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Abstract. We present a new proof of the following result: consider a complete, simply
connected, three-dimensional manifold, whose sectional curvatures are bounded from above
by some constant c � 0. Then its isoperimetric profile is bounded from below by the one of
Euclidean space if c = 0, or by the one of hyperbolic space of constant curvature c if c < 0.

1. Introduction

The following conjecture appeared in Aubin [2], and in Burago-Zalgaller [3] and Gromov-
Lafontaine-Pansu [8]. It can also be stated in terms of Sobolev inequalities in Riemannian
manifolds [9].
Conjecture 1.1. Let Mn be a complete, simply connected, n-dimensional manifold, whose
sectional curvatures satisfy inequality Ksec � c � 0, for some constant c � 0. Then the
isoperimetric profile IM of Mn is bounded from below by the isoperimetric profile Ic of the
complete and simply connected space Mn

c whose sectional curvatures are equal to c. This
implies:

(*) area(∂Ω) � Ic(vol Ω),

for any domain Ω ⊂ M with smooth boundary. Moreover, if equality holds in (*), then Ω is
isometric to the geodesic ball of volume vol(Ω) in Mn

c .
We recall that a Cartan-Hadamard manifold is a complete, simply connected Riemannian

manifold whose sectional curvatures are nonpositive. Such a manifold is diffeomorphic, via
the exponential map at any point, to the Euclidean space of the same dimension. The
isoperimetric profile IM of a manifold M is the function IM : (0, volM)→ R

+ given by

IM(V ) = inf{area ∂Ω;Ω ⊂⊂ M has smooth boundary and vol Ω = V }.
A set Ω that satisfies area ∂Ω = IM(vol Ω) is called an isoperimetric domain. Isoperimetric
domains need no exist in Riemannian manifolds, as shown in [16, Thm. 2.16]
The above conjecture has been referred to in the literature as the Cartan-Hadamard con-

jecture [9, 8.2], or as Aubin conjecture [15, 17.3].
This conjecture was already proved in the two-dimensional case by A. Weil [20]. In fact it

follows from the classical isoperimetric inequality for discs in surfaces with Gauss curvature
bounded from above. If K � K0 then:

L2 � 4πA −K0A
2,

where A denotes the area of a set, and L its perimeter. If the surface is a plane then a classical
argument (filling the holes of a region) shows that this inequality is also valid for any domain
of arbitrary topological type.
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Conjecture 1.1 has been proved by C. Croke [5] when n = 4 and c = 0. Croke obtained
generic inequalities of the form area ∂Ω � βn I0(vol Ω), where βn � 1 and equality hold only
for n = 4.
Two more reasons to believe that the above conjecture should hold are: (i) inequality (*)

is true for geodesic balls in Cartan-Hadamard manifolds by classical comparison theorems,
and (ii) inequality:

area(∂Ω) � εnIc(vol Ω),
holds, where εn < 1 are constants depending only on the dimension n of the manifold, see
Croke [4], Hoffman-Spruck [10] (see also Michael-Simon [12]), and Burago-Zalgaller [3].
Conjecture 1.1 has been proved by B. Kleiner [11] for any c � 0 in dimension 3. In his

proof there is a common scheme to any dimension. He only uses dimension three to prove the
following Proposition, applying Gauss-Bonnet formula over the two-dimensional boundary of
an isoperimetric domain
Proposition 1.2. Let M3 be a complete, simply connected, 3-dimensional manifold, with
sectional curvatures bounded from above by a constant c � 0. Let Ω be a compact set with
C1,1 boundary Σ. Then

max
Σ

HΣ � Hc(area Σ),

where Hc is the mean curvature in the model space M3
c of the geodesic ball of area equal to

areaΣ.
Along these notes we shall use the terms area and volume to refer to (n − 1) and n-

dimensional Hausdorff measures, respectively.

