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Abstract—A protein contact map is a simplified matrix rep-
resentation of the protein structure, where the spatial proximity
of two amino acid residues is reflected. Although the accurate
prediction of protein inter-residue contacts from the amino
acid sequence is an open problem, considerable progress has
been made in recent years. This progress has been driven
by the development of contact predictors that identify the co-
evolutionary events occurring in a protein multiple sequence
alignment (MSA). However, it has been shown that these methods
introduce Gaussian noise in the estimated contact map, making
its reduction necessary. In this paper, we propose the use of two
different Gaussian denoising approximations in order to enhance
the protein contact estimation. These approaches are based on
(i) sparse representations over learned dictionaries, and (ii) deep
residual convolutional neural networks. The results highlight that
the residual learning strategy allows a better reconstruction of
the contact map, thus improving contact predictions.

Index Terms—Protein Contact Map, Evolutionary Coupling,
Image Denoising, Sparse Representations, Dictionary Learning,
Deep Convolutional Neural Networks, Residual Learning

I. INTRODUCTION

Proteins are life essential macromolecules composed of long
chains that contain 20 different types of amino acid residues.
Protein folding is one of the most challenging problems
found in bioinformatics, which still remains unsolved. It refers
to the spatial arrangement of the amino acid sequence in
three-dimensional (3D) space, which is closely related to the
biological function performed by the protein.

Several experimental techniques, such as X-ray crystallog-
raphy, nuclear magnetic resonance spectroscopy and electron
microscopy, are widely employed to determine protein struc-
ture. However, these methods are not cost-efficient compared
to fast deoxyribonucleic acid (DNA) sequencing processes,
which are continuously generating a huge quantity of amino
acid sequences with unsolved structure [1]. This fact has led
to a great development of computational methods that attempt
to predict the protein structure from its amino acid sequence.
These computational methods can be divided into template-
based and template-free modeling. Template-free modeling
methods, also known as de novo or ab initio prediction
methods, are suitable for proteins without structural homologs
[2]. The complexity of this approach is usually reduced by
using a two-dimensional (2D) representation known as protein
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contact map. Two amino acid residues within a protein are said
to form a contact when they share a spatial proximity that is
sufficient for a molecular interaction to occur. Thus, the true
contact map for a protein with L residues consists of an L x L
symmetrical matrix, where each element specifies whether
two inter-residues are in contact under a certain Euclidean
distance threshold. By contrast, the matrix elements within an
estimated contact map indicate the contact probability of two
residues. Recent research has shown that even a low proportion
of correctly-predicted contacts can be enough for accurately
modeling the protein structure [3].

Current state-of-the-art contact predictors can be classified
into two main categories, based on evolutionary coupling
analysis (EC) and supervised machine learning (ML), respec-
tively [4]. In the first group we can find methods such as
PSICOV [5] and CCMpred [6], which aim to identify co-
evolved residues from the protein multiple sequence alignment
(MSA). Co-evolution is related to correlated mutations occur-
ring in proteins. This means that if one of the two residues
in contact has mutated during evolution, its counterpart has
to change as well in order for the 3D structure to remain
stable [7]. On the other hand, supervised machine learning-
based predictors use a set of input features derived from the
MSA to estimate the contact map, including position-specific
scoring matrices (PSSM), secondary structure predictions or
solvent accessibility information [8]. ML-based methods learn
from these features using several algorithms, such as support
vector machines, neural networks and random forests.

Generally, the performance of evolutionary coupling meth-
ods relies on having a sufficient number of effective homol-
ogous sequences to construct the protein MSA. In order to
improve the precision of estimated contacts, methods such
as MetaPSICOV [9] wisely combine the EC-based approach
with machine learning. Additionally, the EC-based methods
were designed to reduce the number of misleading indirect
coupling pairs, i.e. those that show a high degree of correlated
mutation without being close in the 3D space. This is caused
by the transitive relationship between residue pairs, resulting
in a transitive noise within the contact map [4].

Besides this transitive noise, it has been recently shown that
Gaussian noise also exists in contact maps derived from evo-
lutionary couplings. To reduce its effect, the R,C system [10]
included a post-processing noise filter, yielding higher contact
precision. This denoising step was implemented using the non-
local means with optimal weights algorithm specified in [11].



