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Abstract. We prove that the area of a hypersurface Σ which traps a given
volume outside a convex domain C in Euclidean space Rn is bigger than or
equal to the area of a hemisphere which traps the same volume on one side
of a hyperplane. Further, when C has smooth boundary ∂C, we show that
equality holds if and only if Σ is a hemisphere which meets ∂C orthogonally.

1. Introduction

Let Hn := {(x1, ..., xn) ∈ Rn : xn > 0} be the closed upper half of Eu-
clidean space Rn. Given D ⊂ Hn, reflection across the boundary ∂Hn and the
classical isoperimetric inequality in Rn imply that(

area (∂D ∼ ∂Hn)
)n

>
1

2
nnωn (vol D)n−1,

with equality if and only if D is a half ball and ∂D ∼ ∂Hn is a hemisphere.
Here area and vol (volume) denote, respectively, the (n−1) and n dimensional
Hausdorff measures, ωn is the volume of the unit ball in Rn, and ∼ is the set
exclusion operator. In this paper we prove that the above inequality holds
outside any convex set C ⊂ Rn with interior points, i.e.,

(1.1)
(
area (∂D ∼ ∂C)

)n
>

1

2
nnωn(vol D)n−1,

for any D ⊂ Rn ∼ C. Further we show that when ∂C is smooth (C∞), equality
holds if and only if D is a half ball and ∂D ∼ ∂C is a hemisphere.

We call (1.1) the relative isoperimetric inequality of D with supporting set
C. The proof of this inequality for n = 2 is easy once one reflects the con-
vex hull of D about its linear boundary. For n > 3 some partial results were
known: I. Kim [11] proved (1.1) for C = U×R, where U is the epigraph of a C2
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convex function, and J. Choe [2] proved (1.1) when ∂D ∩ ∂C is a graph which
is symmetric about (n − 1) hyperplanes of Rn. More recently, J. Choe and
M. Ritoré [4] have shown that (1.1) holds outside convex sets in 3-dimensional
Cartan-Hadamard manifolds, with equality if and only if D is a flat half ball
and Σ := ∂D ∼ ∂C is a hemisphere. The main ingredients of the proof in [4]
are the estimate (supΣ H2) area Σ > 2π, and the analysis of the equality case,
where H is the mean curvature of Σ; however, the methods used in [4], which
were inspired by the work of P. Li and S.-T. Yau [12], are valid only when
n = 3.

We obtain inequality (1.1), and the characterization of its equality case pre-
sented below, from the estimate(

sup
Σ

Hn−1
)

area Σ >
cn−1

2
,

where cn−1 is the area of the unit sphere Sn−1 ⊂ Rn. This inequality follows
from the arithmetic-geometric mean inequality between H (the average of the
principal curvatures) and the Gauss-Kronecker curvature GK (the product
of principal curvatures) of Σ, once we show that the total Gauss-Kronecker
curvature of the set of regular points of ∂D ∼ ∂C with positive principal cur-
vatures is larger than or equal to cn−1/2. We proved the latter inequality in
[3] assuming slightly more regularity than is warranted in the present case;
however, as we verify below, that proof essentially works here as well.

2. Preliminaries: Existence and Regularity

Throughout this paper C ⊂ Rn denotes a proper convex set, which we define
as a closed convex set with interior points and nonempty boundary ∂C. Fur-
ther, unless noted otherwise we assume that ∂C is C∞, which is what we mean
when we say that C has smooth boundary. For any A ⊂ Rn, let AC := A ∼ C.
The relative isoperimetric profile of Rn

C is the function IC : R+ → R+ given by

IC(v) := inf
D

{
area(∂D)C : D b Rn, vol D = v

}
,

where D b Rn means that D is relatively compact in Rn. Note that

IHn(v) = n
(ωn

2

) 1
n

v
n−1

n .

So the relative isoperimetric inequality (1.1) is equivalent to

(2.1) IC(vol D) > IHn(vol D).