2. Proof of Conjecture 1.1 using Proposition 1.2

Let us see that Conjecture 1.1 is true in any dimension if the analogous of Proposition 1.2
is valid. As we said before, isoperimetric domains may not exist in a noncompact manifold.
To solve this problem we shall work in geodesic balls in M .
The following result summarizes what we can say about isoperimetric domains in a manifold

with boundary (in a geodesic ball in our case)
Theorem 2.1 (Existence and regularity of isoperimetric domains in manifolds with bound-
ary). Let Bn be a compact manifold with smooth boundary ∂Bn. Let V ∈ (0, volBn). Then
there is a domain Ω ⊂ Bn with boundary Σ = ∂Ω such that

(i) vol Ω = V , area Σ = IB(V ).
(ii) Σ = ∂Ω is C1,1 in a neighborhood of ∂B.
(iii) There is a singular set Σsing ⊂ Σ ∩ intB of Hausdorff dimension less than or equal

to n − 8 such that (Σ ∩ intB) − Σsing is a smooth hypersurface with constant mean
curvature H.

(iv) The mean curvature h of Σ is defined almost everywhere (except in a set of Hn−1-
measure zero), and we have h � H.

Moreover, if Ωn is a sequence of isoperimetric domains in B such that vol(Ωi) → V , then
area ∂Ωi → IB(V ).
Existence of isoperimetric domains follows from classical theorems of Geometric Measure

Theory for finite perimeter sets. Regularity of Σ−Σsing in the interior of B is obtained from
Gonzalez, Massari, Tamanini [7]. For C1,1 regularity near ∂B one must consult White [21],
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and Stredulinski-Ziemer [19]. The last line in the statement implies the continuity of the
isoperimetric profile, which also follows from Gallot [6].
The proof of (iv) is obtained by taking p in the regular part of Σ and q in the intersection

Σ ∩ ∂B. Consider functions u, v, defined in neighborhoods of p, q, respectively, so that∫
Σ udΣ =

∫
Σ v dΣ. Then we get a variation that fixes the volume of Ω, and pushes Σ towards

Ω near q so that the derivative of area is given by∫
Σ
nH udΣ−

∫
Σ
nhv dΣ � 0,

and so

nH �

∫
Σ
nhv dΣ∫
Σ
v dΣ

,

from which the claim follows.

2.1. We now prove Conjecture 1.1. Choose a geodesic ball B that contains the domain
Ω ⊂ M . We recall that the isoperimetric profile IB is continuous by Theorem 2.1.
Let Ωv be an isoperimetric domain in B of volume v = vol Ω, and let Hv be the (constant)

mean curvature of the regular part of Σv = ∂Ωv in the interior of B.
If Proposition 1.2 is true for any dimension, then Hv � Hc(area Σv), and equality holds for

a geodesic ball of area equal to areaΣv in a space of constant curvature c.
Choose a deformation ΩV with support in the regular part of Σv in the interior of B

parameterized with respect to volume, (it is enough to consider a normal deformation uN ,
where u � 0). Then we have, for ∆V < 0

IB(v +∆V )− IB(v)
∆V

� area ∂Ωv+∆V − areaΣv

∆V
� (nHv + ε(∆V ))

� (nHc(IB(v)) + ε(∆V )) > 0,

what implies that IB is strictly monotone and, so, smooth almost everywhere. Moreover, if
IB is smooth in v, then

(**) I ′B(v) � nHc(area Σv).

Now we are ready to finish the proof, since translating the profile M3
c to left and right we

obtain a foliation of the upper halfplane in R
2, and inequality (**) follows since the function

IB meets this foliation transversally, so that the profile lies aboveM3
c , since IB(0) = Ic(0) = 0.

If equality holds in IB(v) � Ic(v) then we have equality of the profiles for any V ∈ (0, v),
so that IB is smooth, equality holds in (**) for any value V ∈ (0, v) and, so, Ω is isometric
to a ball of volume v in space M3

c by Proposition 1.2.

3. Kleiner’s proof of Proposition 1.2

Proposition 1.2 is trivial if Σ ⊂ M3 is a sphere, since

4π =
∫
Σ
K dA =

∫
Σ
(Ksec + κ1κ2) dA �

∫
Σ
(c+ κ1κ2) dA � (c+H2) area Σ,
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and equality holds if and only if Ksec ≡ c over Σ and the surface is totally umbilical. In
case Σ is a geodesic sphere in a space of constant curvature c, equality holds in the above
inequality. This shows that

H � Hc(area Σ).