In this work, we aim to improve the estimated protein contact
map by further suppressing the inherent Gaussian noise. To
accomplish that, we have followed two approaches related to
image processing: sparse representations over learned dictio-
naries, and deep residual convolutional neural networks.

First, we consider the K-SVD algorithm [12], widely used
to design overcomplete dictionaries for sparse representations
of signals. This method has proven to be successful for im-
age super-resolution, compression and denoising [13]. Sparse
representations exploit image redundancies, trying to find the
minimum number of dictionary entries needed to properly
reconstruct the image. Although finding the sparsest solution is
an NP-hard problem, approximate solutions can be efficiently
found by using pursuit algorithms.

Then, we explore a deep neural network approach, as there
is a growing interest in deep learning for proteomics (see [14],
[15]). In particular, we analyze a deep convolutional neural
network (DCNN) specially designed for image denoising [16].
Convolutional neural networks have the ability to extract struc-
tural motifs, which makes them suitable for image processing.
Moreover, it is possible to reach a high level of abstraction
with very deep architectures and residual learning.

The rest of the paper is structured as follows. In Section II,
we explain the contact map estimation process. Section III
describes the proposed methods for contact map denoising.
In Section IV, we present the main results obtained from the
experiments. Finally, Section V summarizes the conclusions
derived from this research and its possible extensions.

II. EC-BASED CONTACT MAP ESTIMATION

The overall approach proposed in this work is outlined in
Fig. 1. Our objective is to improve the precision of estimated
contact maps. True contacts are defined in terms of spatial
molecular interaction. The residue spatial proximity is mea-
sured as the Euclidean distance between their beta carbon (Cg)
atoms (C, in Glycine). This results in a distance map, which
is converted to a binary contact map (a symmetrical matrix)
by considering a threshold (in this work we used a distance
less than 8 A). Thus, the extraction of true contacts requires
knowledge of the protein’s 3D experimental structure.

In this work, we have used one of the most popular
EC-based methods, CCMpred [6], to estimate the contact
map. CCMpred implements the approach based on Markov
random field pseudo-likelihood maximization. Its election was
motivated by the high contact precision reached in comparison
to other EC-based methods [4]. In addition, it can be run on a
GPU card. The first step of this method is to build a multiple
sequence alignment (MSA) for each query protein, using the
HHblits software [17] to search for homologous sequences in
the uniprot20_2016_02 database [18]. Then, the MSA is
used as input to CCMpred, which estimates correlated muta-
tions between each pair of residues, generating a symmetrical
contact likelihood matrix as a result. All parameters in both
tools were set to default values, except for the number of
HHblits iterations that was increased to five.
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Fig. 1. Description of the overall protein contact map denoising procedures.

III. PROPOSED METHODS FOR CONTACT MAP DENOISING

The estimated contact map derived from CCMpred can be
viewed as an image X, which is a noisy version of the true
contact map Y corrupted by an additive Gaussian noise Z:

X=Y+2Z. (1)

As indicated in the introduction, in order to address the
contact map denoising problem, we propose the use of two
noise removal techniques: sparse representations over learned
dictionaries and deep residual convolutional neural networks.

A. Dictionary Learning for Sparse Representations

The overall K-SVD method for image denoising [13] can
be seen as a three-stage iterative process: (i) sparse coding,
(i) dictionary updating, and (iii) final averaging.

In the sparse coding stage, a fixed dictionary D with K
entries (also known as atoms) and the noisy image X divided
into N overlapping patches of size v/n X /n are considered.
Thus, the sparse coding vector a; associated to the i-th patch
(¢ = 1,2,...,N) can be computed by solving the following
optimization problem:

&; = argmin ||ay]|, subject to ||x; — Da¢||§ <& ()
[e73

where x; is the ¢-th flattened patch (column vector) of size
n, D is the dictionary of size n x K, € is the error tolerance
that depends on the noisy image SNR, and ||-||, represents
the [P-norm. This problem can be addressed with the greedy
orthogonal matching pursuit (OMP) algorithm [19], which
takes the closest atom of the dictionary at a time to update
the sparse coding vector.