An isoperimetric region D ⊂ Rn
C is one for which the equality area(∂D)C =

IC(vol D) holds. An isoperimetric region need not exist for a given volume.
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Denote by C1
0(R

n
C ,Rn) the set of C1 vector fields with compact support in

Rn
C . For any D ⊂ Rn, the perimeter of D relative to C is defined as

PC(D) := sup

{ ∫
D

div X : X ∈ C1
0(R

n
C ,Rn), |X| 6 1

}
,

where |X| is the supremum norm. Stokes theorem implies that the perimeter
of a set and the area of its boundary coincide for sets whose boundary is a C1

hypersurface (see Giusti’s book [6] for background on finite perimeter sets). In
order to prove (1.1), we need to minimize PC subject to a volume constraint,
i.e., given v ∈ (0, vol E), we wish to find Ω0 ⊂ E, with vol Ω0 = v, such that

PC(Ω0) 6 PC(Ω),

for any Ω ⊂ E with vol Ω = v. The existence of Ω0 is guaranteed by the
boundedness of E, see [6], and the regularity properties of Ω0 which we need
may be summarized as follows

Lemma 2.1. Let E be the closure of a bounded domain with smooth bound-
ary in Rn

C. Then, for any v ∈ (0, vol E), there is a set Ω0 ⊂ E of volume v
minimizing PC. Moreover

(i) ([7]) ∂Ω0 has constant mean curvature and is smooth in the interior of
E except for a singular set of Hausdorff dimension less than or equal
to (n− 8).

(ii) ([9, p. 263]) (∂Ω0)C meets ∂C orthogonally except for a singular set of

Hausdorff dimension less than or equal to (n − 8). In fact (∂Ω0)C is

smooth at every point of (∂Ω0)C ∩ ∂C away from this singular set.
(iii) ([15, Thm. 3.6]) If (∂E)C is strictly convex then (∂Ω0)C meets (∂E)C

tangentially and it is C1,1 in a neighborhood of (∂E)C.
(iv) At every point x0 ∈ (∂Ω0)C there is a tangent cone obtained by blowing

up the set Ω0 about x0. If this tangent cone is contained in a half space
of Rn, then it is the half space and (∂Ω0)C is regular at x0 [6]. At

points in (∂Ω0)C ∩ ∂C ∼ (∂E)C we have the same result, as described
in [9].

The C1,1 regularity of (∂Ω0)C near (∂E)C will be enough for our purposes
here since, by Rademacher’s Theorem, a C1,1 hypersurface has principal curva-
tures defined almost everywhere, and thus we will be able to apply the integral
curvature estimates obtained in the next two sections.

3. The Estimate for Total Positive Curvature

First we recall the general definition for total positive curvature τ+ studied
in [3]. Let Σ = (Σ ∼ Σ0) ∪ Σ0 be the compact union of a C1,1 hypersurface
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Σ ∼ Σ0 with boundary and a singular set Σ0 of Hausdorff dimension less than
or equal to (n− 8) so that Σ0 ⊂ Σ ∼ Σ0. The points in Σ ∼ Σ0 will be called
regular points of Σ. A hyperplane Π ⊂ Rn is called a restricted support hyper-
plane of Σ at a point p, if p ∈ Π∩Σ, Σ lies on one side of Π, and Π is tangent
to Σ when p ∈ ∂Σ ∼ Σ0. An outward normal of Π is a normal vector to Π
which points towards a side of Π not containing Σ. If Π is a restricted support
hyperplane for an open neighborhood Up of p in Σ, then Π is called a restricted
local support hyperplane; furthermore, p is a locally strictly convex point of Σ,
or p ∈ Σ+, provided that Π ∩ Up = {p}. Let N(Σ+) ⊂ Sn−1 be the set of
outward unit normals to restricted local support hyperplanes of Σ at points
of Σ+. Then the total positive curvature τ+ of Σ is defined as the algebraic
area (i.e. area counted with multiplicity) of N(Σ+), where by area we mean
the (n − 1)-dimensional Hausdorff measure Hn−1. More formally, if for each
u ∈ N(Σ+), we let Σ+

u ⊂ Σ+ be the set of points where Σ has a restricted local
support hyperplane with outward normal u, then

τ+(Σ) :=

∫
u∈N(Σ+)

Hn−1
(
Σ+

u

)
where integration is with respect to the volume element or the (n−1)-dimensional
Hausdorff measure on Sn−1.