If equality holds in the above inequality, then Σ is a totally umbilical sphere so that the
sectional curvature of the tangent plane equals c and Σ has the same second fundamental
form as of the sphere of area area Σ inM3

c . It follows from Theorem 7 in [18] that the domain
enclosed by Σ is a geodesic ball in M c

3 .
Let us assume now that Σ is any C1,1 surface which encloses a domain Ω. Consider the

closed convex hull D0 of Ω. The set D0 is convex, and compact since it is contained in a
(convex) ball of M3. Of course nothing is known about the regularity of ∂D0, so that by
using ideas of Almgren [1], we consider the domains

Ds = {x ∈ M3/ d(x,D0) � s}.

Σ = δΩ

D0

Ω

p

r(p)

C  = δDss
C  = δD00

We know that
• Ds is convex,
• r :M3 − intD0 → Σ is well defined and it is distance nonincreasing.
• Cs = ∂Ds is homeomorphic to S

2.
Let us call rs = r

∣∣
Cs
. As Cs is a C1,1 surface, by Rademacher’s Theorem (a Lipschitz

function is smooth almost everywhere) its Gauss curvature and its Gauss-Kronecker curvature
GK (product of principal curvatures) exist and the total curvature of Cs equals 4π. Then we
have

4π =
∫

Cs

K =
∫

Cs

(Ksec +GKCs) �
∫

Cs

(c+GKCs)

=
∫

r−1
s (Σ)

(c+GKCs) +
∫

Cs−r−1
s (Σ)

(c+GKCs)

�
∫

r−1
s (Σ)

(c+H2
s ) + c area(Cs − r−1

s (Σ)) +
∫

Cs−r−1
s (Σ)

GKCs

�
∫

r−1
s (Σ)

(c+H2
s ) +

∫
Cs−r−1

s (Σ)
GKCs .
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In the first inequality we have bounded Ksec by c, and in the second one GKCs by the
mean curvature of Cs. Equality holds in the above inequality if and only if Ksec = c along
Cs and r−1

s (Σ) is totally umbilical.
We treat now the integrals that appears in the last line.
Let us see that

(#) lim
s→0

∫
r−1
s (Σ)

(c+H2
s ) � (c+H2

0 ) area(Σ ∩ C0).

We only have to take into account that if Cs is C2 in p (this happens for almost every p ∈ Cs)
and p ∈ Cs and rs(p) ∈ C0 ∩ Σ, then we have

2Hs(p) � 2H0 − s (Ric−),

where Ric− is the infimum of the Ricci curvatures in the unit sphere at every point of Cs.
Passing to the limit when s → 0 we have (#). The way of getting the above inequality is to
apply the formula

d(2Ht)(p)
dt

= −(Ric(N,N) + |σ|2) � −Ric(N,N),

and integrate with respect to t between 0 y s. If equality holds in (#), then areaC0 ∩ Σ =
areaΣ, so that volD0 = vol Ω, from where we conclude D0 = Ω. It follows that Σ is convex.
Let us see now

lim
s→0

area(r−1
s (Σ)) = area(C0 ∩ Σ).

We use area formula for Lipschitz maps and we get∫
r−1
s (Σ)

Jac(rs) dCs = area(C0 ∩Σ),

so that

area(r−1
s (Σ)) =

∫
r−1
s (Σ)

Jac(rs) dCs +
∫

r−1
s (Σ)

(1− Jac(rs)) dCs

= area(C0 ∩ Σ) +
∫

r−1
s (Σ)

(1− Jac(rs)) dCs → area(C0 ∩ Σ),

since Jac(rs) converges uniformly to 1.
We finally see

lim
s→0

∫
Cs−r−1

s (Σ)
GKCs = 0.