Once the N sparse coding vectors are computed, a new
version of the patches X; = D¢; is obtained to update the
dictionary (the initial dictionary D is usually built from
the overcomplete discrete cosine transform (DCT) or with
randomly taken patches from the image). For each atom k&
in the dictionary, the K-SVD algorithm [12] locates the set of
patches that use this atom (&;(k) # 0), to perform a singular



value decomposition (SVD) operation on the representation
errors e¥, which are calculated as

ef =x;— » dia(l) 3)
I#£k

where d; are the flattened dictionary atoms. These two stages
are repeated a fixed number of iterations, resulting in a learned
dictionary D and sparse coding vectors é&; associated to each
patch. Finally, the reconstructed image X is computed as an
average of the N overlapping denoised patches X; with the
original noisy image X:

. AX+Y,RTD&,
X =
M+, RTR,

where R; is a mask matrix that extracts the i-th patch from
the image (x; = R;X) and ) is an hyper-parameter dependent
on the noisy image SNR.

In our study, we evaluated the K-SVD method to denoise
our contact map images. To do so, we adopted the effi-
cient implementation available in [20], which is based on
approximated K-SVD and batch-OMP. In order to exploit the
symmetry in contact maps, we trained the dictionary only
with overlapping patches from the upper triangular part of the
image. We only considered this reconstructed part to evaluate
the denoised contacts.

“4)

B. DCNN Training with Residual Learning

The DCNN model implements a very deep architecture with
2D convolutional layers. This architecture consists of d layers
that apply 64 convolution filters of size 3 x 3. As our contact
map images are in gray-scale, we have one channel at the input
layer and one filter at the output layer. The output image size
is kept by applying zero-padding before convolutions. At each
layer (except for the output one), rectified linear units (ReLU)
non-linearities are used as activation function. In addition, if
we want that all the pixels within a patch (of size \/n x 1/n)
contribute to each output after the cascade of convolutional
layers (with \/my x | /my filter size), network depth d must be
set to a minimum value given as:

d=(Vi-1)/ (s -1). ®

On the other hand, the residual learning strategy aims to
extract the differences between the network inputs and outputs.
In other words, the DCNN trains a residual mapping of the
input image regarding the noise R(X) =~ Z and then calculates
the reconstructed image as X = X — R(X). Thus, the loss
function [(®) can be formulated as:

| B
1(©®) = 5B Z IR(xi; ©) — (x; — yi) |7 (6)
1=1

where B is the number of noisy/clean training patches in a
batch, and ® are the trainable parameters. This is equivalent to
minimizing the mean squared error between each clean patch
y; and the reconstructed patch X;. Besides residual learning,
an optimization strategy based on mini-batches with Adam

algorithm for gradient-descend and batch-normalization was
adopted as in [16].

Unlike the K-SVD method, this approximation is able to
train the model without knowing the noisy image SNR. We
adopted the TensorFlow GPU implementation of [16] to train a
noise level-independent model with our contact map images.
As the output matrix is not assured to be symmetrical, we
computed the mean value of the two triangular parts (upper
and lower) to evaluate the contacts.

IV. EXPERIMENTAL FRAMEWORK AND RESULTS

In this section, we first describe the protein datasets used in
the experiments. Next, we specify the criteria followed for
contact evaluation. Finally, we present the results obtained
from the experiments carried out and we discuss them.

A. Training and Test Datasets

During the evaluation stage, we considered three test
datasets. The first one comprises 150 Pfam proteins from
PSICOV [5], which have been widely used for contact map
evaluations. The other two sets were obtained from two CASP
(Critical Assessment of Structure Prediction) competitions. In
particular, 116 protein domains from CASP10 (2012) and 103
from CASP11 (2014) were used as in [10]. Moreover, none
of the test sequences contained less than 50 residues or more
than 519 residues.

For DCNN training purposes, a set with 3760 protein
domains [15] was taken. We further modified this set in order
to guarantee its independence from the testing sets. To do so,
we run the CD-HIT [21] tool to exclude those proteins that
shared more than 40% of sequence identity with any protein
in the test set. A total number of 3427 training proteins were
kept, with sequence lengths varying from 28 to 597 residues.
From these, we randomly selected 300 proteins to validate the
DCNN and we used the remaining ones in the training stage.