As we are assuming that Σ ∼ Σ0 is a C1,1 hypersurface, the principal curva-
tures are defined for almost every point of Σ ∼ Σ0 and so the Gauss-Kronecker
curvature GK, the product of all principal curvatures, may be integrated on
Σ ∼ Σ0. Moreover, in case there are no restricted local support hyperplanes
of Σ at points of Σ0, the area formula [5, Thm 3.2.3] yields that

τ+(Σ) =

∫
Σ+∼Σ0

GK.

As remarked in the introduction, the main ingredient in the proof of the
relative isoperimetric inequality is the following estimate. We state below the
version for convex sets with smooth boundary we shall need. The proof of this
result is a slight modification of the similar result proved in the appendix of
[3].

Lemma 3.1. Let Σ = (Σ ∼ Σ0) ∪ Σ0 ⊂ Rn be the union of a C1,1 embedded
hypersurface Σ ∼ Σ0 and a singular set Σ0 such that ∂Σ ∼ Σ0 is a C2 subman-
ifold that lies on the boundary of a convex set C ⊂ Rn with C2 boundary ∂C.
Suppose that there are no restricted local support hyperplanes of Σ at points of
Σ0, and that, at each point p ∈ ∂Σ ∼ Σ0, the inward conormal σ(p) of ∂Σ is
the outward unit normal to C at p. Then

(3.1) τ+(Σ) >
cn−1

2
,
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and equality holds if and only if ∂Σ lies in a hyperplane.

Proof. Let ∂Σr := ∂Σ ∼ Σ0 be the regular part of the boundary of Σ,

U∂Σr :=
{

(p, u) | p ∈ ∂Σr, u ∈ Sn−1, u ⊥ Tp∂Σr

}
be the unit normal bundle of ∂Σr, and ν : U∂Σr → Sn−1, given by

ν(p, u) := u,

be its Gauss map. Define Ir ⊂ Jr ⊂ U∂Σr by

Ir :=
{

(p, u) ∈ U∂Σr | 〈x− p, u〉 6 0, ∀x ∈ Σ
}
,

Jr :=
{

(p, u) ∈ U∂Σr | 〈x− p, u〉 6 0, ∀x ∈ ∂Σ
}
.

Note that if (p, u) ∈ Jr ∼ Ir, then the height function x 7→ 〈x− p, u〉 achieves
its maximum in the interior of Σ, and thus Σ has a restricted support hyper-
plane with outward normal u. By hypothesis, the point p must then lie in the
regular part Σ ∼ Σ0 of Σ. Hence

τ+(Σ) > area ν(Jr ∼ Ir),

since almost every support hyperplane of Σ intersects Σ at a single point [14,
Thm. 2.2.9]. So to prove (3.1) it suffices to show that

area ν(Jr ∼ Ir) >
cn−1

2
.

The proof of the last inequality is virtually identical to the proof of the corre-
sponding inequality (9) in the appendix of [3] to which we refer the reader. �

4. The Mean Curvature Estimate

As we will see in the next section, in order to prove (1.1), we need to con-
struct a bounded region E outside C in Rn, and minimize the perimeter PC

under a volume constraint inside E. We shall see in our next result that the
boundary of any isoperimetric region so obtained satisfies the hypotheses of
Lemma 3.1. In particular, the lower curvature bound (3.1) holds for such
regions, which in turn yields the following estimate for mean curvature.

Proposition 4.1. Let C ⊂ Rn be a proper convex set, p0 ∈ ∂C, E :=
B(p0, r)C, Ω ⊂ EC be a set minimizing the perimeter PC under a volume
constraint, and HΣ be the (constant) mean curvature of the regular part of

Σ := (∂Ω)C. Then

(4.1) Hn−1
Σ PC(Ω) >

cn−1

2
.
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Equivalently, if H0(a) denotes the mean curvature of a hemisphere of area a,
then

HΣ > H0

(
PC(Ω)

)
.

Equality holds in these inequalities if and only if Ω is a half ball and Σ meets
∂C orthogonally.

Proof. It is enough to show that, if Π is a support hyperplane of Ω at p ∈ Σ,
then p is a regular point of Σ.

If p ∈ Σ ∩ int(E) then the minimal tangent cone of Ω at p is contained in a
half space. By [6, Thm. 15.5], it must be a half space and so Σ is regular at p.

