
ar
X

iv
:m

at
h.

D
G

/0
60

80
67

v1
   

2 
A

ug
 2

00
6

AREA-STATIONARY SURFACES INSIDE

THE SUB-RIEMANNIAN THREE-SPHERE

ANA HURTADO AND CÉSAR ROSALES

ABSTRACT. We consider the sub-Riemannian metric gh on S3 provided by the restriction of
the Riemannian metric of curvature 1 to the plane distribution orthogonal to the Hopf vec-
tor field. We compute the geodesics associated to the Carnot-Carathéodory distance and we
show that, depending on their curvature, they are closed or dense subsets of a Clifford torus.

We study area-stationary surfaces with or without a volume constraint in (S3, gh). By
following the ideas and techniques in [RR2] we introduce a variational notion of mean cur-
vature, characterize stationary surfaces, and prove classification results for complete volume-
preserving area-stationary surfaces with non-empty singular set. We also use the behaviour
of the Carnot-Carathéodory geodesics and the ruling property of constant mean curvature

surfaces to show that the only C2 compact, connected, embedded surfaces in (S
3, gh) with

empty singular set and constant mean curvature H such that H/
√

1 + H2 is an irrational
number, are Clifford tori. Finally we describe which are the complete rotationally invariant

surfaces with constant mean curvature in (S3, gh).

1. INTRODUCTION

Sub-Riemannian geometry studies spaces equipped with a path metric structure where
motion is only possible along certain trajectories known as admissible (or horizontal) curves.
This discipline has motivations and ramifications in several parts of mathematics and phy-
sics, such as Riemannian and contact geometry, control theory, and classical mechanics.

In the last years the interest in variational questions in sub-Riemannian geometry has
increased. One of the reasons for the recent growth of this field has been the desire to
solve global problems involving the sub-Riemannian area in the Heisenberg group. The

3-dimensional Heisenberg group H
1 is one of the simplest and most important non-trivial

sub-Riemannian manifolds, and it is object of an intensive study. In fact, some of the clas-
sical area-minimizing questions in Euclidean space such as the Plateau problem, the Bern-

stein problem, or the isoperimetric problem have been treated in H1. Though these prob-
lems are not completely solved, some important results have been established, see [Pa],
[CHY], [CHMY], [RR2], [CDPT], and the references therein. For example in [RR2], M. Ri-

toré and the second author have proved that the only C2 isoperimetric solutions in H1 are

the spherical sets conjectured by P. Pansu [P] in the early eighties. The particular case of H1

has inspired the study of similar questions as that as the development of a theory of con-
stant mean curvature surfaces in different classes of sub-Riemannian manifolds, such as
Carnot groups [DGN], see also [DGN2], pseudohermitian manifolds [CHMY], vertically
rigid manifolds [HP], and contact manifolds [Sh].
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2 A. HURTADO AND C. ROSALES

Besides the Heisenberg group, one of the most important examples in sub-Riemannian
geometry comes from the Heisenberg spherical structure, see [Gr] and [M, § 11]. In this
paper we use the techniques and arguments employed in [RR2] to study area-stationary
surfaces with or without a volume constraint inside the sub-Riemannian 3-sphere. Let us precise

the situation. We denote by (S3, g) the unit 3-sphere endowed with the Riemannian metric
of constant sectional curvature 1. This manifold is a compact Lie group when we consider

the quaternion product p · q. A basis of right invariant vector fields in (S3, ·) is given by
{E1, E2, V}, where E1(p) = j · p, E2(p) = k · p and V(p) = i · p (here i, j and k are the
complex quaternion units). The vector field V is sometimes known as the Hopf vector field
in S3 since its integral curves parameterize the fibers of the Hopf map F : S3 → S2. We

equip S3 with the sub-Riemannian metric gh provided by the restriction of g to the horizontal
distribution, which is the smooth plane distribution generated by E1 and E2. Inside the sub-

Riemannian manifold (S3, gh) we can consider many of the notions existing in Riemannian
geometry. In particular, we can define the Carnot-Carathéodory distance d(p, q) between two

points, the volume V(Ω) of a Borel set Ω, and the area A(Σ) of a C1 immersed surface Σ, see
Section 2 and the beginning of Section 3 for precise definitions.