Note first that if p ∈ C0 −Σ is a smooth point, then GKC0(p) = 0: otherwise we could push
D0 near p towards the interior of D0 to contradict the convex hull property of D0.
Fix now s0 > 0 and write∫

Cs−r−1
s (Σ)

GKCs dCs =
∫

Cs0−r−1
s0

(Σ)
(GKCs ◦ rs0s) Jac(rs0s) dCs0 ,

where rs0s = r−1
s ◦ rs0. The right integral is uniformly bounded because the second funda-

mental form of Cs in q = rs0s(p) applied to a vector e ∈ TqCs of modulus 1 equals to

〈As(e), e〉 =
〈J ′, J〉
|J |2 ,
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where J is a Jacobi field along the geodesic γ(s) = rs0s(p) that has modulus 1 over Cs0 ,
orthogonal to Cs0 , and such that J/|J | = e. J is induced by a family of orthogonal geodesics
leaving from Cs0 . The quantity 〈As(e), e〉 is bounded by the classical comparison theorems
for geodesics starting from a submanifold (with sectional curvature bounded from below). We
remark that the second fundamental form of Cs is uniformly bounded from above, since every
point in Cs is supported by a ball of radius s.
By the above discussion, GKCs ◦rs0s converges to 0 for almost every point of Cs0 −r−1

s0
(Σ),

so that the integral of GKCs converges to 0 in Cs0 − r−1
s0
(Σ).

Then we conclude

4π � (c+H2
0 ) area Σ,

what implies

H0 � Hc(area Σ).

If equality holds in the above inequality then, an analysis of the possibilities, yields

• Σ has constant mean curvature equal to the one of the geodesic ball of the same area
in M3

c .
• The sectional curvature of the tangent plane to Σ equals c.
• Σ is totally umbilical.

Then a result by Schroeder-Ziller [18] implies that Σ is a geodesic ball in M3
c .

4. A new proof of Proposition 1.2

4.1. The Euclidean case. Consider first the case the case K � 0. Let Σ be an embedded
C1,1 compact surface. This surface has principal curvatures defined almost everywhere. Let
p ∈ Σ and let d(q) measure the distance to p. We consider the conformal metric

gε = ρ2ε g = e2uε g,

where

ρε =
2ε

1 + ε2d2
, uε = log

(
2ε

1 + ε2d2

)
.

In caseM is the Euclidean space this metric is the obtained by applying a conformal transfor-
mation to the metric of the sphere and projecting this metric orthogonally to the Euclidean
space by means of the stereographic projection.
Let us see now that ∫

Σ
H2 dA � 4π,

where equality holds if and only if Ω is flat (vanishing sectional curvatures).
By taking into account the well known relation between conformal metrics we get

(##) e2uεKε � K + e2uε ,

where Kε and K are the sectional curvatures of a given plane of M for the metrics gε and g,
respectively. From now on we shall assume that they are the ones of the tangent plane to Σ.
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So ∫
Σ
H2 dA =

∫
Σ
(H2 +K) dA −

∫
Σ
K dA

=
∫
Σ
((H2

ε ) +Kε) dAε −
∫
Σ
K dA

�
∫
Σ
H2

ε dAε +
∫
Σ
dAε

�
∫
Σ
dAε,

where in the first equality we have used the conformal invariance of
∫
(H2 +Ksec) dA, and in

the first inequality we have used inequality (##). The limit of the last integral can be com-
puted by passing to polar (ambient) coordinates, or taking into account that it corresponds
geometrically to blowing up the surface Σ at the point p with a spherical metric. So that

lim
ε→∞

∫
Σ
dAε = 4π.

From the two last inequalities we obtain the desired estimate.
To analyze what happens when equality holds we need a more accurate estimate of the

expression of the curvatures in the conformal metrics. So we write

e2uεKε = K −
(

ε2

1 + ε2d2

)2

4d2 +
(

ε2

1 + ε2d2

)
(∇2d2(X,X) +∇2d2(Y, Y )),

where X, Y is an orthonormal basis of the tangent plane to Σ. From this formula we get

4π =
∫
Σ
H2 dA =

∫
Σ
(H2 +K) dA −

∫
Σ
K dA

=
∫
Σ
((H2

ε ) +Kε) dAε −
∫
Σ
K dA

=
∫
Σ
dAε +

∫
Σ

(
ε2

1 + ε2d2

) (
∇2d2(X,X) +∇2d2(Y, Y )− 4

)
dA +

∫
Σ
H2

ε dAε.