B. Evaluation Criteria

Contact evaluation was accomplished by comparing the es-
timated contact map with the true contact map extracted from
the protein data bank (PDB) [1]. The widely used evaluation
strategy [4] is based on dividing contacts into three groups.
These groups are dependent on the amino acid sequence
positions, i.e. short-range (residue separation between 6 and
11 positions), medium-range (from 12 to 23) or long-range
(greater than 23). For each group, prediction accuracy is
obtained by computing the precision of the L/k contacts with
the highest probability, where L is the sequence length and
k ={10,5,2,1} controls the ratio of contacts to be evaluated.

C. K-SVD Parameter Setting

In order to evaluate the K-SVD method, we followed a
dictionary learning strategy based on training one dictionary
D for each noisy contact map. Thus, we first divided the
upper triangular part of the zero-padded image in overlapping
patches. As the contact map has size L x L and protein lengths
are variable, the number of training patches also varies in each
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TABLE I
CONTACT PRECISION VALUES FOR SHORT-, MEDIUM- AND LONG-RANGE FOR THE EVALUATED METHODS ON THE TEST DATASETS
Short-range Medium-range Long-range
Test dataset Method  r—75 12 L [0 5 L2 L [0 L3 L2 L
Baseline 56.1 40.2 230 155 | 642 498 290 184 | 78.1 71.0 505 337
150 Pf rei R,C filter 513  36.8 220 152 | 645 494 299 192 | 789 70.1 512 358
am protemns K-SVD OMP | 557 397 241 163 | 672 530 322 208 | 798 730 540 384
DCNN 776 652 409 250 | 805 71.0 483 303 | 89.6 853 721 545
Baseline 41.5 312 194 135 | 53.1 419 263 18.1 537 478 344 231
116 CASPIO protei R, C filter 41.3 306 198 143 | 540 425 27.8 19.1 571  51.1 373 264
Profems | g .SVD OMP | 43.1 322 206 147 | 556 438 298 204 | 563 497 382 271
DCNN 584 485 319 207 | 658 58.1 43.0 298 | 67.3 632 506 37.6
Baseline 329 239 153 113 | 38,0 285 17.8 125 | 474 402 289 20.1
103 CASPI1 rei R,C filter 314 228 146 11.5 | 397 296 192 138 | 50.0 425 30.7 223
Prolems | g SVD OMP | 32.8 234 154 121 | 404 317 206 143 | 485 424 314 227
DCNN 481 388 261 176 | 53.7 46.6 319 212 | 565 532 43.0 32.6
case. To initialize each dictionary, we used the overcomplete | — —~—~ —
DCT with K atoms. Then, we executed 10 iterations of the K- 8O [ i
SVD algorithm, using OMP for sparse coding with maximum 70l imememmmmTmmmesmeTossmomommooe .
error € = 1.151/no, where the noise standard deviation o was S 0 |
estimated following the fast approach cited in [10]. Finally, §
the upper triangular matrix was reconstructed using (4), with 8 0 i
A = 0.5/0. We chose low values for A in order to give S a0k Ny
less importance to the original noisy contact map than to the 30 : --L2
denoised one. ‘ ‘ ‘ b
For K-SVD parameter selection purposes, we conducted 0 10 20 30 40 50

initial experiments on the 150 Pfam proteins, testing two patch
sizes (b x 5 and 7 x 7) and two different number of atoms K
(625 and 900). The results were compared with the baseline,
i.e. contact precision values from CCMpred estimations. All
combinations of patch/dictionary sizes yielded similar contact
results. However, slightly better results were achieved when
considering 5 x 5 patches and K = 900 atoms, so we have
selected this configuration for a complete evaluation on the
rest of datasets.

