-} + M_{\Sigma^0} - 2M_{\Sigma^+} \right] = 3.7 \text{ MeV}$$

que confirma la similitud entre los quarks del doblete de isospín $\begin{pmatrix} u \\ d \end{pmatrix}$.

Hadrones

] Masas de los bariones

Las masas de los hadrones de un mismo multiplete no son iguales. Suponer que el hamiltoniando de la interacción fuerte H contiene un término H' que rompe SU(3):

 $H = H_0 + H'$

donde H' conmuta con los generadores diagonales I_3 e Y. [vid. valores tablas] Fórmula de Gell-Mann–Okubo (empírica, consistente con lo anterior)

para bariones:
$$M = M_0 + M_1Y + M_2\left[I(I+1) - \frac{Y^2}{4}\right]$$

 \Rightarrow Decuplete de bariones $J^P = \frac{3}{2}^+$, cumplen Y = 2(I-1):

M = A + BY [$A \approx 1380$ MeV, $B \approx -150$ MeV]

 \Rightarrow Octete de bariones $J^P = \frac{1}{2}^+$:

 $3M_{\Lambda^0} + M_{\Sigma^0} = 2M_n + 2M_{\Xi^0}$ [se cumple con una precisión del 5‰]

Masas de los mesones

Suponer que la relación entre masas es cuadrática.

Fórmula de Gell-Mann–Okubo

para mesones:
$$M^2 = M_0^2 + M_1^2 Y + M_2^2 \left[I(I+1) - \frac{Y^2}{4} \right]$$

 \Rightarrow Octete de mesones psedoescalares $J^P = 0^-$:

$$3M_{\eta}^2 + M_{\pi^0}^2 = 2M_{K^0}^2 + 2M_{\overline{K}^0}^2$$

y como $M_{K^0} = M_{\overline{K}^0}$ se obtiene finalmente

$$3M_{\eta}^2 + M_{\pi^0}^2 = 4M_{K^0}^2$$

que se cumple con una precisión del 8%.

Momentos magnéticos de los bariones

El operador momento dipolar magnético de un fermión sin estructura, de espín $\frac{1}{2}$, carga *Q* y masa *m* es:

$$ec{\mu} = Q rac{e\hbar}{2m} ec{\sigma} \equiv \mu ec{\sigma}$$

Para un barión constituido por tres quarks i = 1, 2, 3 el modelo de quarks predice

$$\vec{\mu} = \sum_{i} \vec{\mu}_{i} \implies \qquad \mu_{\text{barión}} = \langle \psi | \sum_{i} \mu_{i} \sigma_{3_{i}} | \psi \rangle$$

donde ψ es su función de onda en el estado de $m_J = J$.

Teniendo en cuenta que sólo se están considerando las contribuciones de los quarks de valencia (quarks constituyentes), el éxito del modelo es bastante bueno, como muestra la siguiente tabla.

	Modelo de quarks	μ/μ_N	Experimento μ/μ_N					
р	$\frac{1}{3}(4\mu_u - \mu_d)$		$+2.792847351\pm0.000000028$					
n	$\frac{1}{3}(4\mu_d - \mu_u)$		-1.9130427 ± 0.0000005					
Λ^0	μ_s		-0.613 ± 0.004					
Σ^+	$\frac{1}{3}(4\mu_u-\mu_s)$	+2.67	$+2.458 \pm 0.010$					
Σ^0	$\frac{1}{3}(2\mu_u+2\mu_d-\mu_s)$	+0.79						
Σ^{-}	$\frac{1}{3}(4\mu_d - \mu_s)$	-1.09	-1.160 ± 0.025					
Ξ^0	$\frac{1}{3}(4\mu_s-\mu_u)$	-1.43	-1.250 ± 0.014					
Ξ^{-}	$\frac{1}{3}(4\mu_s-\mu_d)$	-0.49	-0.6507 ± 0.0025					
Ω^{-}	$3\mu_s$	-1.84	-2.02 ± 0.05					
donde se ha usado como unidad el magnetón nuclear $\mu_N \equiv \frac{e\hbar}{2m_p}$								
Si suponemos $m_u = m_d$, el modelo de quarks predice $\frac{\mu_n}{2} = -\frac{2}{2} \approx$								

Nota: Si suponemos $m_u = m_d$, el modelo de quarks predice $\frac{\mu_n}{\mu_p} = -\frac{2}{3} \approx -0.667$, bastante de acuerdo con el valor experimental $\frac{\mu_n}{\mu_p} = -0.685$

Los quarks pesados

El quark c (mesón J/ψ : SLAC y Brookhaven, 1974; $m_c \approx 1.5$ GeV)

Se introduce un cuarto sabor, ampliándose la simetría a SU(4).

Se introduce un quinto sabor, ampliándose la simetría (aún más aproximada) a SU(5).

El quark t (pp \rightarrow t \overline{t} + *X*: Fermilab, 1994; $m_t \approx 170$ GeV)

Tan pesado que puede decaer débilmente: t \rightarrow Wb antes de hadronizarse.

Números (cuánticos	(conservados en	interacciones	fuertes).
-----------	-----------	-----------------	---------------	-----------

Quark	Q	Ι	I_3	S	С	В	Т
d	$-\frac{1}{3}$	$\frac{1}{2}$	$-\frac{1}{2}$	0	0	0	0
u	<u>2</u> 3	$\frac{1}{2}$	<u>1</u> 2	0	0	0	0
S	$-\frac{1}{3}$	0	0	-1	0	0	0
С	$\frac{2}{3}$	0	0	0	1	0	0
b	$-\frac{1}{3}$	0	0	0	0	-1	0
t	$\frac{2}{3}$	0	0	0	0	0	1

$$Q = I_3 + \frac{Y}{2}$$
$$Y = \mathcal{B} + S + C + B + T$$

- $\mathcal{B} =$ número bariónico $= \frac{1}{3}$
- S = strangeness
- C = charm
- B = beauty o bottomness

$$T =$$
topness

 $u\overline{s}$

(a)

(b)

SU(3)

 $c\overline{s}$

 $\eta_c \bullet \eta'$

cd

η

*+

cd

 $c\overline{s}$

 $u\overline{s}$

 $s\overline{d}$

ud

 $c\overline{u}$

 $d\overline{s} \,\, \pi^0$

 $d\overline{c}$

 $c\overline{u}$

 $K^{*'}$

 $d\overline{s}$

K

sū

D

SU(4)