If p ∈ ∂Σ ∼ (∂E)C then we consider the integer multiplicity rectifiable cur-
rent ∂[Ω]. Reflecting it [8, Remark 3.1] with respect to ∂C and blowing up
about p we get an area-minimizing oriented tangent cone T [8, Thm. 3.5], [9].
Let H be the tangent hyperplane of ∂C at p, and H+ the closed half space
determined by H whose interior does not meet C. Assuming there is a support
hyperplane Π of Ω at p, we get that the support of T , supp(T ), is contained
in a region of Rn bounded by H1 ∪ H2, where H1 = Π ∩ H+ and H2 is the
reflection of H1 with respect to H. Let S = H1 ∩H = H1 ∩H2. We have that
S is an (n− 2)-dimensional linear submanifold of Rn which is contained in H.

Rotating H1, H2 with respect to S until they first touch supp(T ) ∼ S,
using the maximum principle, and a connectedness argument, we get that
supp(T ) = H1 ∪H2, which is not area-minimizing unless H1 ∪H2 is a hyper-
plane orthogonal to H. Hence Σ is regular at p.

Observe that ∂Σ∩∂C∩ (∂E)C = ∅: if x0 ∈ ∂Σ∩∂C∩ (∂E)C , then the outer
normal ν to ∂C and the outer normal ν̃ to ∂B(p, r) satisfy 〈ν, ν̃〉 (x0) > 0.
Reasoning as in the two previous paragraphs, reflecting and blowing up about
x0 we get a cone which minimizes area in a wedge of angle less than π, thus
getting a contradiction.

So we can apply Lemma 3.1 to conclude that∫
Σ+∼Σ0

GK = τ+(Σ) >
cn−1

2
.

By [15, Thm. 3.7], HΣ, the constant mean curvature of the regular part
Σ ∼ Σ0 of Σ in the interior of E, is an upper bound for the mean curvature of
Σ. So we have

Hn−1
Σ PC(Ω) >

∫
Σ+∼Σ0

Hn−1
Σ >

∫
Σ+∼Σ0

GK >
cn−1

2
,
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which establishes the first desired inequality. To obtain the second inequality
note that, if r is the radius of a hemisphere of area PC(Ω), then(

H0

(
PC(Ω)

))n−1

PC(Ω) =

(
1

r

)n−1
cn−1r

n−1

2
=

cn−1

2
6 Hn−1

Σ PC(Ω).

If equality holds then Σ ∼ Σ0 = Σ+, and Hn−1
Σ = GK, which implies that

Σ ∼ Σ0 is totally umbilical and so Σ0 is empty. Further ∂Σ lies in a hyperplane
by Lemma 3.1, and so Ω is a half ball and Σ intersects ∂C orthogonally. �

5. Proof of the Relative Isoperimetric Inequality in Rn
C

With the aid of Proposition 4.1 we are now in a position to prove the main
result of this paper.

Theorem 5.1. Let C ⊂ Rn be a proper convex set (with smooth boundary).
For any bounded set D ⊂ Rn

C with finite perimeter,

(5.1)
(
area(∂D)C

)n
>

1

2
nnωn(vol D)n−1,

with equality if and only if D is a half ball and (∂D)C is a hemisphere.

Remark 5.2. If C is bounded then, from the results in [13], it can be proved
that any perimeter minimizing sequence of sets in Rn

C of given volume has a
subsequence converging to an isoperimetric region. In this case the proof of
Theorem 5.1 can be slightly simplified. However, when C is unbounded, we
have to deal with the possibility of nonexistence of minimizers in Rn

C .

Proof of Theorem 5.1. First we construct an exhaustion of Rn
C . Fix p0 ∈ ∂C,

and let {rm}m∈N be a diverging sequence of positive increasing numbers. In

case C is bounded we require that C ⊂ B(p0, rm). We define Em := B(p0, rm)C .

Since Em is bounded, isoperimetric regions exist in Em for any given volume
v ∈ (0, vol Em). Let Ω ⊂ Em be an isoperimetric region minimizing PC in Em

under a volume constraint, and let Σ := (∂Ω)C .