We already know that the first integral converges to 4π when ε → ∞. So the limit of the
remaining integrals is 0. Since ∇2d2(X,X) � 2 for any |X| = 1 we obtain that both integrals
are positive and, in particular,

∇2d2(X,X) = ∇2d2(Y, Y ) = 2.

Standard comparison theorems in Riemannian Geometry show that, if the geodesic starting
from p leaves the enclosed domain Ω in a nontangential way, then ∇2d2 = 2 g at the hitting
point. Standard comparison shows that ∇d2 ≡ 2 g along the geodesic. Moving slightly the
geodesic we get a cone so that ∇d2 ≡ 2 g inside this cone. Since every point in the interior
of Ω can be connected with Σ by a minimizing geodesic hitting Σ orthogonally we conclude
that every point inside Σ is flat and so Ω is flat.
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4.2. Let us see now what happens if

maxH2 area(Σ) = 4π.

In this case, in addition to Ω flat we get that the mean curvature of the boundary is constant.
For any domain of this type, Ros [17] and Montiel-Ros [14] have proved that

3 vol Ω � 1
H
areaΣ,

and equality holds if and only if Ω is isometric to a geodesic ball in Euclidean space. But the
classical Minkowski formula

3 vol Ω =
1
H
areaΣ,

holds in Ω since the function (1/2) d2 has Hessian on Ω proportional to 2 times the identity
matrix. From this we conclude our proof of Proposition 1.2 in the flat case.

4.3. The hyperbolic case K � −1. In the hyperbolic case one has to consider the following
family of conformal metrics

gε =
(

2ε
(1− ε2) + (1 + ε2) cosh(d)

)
g, ε > 1.

This family of metrics is obtained by writing the spherical metric in a disc D of R
n via

stereographical projection in terms of the hyperbolic metric of constant curvature −1 in D.
So we obtain

e2uεKε � K + e2uε + 1.
and ∫

Σ
(−1 +H2) dA �

∫
Σ
dAε.

As in the previous case one proves that

lim
ε→∞

∫
Σ
dA → 4π,

which yields the desired estimate.
To analyze equality it is more convenient to write

e2uεKε = K + 1 + e2uε +

(
1 + ε2

(1− ε2) + (1 + ε2) cosh(d)

)
×

×
(
∇2 cosh(d)(X,X) +∇2 cosh(d)(Y, Y )− 2 cosh(d)

)
.

We recall that by classical comparison theorems, when Ksec � −1 we get ∇2 cosh(d) �
cosh(d) 〈, 〉, so that the factor in the previous displayed line is nonnegative. Hence

4π =
∫
Σ
(−1 +H2) dA =

∫
Σ
dAε +

∫
Σ
H2

ε dAε

+
∫
Σ

(
1 + ε2

(1− ε2) + (1 + ε2) cosh(d)

)
×

×
(
∇2 cosh(d)(X,X) +∇2 cosh(d)(Y, Y )− 2 cosh(d)

)
dA,
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Letting ε → ∞ and taking into account that limε→∞
∫
Σ dAε = 4π we deduce that the remain-

ing positive integrals tend to 0 when ε → ∞. In particular
∇2 cosh(d)(X,X) = ∇2 cosh(d)(Y, Y ) = cosh(d).

By standard comparison theorems, and arguing as in the Euclidean case, we conclude that
the metric in Ω is hyperbolic.

4.4. If
max
Σ
(−1 +H2) area Σ = 4π,

then H is constant. Moreover, from [13, Theorem 9] we conclude, by taking inner parallels∫
Σ

(
cosh(d) +H sinh(d) 〈∂/∂d,N〉

)
dA � 0,

and equality holds only when Σ is a geodesic sphere. But since the metric in Ω is hyperbolic
we have ∇2 cosh(d) = 2 〈, 〉, so that∫

Σ

(
cosh(d) +H sinh(d) 〈∂/∂d,N〉

)
dA = 0,

and Proposition 1.2 also follows in the hyperbolic case.
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