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In recent years there has been a growing interest in studying the knowledge that 
mathematics teachers require in order for their teaching to be effective. However, only 
a few studies have focused on the design and application of instruments that are 
capable of exploring different aspects of teachers’ didactic-mathematical knowledge 
about specific topics. The present paper reports the results obtained following the 
application of a questionnaire designed specifically to explore certain key features of 
prospective, higher secondary-education teachers’ knowledge of the derivative. The 
first part of the paper describes the design of this questionnaire. 

BACKGROUND 
The mathematical and didactic training of prospective teachers is an area of research 
that merits the attention not only of researchers in the field of mathematics education 
but also of educational authorities. Above all, this is because the development of 
pupils’ mathematical thinking and competences is inherently dependent on their 
teachers’ abilities.  
One of the questions that have generated the most interest concerns how to determine 
the didactic-mathematical knowledge that is required to teach mathematics. In this 
context, the reflections and recommendations of Shulman (1986) and the studies by 
Ball (2000), Ball, Lubienski and Mewborn (2001) and Hill, Ball and Schilling (2008) 
have all helped to further our understanding of the different knowledge components 
that teachers need to acquire in order to teach effectively and foster their pupils’ 
learning. However, a more detailed understanding of the knowledge required in order 
to teach mathematics needs to focus on specific topics, for example, the knowledge 
which a secondary teacher needs in order to teach the derivative (Badillo, Azcárate & 
Font, 2011). This paper reports some of the results obtained following the application 
of a questionnaire which, based on the model proposed by Godino (2009) for assessing 
and developing of the didactic-mathematical knowledge, was designed in order to 
explore key features of prospective secondary teachers’ didactic-mathematical 
knowledge of the derivative.  

METHOD 
The research is an exploratory study and uses a mixed methods approach; it involves 
the observation of both quantitative (level of accuracy of items: correct, partially 
correct, and incorrect answers) and qualitative variables (type of solution or cognitive 
configurations proposed by the prospective teachers). The latter, qualitative variable is 
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closely related to the type of didactic-mathematical knowledge which prospective, 
higher secondary-education teachers have about the derivative. 
Subjects and context 
The questionnaire was administered to a sample of 53 students enrolled in the final 
modules (sixth and eighth semester) of the degree in mathematics teaching offered by 
the Universidad Autónoma de Yucatán (UADY) in Mexico. This is four-year degree (8 
semesters). The Faculty of Mathematics of the UADY is responsible for training 
teachers to work at higher secondary or university level in the state of Yucatan 
(Mexico). The 53 students who responded to the questionnaire had studied differential 
calculus in the first semester of their degree course, and they had subsequently 
completed other modules related to mathematical analysis (integral calculus, vector 
calculus, differential equations, etc.). They had also studied subjects related to the 
teaching of mathematics. 
The questionnaire 
The questionnaire, called the Questionnaire regarding didactic-mathematical 
knowledge about the derivative (DMK-Derivative Questionnaire), comprises seven 
tasks and was designed in accordance with the model proposed by Godino (2009) for 
assessing and developing the didactic-mathematical knowledge. This model provides 
guidelines for categorizing and analysing teachers’ didactic-mathematical knowledge 
in accordance to the onto-semiotic approach to knowledge and mathematics education 
(OSA) (Godino, Batanero & Font, 2007). The purpose of the questionnaire is to assess 
certain epistemic features of the didactic-mathematical knowledge (DMK) of 
prospective secondary teachers on the derivative. According to Ball and colleagues 
model (Ball, Lubienski & Mewborn, 2001; Hill, Ball & Schilling, 2008) this epistemic 
facet comprises three types of knowledge: common content knowledge, specialized 
content knowledge and extended content knowledge.  
When designing the questionnaire, three criteria were considered in order to select the 
tasks that would be included in it. The first criterion was that the tasks should provide 
information about the extent to which a prospective teacher’s personal understanding 
of the derivative was consistent with the global or holistic view of this mathematical 
object (Pino-Fan, Godino & Font, 2011). This was achieved by including items that 
activate different meanings of the derivative: slope of the tangent line, instantaneous 
rate of change and instantaneous rate of variation. In this work we distinguish 
“instantaneous rate of change” that refers specifically to the “quotient” between two 
quantities of magnitudes, meanwhile “instantaneous rate of variation” refers to the 
“quotient” of real numbers with no reference to magnitudes. The “instantaneous rate of 
variation” is commonly known as the limit of the incremental quotient. 
The second criterion was that the items selected had to reflect the different types of 
representations activated in the three sub-processes which, according to Font (2000), 
are involved in calculating the derivative function: 1) translations and conversions 
between the different ways of representing )(xf ; 2) the step from a representation of 
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)(xf to a representation in the form )(' xf ; and 3) translations and conversions between 
the different ways of representing )(' xf . Consequently, the tasks included in the 
questionnaire bring into play the different types of representations that are involved in 
these three sub-processes, namely verbal description, graphical description, symbolic 
and tabulation (for both the function and its derivative). 
The third criterion, which refers to the didactic-mathematical knowledge held by 
prospective teachers, considers the inclusion of three types of task: (1) those that 
require teachers to use their common content knowledge (solving a mathematical 
problem that would be set at the higher secondary level); (2) those that require 
specialized content knowledge (using different representations, different partial 
meanings of a mathematical object, solving the problem by means of various 
procedures, giving a range of valid arguments, identifying the knowledge that is 
brought into play when solving a mathematical problem, etc.); and (3) those that 
require extended content knowledge (generalizing tasks involving common or 
specialized knowledge, or making links to more advanced mathematical objects that 
appear in the curriculum). The next section presents an analysis of the aspects that are 
evaluated by the tasks included in the DMK-Derivative Questionnaire. 