By Proposition 4.1, for every component Ω′ of Ω touching the boundary of
C, with Σ′ := (∂Ω′)C , we have

Hn−1
Σ′ PC(Σ′) >

cn−1

2
,

with equality if and only if Ω′ is an open half ball and Σ′ is an open hemisphere.
Observe that, for a component Ω′′ of Ω not touching the boundary of C, with
Σ′′ := (∂Ω′′)C , one easily obtains

Hn−1
Σ′′ PC(Σ′′) > cn−1,



8 J. CHOE, M. GHOMI, AND M. RITORÉ

with equality if and only if Ω′′ is a ball and Σ′′ a round sphere.

Breaking Ω into components touching ∂C and components in the interior of
Rn

C we get

Hn−1
Σ PC(Ω) >

cn−1

2
,

and equality holds if and only if Ω consists of one connected component which
is a half ball, and Σ an open hemisphere.

Let Im be the isoperimetric profile of Em. From standard arguments, see
[10, p. 170–172,], it follows that (i) Im is continuous and increasing, (ii) if Im is
smooth at v0, then I ′m(v0) = (n−1)H, where H is the constant mean curvature
in the interior of Em of any isoperimetric region of volume v0, and (iii) left
and right derivatives of Im exist everywhere. When (i), (ii) and (iii) hold it is
then known that Im is an absolutely continuous function. For a proof of (i),
(ii) and (iii) we refer the reader to [4].

Let Jm be the restriction of the isoperimetric profile of a half space of Rn

to the interval (0, vol Em), and f , g be the inverse functions of Im, Jm, respec-
tively. We know that

g′(a) =
1

J ′m(g(a))
=

1

(n− 1)H0(a)
,

where H0(a) is the mean curvature of the half ball of area a. We also know
that, when f ′ exists,

f ′(a) =
1

I ′m(f(a))
=

1

(n− 1)H
,

where H is the mean curvature in the interior of Em of any isoperimetric region
of volume f(a). From Proposition 4.1 we obtain that g′(a) > f ′(a) a. e. As f ,
g are absolutely continuous then g(a) > f(a). Since Jm is increasing it easily
follows that Im > Jm.

If equality holds for some v0, then for a0 = Jk(v0) = Ik(v0) we have
g(a0) = f(a0). Since g′ > f ′ we obtain that f ≡ g in the interval (0, a0)
and so H0(a0)

−1 = H(a0)
−1. If Ω0 is any isoperimetric region of volume v0

then Proposition 4.1 implies that Ω0 is isometric to a half ball in Rn of volume
v0.

Finally let Ω ⊂ Rn
C be relatively compact with smooth boundary. Then

Ω ⊂ Em, for some m, and

PC(Ω) > Im(vol Ω) > IHn(vol Ω).

If equality holds then Ω is an isoperimetric region in Em and Im(vol Ω) =
IHn(vol Ω). By the discussion in the above paragraph, Ω is isometric to a half
ball in Rn of volume vol Ω. �
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Finally we show that the relative isoperimetric inequality (1.1) also holds
outside any convex domain in Rn, with no additional assumptions on the reg-
ularity of its boundary

Theorem 5.3. If C ⊂ Rn is any closed convex set with interior points and
D ⊂ Rn

C is a bounded set with finite perimeter, then(
area(∂D)C

)n
>

1

2
nnωn(vol D)n−1.

Proof. Using standard results on the Hausdorff metric, we can find a sequence
of convex sets with smooth boundary Cm ⊂ Rn, and with C ⊂ Cm for all
m ∈ N, converging locally in the Hausdorff distance to C. Let D ⊂ Rn

C

be a bounded set with (∂D)C smooth. Define Dm := D ∩ (Rn)Cm . Then
limm→∞ vol Dm = vol D and PC(D) > PCm(Dm). Since, by Theorem 5.1, the
relative isoperimetric inequality (1.1) is satisfied in (Rn)Cm , we have(

area(∂D)C

)n
>

(
area(∂Dm)Cm

)n
>

1

2
nnωn(vol Dm)n−1.

Taking limits when m →∞, we get (1.1). �

Remark 5.4. Reasoning as in [4], one can easily see that equality is never at-
tained if C is strictly convex. The analysis of equality in the isoperimetric
inequality for a general convex set cannot be treated with the tools used in
this paper.
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