In Section 3 we use intrinsic arguments similar to those in [RR2, §3] to study geodesics in

(S3, gh). They are defined as C2 horizontal curves which are critical points of the Riemann-
ian length for variations by horizontal curves with fixed extreme points. Here “horizontal”
means that the tangent vector to the curve lies in the horizontal distribution. The geodesics
are solutions of a second order linear differential equation depending on a real parame-
ter called the curvature of the geodesic, see Proposition 3.1. As was already observed in

[CHMY] the geodesics of curvature zero coincide with the horizontal great circles of S3.
From an explicit expression of the geodesics we can easily see that they are horizontal lifts

via the Hopf map F : S3 → S2 of the circles of revolution in S2. Moreover, in Proposition 3.3
we show that the topological behaviour of a geodesic γ only depends on its curvature λ.

Precisely, if λ/
√

1 + λ2 is a rational number then γ is a closed curve diffeomorphic to a
circle. Otherwise γ is diffeomorphic to a straight line and coincides with a dense subset of

a Clifford torus in S3. We finish Section 3 with the notion of Jacobi field in (S3, gh). These
vector fields are associated to a variation of a given geodesic by geodesics of the same
curvature. They will be key ingredients in some proofs of Section 5.

In Section 4 we consider critical surfaces with or without a volume constraint for the area
functional in (S3, gh). These surfaces have been well studied in the Heisenberg group H1,
and most of their properties remain valid, with minor modifications, in the sub-Riemannian

3-sphere. For example if Σ is a C2 volume-preserving area-stationary surface then the mean
curvature of Σ defined in (4.3) is constant off of the singular set Σ0, the set of points where
the surface is tangent to the horizontal distribution. Moreover Σ − Σ0 is a ruled surface
in (S3, gh) since it is foliated by geodesics of the same curvature. Furthermore, by the re-

sults in [CHMY], the singular set Σ0 consists of isolated points or C1 curves. We can also

prove a characterization theorem similar to [RR2, Thm. 4.16]: for a C2 surface Σ, to be area-
stationary with or without a volume constraint is equivalent to that H is constant on Σ − Σ0

and the geodesics contained in Σ − Σ0 meet orthogonally the singular curves. Though the
proofs of these results are the same as in [RR2] we state them explicitly since they are the
starting points to prove our classification results in Section 5.

In [CHMY], J.-H. Cheng, J.-F. Hwang, A. Malchiodi and P. Yang found the first examples

of constant mean curvature surfaces in (S3, gh). They are the totally geodesic 2-spheres in

(S3, g) and the Clifford tori Tρ defined in complex notation by the points (z1, z2) ∈ S3 such

that |z1|2 = ρ2. The above mentioned authors also established two interesting results for
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compact surfaces with constant mean curvature in (S3, gh). First they gave a strong topo-
logical restriction by showing [CHMY, Thm. E] that such a surface must be homeomorphic
either to a sphere or to a torus. Second they obtained [CHMY, Proof of Cor. F] that any

compact, embedded, C2 surface with vanishing mean curvature and at least one isolated

singular point must coincide with a totally geodesic 2-sphere in (S3, g).

In Section 5 of the paper we give the complete classification of complete, volume-preser-

ving area-stationary surfaces in (S3, gh) with non-empty singular set. In Theorem 5.3 we

generalize the aforementioned Theorem E in [CHMY]: we prove that if Σ is a C2 complete,
connected, immersed surface with constant mean curvature H and at least an isolated sin-
gular point, then Σ is congruent with the spherical surface SH described as the union of

all the geodesics of curvature H and length π/
√

1 + H2 leaving from a given point, see
Figure 2. Our main result in this section characterizes complete volume-preserving area-
stationary surfaces with at least one singular curve Γ. The local description given in The-
orem 4.3 of such a surface Σ around Γ, and the orthogonality condition between singular
curves and geodesics in Theorem 4.5, imply that a small neighborhood of Γ in Σ consists of
the union of small pieces of all the geodesics γε of the same curvature leaving from Γ or-
thogonally. By using the completeness of Σ we can extend these geodesics until they meet
another singular point. Finally, from a detailed study of the Jacobi vector field associated

to the family γε we deduce that the singular curve Γ must be a geodesic in (S3, gh). This
allows us to conclude that Σ is congruent with one of the surfaces Cµ,λ obtained when we
leave orthogonally from a given geodesic of curvature µ by geodesics of curvature λ, see
Example 5.8.

