Repaso de relatividad y teoría de grupos

Ejercicio 1: Sistemas de referencia

Un electrón y un positrón se acercan, en el sistema de referencia laboratorio, con un momento de 45 GeV igual y opuesto. Calcula la energía total del positrón en el sistema de referencia del electrón en reposo.

Ejercicio 2: Masa invariante

En el acelerador HERA se colisionaban protones a una energía total de 920 GeV y electrones a una energía total de 27.6 GeV. Calcula la masa que tendría la partícula más pesada que se podría crear en esta colisión.

Ejercicio 3: Centro de masas

Si un fotón de 660 keV se acerca a un electrón en reposo en el sistema de referencia laboratorio, calcula la velocidad β del centro de masas del sistema.

Ejercicio 4: Rayos cósmicos y Fotones CMB

Un protón cósmico ultra-energético ($m_p=938~{\rm MeV}$) con energía $10^{20}~{\rm eV}$ en el sistema laboratorio, colisiona con un fotón del fondo de microondas que tiene una temperatura equivalente de 4.5 K. Calcula:

- 1) La energía del fotón en eV.
- 2) El factor γ del protón.
- 3) La energía del fotón en el sistema de referencia en reposo del protón.

Ejercicio 5: Rapidity

La convención usual en física de aceleradores es tomar como eje Z la dirección del haz de partículas. Dada una velocidad $\beta \in (-1,1)$ se define la *rapidity* $\eta \in (-\infty,\infty)$ como

$$\eta = \frac{1}{2} \ln \frac{1+\beta}{1-\beta} \equiv \frac{1}{2} \ln \frac{E+p_z}{E-p_z}$$

1) Partiendo de la expresión anterior, demuestra que la *rapidity* también puede expresarse de la siguiente manera:

$$\eta = \operatorname{arctanh} \beta$$
.

2) Considera una partícula masiva moviéndose con η_A respecto a un observador \mathcal{O} . Muestra que para un observador \mathcal{O}' que se mueva a su vez con *rapidity* η en la dirección opuesta a la partícula se tiene que

$$\eta_A' = \eta_A + \eta.$$

Es decir, la rapidity es aditiva bajo boosts.

Ejercicio 6: Transformación de Lorentz del campo electromagnético

- 1) Calcula la forma explícita de la variación infinitesimal bajo el grupo de Lorentz del tensor antismétrico $F^{\mu\nu}$.
- 2) Usando que

$$F^{0i} = -E^i$$
, $F^{ij} = -\epsilon^{ijk}B^k$,

calcula la variación de E^i y B^i bajo una transformación de Lorentz infinitesimal.

Ejercicio 7: Álgebra de Lorentz

Usando la expresión explícita de los generadores del grupo de Lorentz en la representación vectorial

$$(J^{\mu\nu})^{\alpha}_{\ \beta} = \mathrm{i}(g^{\mu\alpha}\delta^{\nu}_{\beta} - g^{\nu\alpha}\delta^{\mu}_{\beta}),$$

comprueba que el álgebra de Lorentz viene dada por

$$[J^{\mu\nu},J^{\rho\sigma}]=\mathrm{i}(g^{\nu\rho}J^{\mu\sigma}-g^{\mu\rho}J^{\nu\sigma}-g^{\nu\sigma}J^{\mu\rho}+g^{\mu\sigma}J^{\nu\rho}).$$