D. DCNN Parameter Setting

The denoising task with DCNN was carried out by adopt-
ing the architecture described in Section III-B. In order to
apply residual learning, we extracted the true and estimated
contact maps from the 3127 training proteins mentioned in
Section IV-A. All training contact maps were divided into
patches of size 35 x 35 (with a stride of 10 pixels), which
provided us with more than a million noisy/clean samples to
train the DCNN. Unlike the previous method, we extracted
patches from the entire image and not only from the upper
triangle (the denoising procedure was also applied on the entire
image). According to (5), the depth of the network was set to
d = 17. Training contact maps that are smaller than the patch
size (35 x 35) were filled with zeros at the input and multiplied
by a binary mask before computing the loss function in (6).

Thereafter, we trained the DCNN for 50 epochs in a mini-
batch mode. At each epoch, we randomly scrambled all
patches and iteratively fed the network with subsets (batches)
of 256 noisy/clean samples. When an epoch was finished,
we used the current model to denoise and evaluate the 300

Training epoch

Fig. 2. Long-range contact prediction performance on 300 validation protein
domains along DCNN training epochs.

validation contact maps. Fig. 2 shows the precision curves for
long-range contact predictions on the validation set. As can
be observed, the evaluation values in epoch O (before the first
gradient-descend step) are similar to those from the baseline
(CCMpred), which can be explained by the residual learning
strategy. Although the precision curves show a considerable
performance increase in the very first epochs, saturation ap-
pears rapidly. In this study, we followed an early stopping
strategy to prevent DCNN overfitting. Thus, we selected the
model at epoch 31 to denoise the three test datasets, as it yields
the best evaluation results on the validation dataset.

E. Comparison of Methods

Finally, we present the contact precision results for the three
test datasets (i.e. 150 Pfam proteins, 116 CASPI10 protein
domains and 103 CASPI11 protein domains), achieved by
the baseline (CCMpred) and the proposed post-processing
denoising methods K-SVD and DCNN. These results have
been also compared to the R,C noise filter [10]. In this
case, we used the implementation in [11], setting the main
parameters to 9 x 9 for neighboring size and 13 x 13 for patch
size, as in [10].

Table I summarizes all the prediction results for short-,
medium- and long-range contacts. For all contact ranges in
each test dataset, we marked in red those results that are worse
than the baseline and, in boldface, the best results. As we can
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Fig. 3. Contact maps obtained for protein domain T0682-D1 in the CASP10
dataset. a) True from PDB. b) Estimated from CCMpred. c¢) Denoised using
R,C. d) Denoised using K-SVD OMP. e) Denoised using DCNN.

see, both the R, C filter and the K-SVD method do not perform
very well in some cases (specially for short-range contacts).
The proposed K-SVD method performs slightly better than the
R,C filter, whereas the highest overall prediction enhancement
is achieved with the residual DCNN approach.

This is due to the fact that, both the R,C filter and the K-
SVD method only consider the estimated contact map itself,
while the residual DCNN has access to true contact maps
during the training phase. Therefore, the first two approaches
have the ability to reduce Gaussian noise but at the cost
of losing some contacts due to a smoothing effect. On the
contrary, the residual DCNN shows noise reduction potential
along with the ability to recover some missing contacts not
present in CCMpred estimations. Moreover, one of the main
DCNN advantages is that we can train a blind model without
knowing the noise standard deviation, so we can avoid using
poor estimations of it as in the R,C filter or the K-SVD
method. As an example, Fig. 3 shows the resulting contact
maps for protein domain T0682-D1 (included in the CASP10
dataset), produced by the three denoising methods in compari-
son to the true and baseline contact maps. Once again, we can
see that the DCNN provides the best denoised contact map.

V. CONCLUSIONS

In this paper, we have evaluated two alternative Gaussian
denoising methods for the protein contact map prediction
problem. The first one is based on sparse representations
over learned dictionaries for image denoising, using K-SVD
with the OMP algorithm. In the second one, we train a deep
convolutional neural network (DCNN) with residual learning
for image noise removal. The experimental results show that
better contact precision values can be obtained by these noise
reduction techniques. We particularly found that the residual
DCNN strategy performs the best in the denoising task,
allowing the acquisition of more true contacts. Future work
will explore other residual DCNN architectures that can exploit
the sparse nature of contact maps, along with the study of how
the improved contacts enhance the prediction of the 3D protein
structure.
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