The classification of complete surfaces with empty singular set and constant mean cur-

vature in (S3, gh) seems to be a difficult problem. In Section 5 we prove some results in
this direction. In Proposition 5.11 we show that the Clifford tori Tρ are the only complete
surfaces with constant mean curvature such that the Hopf vector field V is always tan-
gent to the surface. In Theorem 5.10 we characterize the Clifford tori as the unique com-
pact embedded surfaces with empty singular set and constant mean curvature H such that

H/
√

1 + H2 is irrational. These results might suggest that Theorem 5.10 holds without any
further assumption on the curvature H of the surface.

In the last section of the paper we describe complete surfaces with constant mean curva-

ture in (S3, gh) which are invariant under the isometries of (S3, g) fixing the vertical equator
passing through (1, 0, 0, 0). For such a surface the equation of constant mean curvature can
be reduced to a system of ordinary differential equations. Then, a detailed analysis of the
solutions yields a counterpart in (S3, gh) of the classification by C. Delaunay of rotationally

invariant constant mean curvature surfaces in R3, later extended by W.-H. Hsiang [Hs]

to (S3, g). In particular we can find compact, embedded, unduloidal type surfaces with

empty singular set and constant mean curvature H such that H/
√

1 + H2 is rational. This
provides an example illustrating that all the hypotheses in Theorem 5.10 are necessary.

In addition to the geometric interest of this work we believe that our results may be
applied in two directions. First, they could be useful to solve the isoperimetric problem

in (S3, gh) which consists of enclosing a fixed amount of volume with the least possible

boundary area. In fact, if we assume that the solutions to this problem are C2 smooth and
have at least one singular point, then they must coincide with one of the surfaces Sλ or Cµ,λ

introduced in Section 5. Second, our classification results could be utilized to find examples

of constant mean curvature surfaces inside the Riemannian Berger spheres (S3, gk). This is

motivated by the fact that the metric space (S3, d) associated to the Carnot-Carathéodory
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distance is limit, in the Gromov-Hausdorff sense, of the spaces (S3, dk), where dk is the
Riemannian distance of gk [Gr, p. 109].

The authors want to express their gratitude to O. Gil and M. Ritoré for encouraging them
to write these notes and helping discussions. This work was initiated while A. Hurtado was
visiting the University of Granada in the winter of 2006. The paper was finished during a
short visit of C. Rosales to the University Jaume I (Castelló) in the summer of 2006.

2. PRELIMINARIES

Throughout this paper we will identify a point p = (x1, y1, x2, y2) ∈ R4 with the quater-
nion x1 + iy1 + jx2 + ky2. We denote the quaternion product and the scalar product of

p, q ∈ R4 by p · q and
〈

p, q
〉
, respectively. The unit sphere S3 ⊂ R4 endowed with the

quaternion product is a compact, noncommutative, 3-dimensional Lie group. For p ∈ S3,
the right translation by p is the diffeomorphism Rp(q) = q · p. A basis of right invariant

vector fields in (S3, ·) given in terms of the Euclidean coordinate vector fields is

V(p) : = i · p = −y1
∂

∂x1
+ x1

∂

∂y1
− y2

∂

∂x2
+ x2

∂

∂y2
,

E1(p) : = j · p = −x2
∂

∂x1
+ y2

∂

∂y1
+ x1

∂

∂x2
− y1

∂

∂y2
,

E2(p) : = k · p = −y2
∂

∂x1
− x2

∂

∂y1
+ y1

∂

∂x2
+ x1

∂

∂y2
.