CONTENT ANALYSIS OF THE TASKS INCLUDED IN THE 
DMK-DERIVATIVE QUESTIONNAIRE 
Due to space constraints this section only provides a detailed analysis of the knowledge 
assessed by five of the seven tasks included in the DMK-Derivative Questionnaire. 
However, both the ‘results and discussion’ and ‘final reflections’ sections include 
some discussion of all seven tasks in the questionnaire.   
Task 1 is a classical question that has been used in a number of studies (Habre & 
Abboud, 2006; Bingolbali & Monaghan, 2008) to explore the meanings known by the 
students concerning the derivative. The question is: “What does the derivative mean to 
you?” As this is a ‘global’ question, prospective teachers are expected to provide a 
‘list’ of possible meanings of the derivative. This task therefore explores the 
prospective teachers’ common knowledge regarding the meanings of the derivative.  
Task 2 (Figure 1), which has been the object of several studies (Tsamir, Rasslan & 
Dreyfus, 2006), explores three types of knowledge that comprise the epistemic facet of 
didactic-mathematical knowledge about the derivative: 1) common content knowledge 
(item a), such that the prospective teacher should be able to solve the problem without 
needing to use various representations or arguments; 2) specialized content knowledge 
(items b and c), where in addition to solving the problem the teacher is required to use 
representations (graphs, symbols and verbal descriptions) and valid arguments that 
justify the procedures; and 3) extended content knowledge (item d), which entails 
generalization of the initial task about the derivability of the absolute value function at 
x=0, on the basis of valid justifications for the proposition “the graph of a derivable 
function cannot have peaks” by defining the derivative as the instantaneous rate of 
variation (limit of the increment quotient). The interpretations of the derivative as the 
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slope of the tangent line and the instantaneous rate of variation are associated with this 
task.  

Task 2 
Consider the function xxf =)(  and its graph.  

 
a) For what values of x is )(xf derivable? 
b) If it is possible, calculate )2('f  and draw a graph of your solution. If it is not 

possible, explain why. 
c) If it is possible, calculate )0('f  and draw a graph of your solution. If it is not 

possible, explain why. 
d) Based on the definition of the derivative, justify why the graph of a derivable 

function cannot have ‘peaks’ (corners, angles) 

Figure 1: Task 2 from the DMK-Derivative Questionnaire  
Task 4, which is taken from Viholainen (2008), explores the specialized content 
knowledge of prospective teachers, as it requires the use of various representations 
(graph, verbal description, symbolic) and a range of justifications for the proposition 
“the derivative of a constant function is always equal to zero”, in which different 
interpretations of the derivative may be employed: slope of the tangent line, 
instantaneous rate of change and instantaneous rate of variation. 
Task 5 (Figure 2) appears to be the sort of exercise usually found in differential 
calculus books that are used at the higher secondary level, its solution being obtained 
by applying certain theorems or propositions about the derivative. Therefore, both item 
a) and item b) evaluate aspects of common content knowledge related to the derivative, 
where the latter is understood as the slope of the tangent line or the instantaneous rate 
of change, respectively. However, the main objective of Task 5 is to explore the 
associations that prospective teachers make between the different meanings of the 
derivative, and as such the task evaluates aspects of specialized content knowledge. 

Task 5 

Given the function  32
2

2
3 +−−= xxxy  

a) Find the points on the graph of the function for which the tangent is horizontal. 
b) At what points is the instantaneous rate of change of y with respect to x equal to 

zero?  

Figure 2: Task 5 from the DMK-Derivative Questionnaire 
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Finally, Task 7 (Figure 3), which has been adapted from the paper by Çetin (2009), 
provides information about the teachers’ extended content knowledge, since it 
involves an approximation to the derivative of a function, described by values in the 
table, at point t=0.4 by means of numerical values of the function. Task 7 is not the 
typical sort of problem that would be encountered at the higher secondary level, and it 
requires an understanding of the derivative as the instantaneous rate of change, and 
specifically as instantaneous velocity. This problem can be solved by various methods, 
for example, Lagrange’s interpolating polynomial; this supports the categorization of 
this task as evaluator of the expanded content knowledge. 
 