We define the horizontal distribution H in S3 as the smooth plane distribution generated
by E1 and E2. The horizontal projection of a vector X onto H is denoted by Xh. A vector field

X is horizontal if X = Xh. A horizontal curve is a piecewise C1 curve such that the tangent
vector (where defined) lies in the horizontal distribution.

We denote by [X, Y] the Lie bracket of two C1 tangent vector fields X, Y on S3. Note that
[E1, V] = 2E2, [E2, V] = −2E1 and [E1, E2] = −2V, so that H is a bracket generating distribu-
tion. Moreover, by Frobenius theorem we have that H is nonintegrable. The vector fields
E1 and E2 generate the kernel of the contact 1-form given by the restriction to the tangent

bundle TS
3 of ω := −y1 dx1 + x1 dy1 − y2 dx2 + x2 dy2.

We introduce a sub-Riemannian metric gh on S
3 by considering the Riemannian metric on

H such that {E1, E2} is an orthonormal basis at every point. It is immediate that the Rie-

mannian metric g =
〈
· , ·
〉
|
S3 provides an extension to TS3 of the sub-Riemannian metric

such that {E1, E2, V} is orthonormal. The metric g is bi-invariant and so the right transla-

tions Rp and the left translations Lp are isometries of (S3, g). We denote by D the Levi-Civitá

connection on (S3, g). The following derivatives can be easily computed

DE1
E1 = 0, DE2

E2 = 0, DVV = 0,

DE1
E2 = −V, DE1

V = E2, DE2
V = −E1,(2.1)

DE2
E1 = V, DVE1 = −E2, DVE2 = E1.

For any tangent vector field X on S3 we define J(X) := DXV. Then we have J(E1) = E2,

J(E2) = −E1 and J(V) = 0, so that J2 = −Identity when restricted to the horizontal distri-
bution. It is also clear that 〈

J(X), Y
〉

+
〈

X, J(Y)
〉

= 0,

for any pair of vector fields X and Y. The involution J : H → H together with the contact

1-form ω = −y1 dx1 + x1 dy1 − y2 dx2 + x2 dy2 provides a pseudohermitian structure on S3, as
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stated in [CHMY, Appendix]. We remark that J : H → H coincides with the restriction to

H of the complex structure on R4 given by the left multiplication by i, that is

J(X) = i · X, for any X ∈ H.

Now we introduce notions of volume and area in (S3, gh). We will follow the same ap-

proach as in [RR] and [RR2]. The volume V(Ω) of a Borel set Ω ⊆ S3 is the Haar measure
associated to the quaternion product, which turns out to coincide with the Riemannian vol-

ume of g. Given a C1 surface Σ immersed in S
3, and a unit vector field N normal to Σ in

(S3, g), we define the area of Σ in (S3, gh) by

(2.2) A(Σ) :=

∫

Σ

|Nh| dΣ,

where Nh = N −
〈

N, V
〉

V, and dΣ is the Riemannian area element on Σ. If Ω is an open

set of S
3 bounded by a C2 surface Σ then, as a consequence of the Riemannian divergence

theorem, we have that A(Σ) coincides with the sub-Riemannian perimeter of Ω defined by

P(Ω) = sup

{∫

Ω

div X dv; |X| 6 1

}
,

where the supremum is taken over C1 horizontal tangent vector fields on S3. In the definition
above dv and div are the Riemannian volume and divergence of g, respectively.

For a C1 surface Σ ⊂ S3 the singular set Σ0 consists of those points p ∈ Σ for which the
tangent plane TpΣ coincides with Hp. As Σ0 is closed and has empty interior in Σ, the reg-
ular set Σ − Σ0 of Σ is open and dense in Σ. It follows from the arguments in [De, Lemme

1], see also [Ba, Theorem 1.2], that for a C2 surface Σ the Hausdorff dimension of Σ0 with
respect to the Riemannian distance in S3 is less than two. If Σ is oriented and N is a unit
normal vector to Σ then we can describe the singular set as Σ0 = {p ∈ Σ : Nh(p) = 0}.
In the regular part Σ − Σ0, we can define the horizontal Gauss map νh and the characteristic
vector field Z, by

(2.3) νh :=
Nh

|Nh|
, Z := J(νh) = i · νh.