Task 7 
A ball is thrown into the air from a bridge 11 meters high. )(tf  denotes the distance that the ball is from the 
ground at time t. Some values of )(tf  are shown in the table below: 

 
Based on the table, at what speed will the ball be travelling when it reaches a height at 4.0=t seconds? Justify 
your chosen answer. 

a) 11.5 m/s b) 1.23 m/s c) 14.91 m/s d) 16.3 m/s  e) Another 
 

Figure 3: Task 7 from the DMK-Derivative Questionnaire 

RESULTS AND DISCUSSION 
In analysing the data obtained through administration of the questionnaire, we 
considered two variables: the type of cognitive configuration (i.e. type of solution 
proposed by the prospective teachers) and level of task’s accuracy (i.e. correct, 
partially correct or incorrect). The analytic technique used with the first variable (type 
of cognitive configuration) was semiotic analysis (Godino, 2002), which provides a 
systematic description of both the mathematical activity carried out by the prospective 
teachers in solving the problems, and the mathematical objects (linguistic elements, 
concepts/definitions, propositions/properties, procedures and arguments) that were 
involved in their practice (Godino, Batanero & Font, 2007). The type of 
didactic-mathematical knowledge is closely related to the variable type of cognitive 
configuration associated to students’ answers because the epistemic facet of 
didactic-mathematical knowledge depends on the presence or absence of the 
mathematical objects, their meanings and relations among them. These cognitive 
configurations have a didactic-mathematical nature due to the displayed tasks which 
have the same nature and therefore the prospective teachers should handle the didactic 
and mathematical knowledge. 
Concerning the variable “level of accuracy” punctuations 2, 1 or 0 were assigned if the 
answers were correct, partially correct or incorrect correspondingly. Thus, the 
maximum possible score was 26. Twenty-four of the prospective teachers (45.3%) 
obtained a score higher than 13, but of these 24 only nine (17%) responded correctly to 
more than 67% of the questionnaire. The above information reveals that more than 
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50% of the students showed difficulties for solving questionnaire tasks. The mean 
score (12.4) obtained by the 53 prospective teachers and the distribution of their scores 
are shown in Figure 4. 

 

Figure 4: Boxplot and distribution of scores obtained on the DMK-Derivative 
Questionnaire 
In general, the DMK-Derivative Questionnaire had an intermediate level of difficulty 
for the prospective teachers (Figure 5). The items they found most difficult were 2-d 
(Figure 1) and Task 7 as a whole (Figure 3). Task 1 and items 2-a, 3-a and 4-a were the 
easiest for them to solve. 

 
Figure 5: Difficulty index for the items on the DMK-Derivative Questionnaire 

FINAL REFLECTIONS 
The analysis of the responses given by prospective teachers to the tasks included in the 
DMK-Derivative Questionnaire indicates that they had certain difficulties in solving 
the tasks related to common, specialized and extended knowledge about the derivative. 
The results obtained with respect to Task 4 show that these teachers performed better 
when solving tasks in which the derivative is understood as the slope of the tangent line. 
The results regarding Task 3 highlight the need to improve the advanced knowledge of 
prospective teachers, as this would help them to solve tasks such as this one. Due to the 
relationship between Task 4 and the type of knowledge it evaluates, it is clear that the 
prospective teachers lack certain aspects not only of specialized knowledge (use of 
different representations, use of different meanings of the derivative, solving the 
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problem through various procedures, giving a range of valid arguments to justify these 
procedures, etc.) but also of the common knowledge required to solve the task. Indeed, 
56.6% of the teachers had problems (on Task 4) demonstrating, by means of the formal 
definition of the derivative, the proposition “the derivative of a constant function is 
always zero”. This suggests that they had yet to master the practice of demonstration 
when this involves using the derivative as the limit of mean rates of change. The results 
obtained in relation to Tasks 6 and 7 illustrate the difficulties which the prospective 
teachers experienced when they had to use the derivative as the instantaneous rate of 
change in a relatively complex situation. Here the DMK-Derivative Questionnaire 
revealed how common content knowledge is in itself not enough to deal with the kind 
of tasks that will emerge in the teaching context, for which teachers will also need a 
certain degree of both specialized and extended content knowledge. Indeed, the results 
show that not only did the prospective teachers lack certain aspects of specialized and 
extended knowledge, but also that there was a disconnection between the different 
meanings of the derivative (Tasks 1 and 5).  
Both the design of the questionnaire and the responses of these prospective teachers 
reveal the complex set of mathematical practices, objects and processes that are 
brought into play when solving tasks related to the derivative. Teachers need to 
become aware of this complexity during their training so that they will be able to 
develop and assess the mathematical competence of their future pupils. In this regard, 
the aspects of specialized and extended knowledge that were lacking in these 
prospective teachers could hinder their ability to manage appropriately their future 
pupils’ mathematical knowledge about the derivative. The latter is supported by 
research showing that the mathematical knowledge of teachers has an effect on the 
achievements of their pupils (Ball, 1990; Wilson, Shulman & Richert, 1987). The lack 
of certain knowledge that was revealed in the present study highlights the need for 
specific training strategies to help prospective teachers develop the epistemic facet of 
their mathematical and didactic knowledge. The development of these training 
strategies should take into account the complexity of the global meaning of the 
derivative (Pino-Fan, Godino & Font, 2011).  
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