As Z is horizontal and orthogonal to νh, we conclude that Z is tangent to Σ. Hence Zp

generates TpΣ ∩Hp. The integral curves of Z in Σ − Σ0 will be called characteristic curves of
Σ. They are both tangent to Σ and horizontal. Note that these curves depend on the unit
normal N to Σ. If we define

(2.4) S :=
〈

N, V
〉

νh − |Nh|V,

then {Zp, Sp} is an orthonormal basis of TpΣ whenever p ∈ Σ − Σ0.

Any isometry of (S3, g) leaving invariant the horizontal distribution preserves the area

A(Σ) of surfaces in (S3, gh). Examples of such isometries are left and right translations. The
rotation of angle θ given by

(2.5) rθ(x1, y1, x2, y2) = (x1, y1, (cos θ)x2 − (sin θ)y2, (sin θ)x2 + (cos θ)y2)

is also such an isometry since it transforms the orthonormal basis {E1, E2, V} at p into the
orthonormal basis {(cos θ)E1 + (sin θ)E2, (− sin θ)E1 + (cos θ)E2, V} at rθ(p). We say that

two surfaces Σ1 and Σ2 are congruent if there is an isometry φ of (S
3, g) preserving the

horizontal distribution and such that φ(Σ1) = Σ2.

Finally we recall that the Hopf fibration F : S3 → S2 ≡ S3 ∩ {x1 = 0} is the Riemannian
submersion given by F (p) = p · i · p (here p denotes the conjugate of the quaternion p). In
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terms of Euclidean coordinates we get

F (x1, y1, x2, y2) = (0, x2
1 + y2

1 − x2
2 − y2

2, 2 (x2y1 − x1y2), 2 (x1x2 + y1y2)).

The fiber passing through p ∈ S3 is the great circle parameterized by exp(it) · p. Clearly
the fibers are integral curves of the vertical vector V, which is sometimes known as the

Hopf vector field. A lift of a curve c : (−ε, ε) → S2 is a curve γ : (−ε, ε) → S3 such that

F (γ) = c. By general properties of principal bundles we have that for any piecewise C1

curve c there is a unique horizontal lift of c passing through a fixed point p ∈ F−1(c(0)),

see [KN, p. 88]. For any ρ ∈ (0, 1) let cρ be the geodesic circle of S
2 contained in the plane

{x1 = 0, y1 = 2ρ2 − 1}. The set Tρ = F−1(cρ) is the Clifford torus in S3 described by the

pairs of complex numbers (z1, z2) such that |z1|2 = ρ2 and |z2|2 = 1 − ρ2.

3. CARNOT-CARATHÉODORY GEODESICS IN S3

Let γ : I → S3 be a piecewise C1 curve defined on a compact interval I ⊂ R. The length

of γ is the Riemannian length L(γ) :=
∫

I |γ̇|. For any two points p, q ∈ S3 we can find, by
Chow’s connectivity theorem [Gr, §1.2.B], a C∞ horizontal curve joining these points. The
Carnot-Carathéodory distance d(p, q) is defined as the infimum of the lengths of all piecewise

C1 horizontal curves joining p and q. The topologies on S3 defined by d and the Riemann-

ian distance associated to g are the same, see [Be, Cor. 2.6]. In the metric space (S3, d) there
is a natural extension for continuous curves of the notion of length, see [Be, p. 19]. We say
that a continuous curve γ joining p and q is length-minimizing if L(γ) = d(p, q). Since the

metric space (S
3, d) is complete we can apply the Hopf-Rinow theorem in sub-Riemannian

geometry [Be, Thm. 2.7] to ensure the existence of length-minimizing curves joining two
given points. Moreover, by [St, Cor. 6.2], see also [M, Chapter 5], any of these curves is C∞.
In this section we are interested in smooth curves which are critical points of length un-
der any variation by horizontal curves with fixed endpoints. These curves are sometimes
known as Carnot-Carathéodory geodesics and they have been extensively studied in general
sub-Riemannian manifolds, see [M]. By the aforementioned regularity result any length-

minimizing curve in (S3, d) is a geodesic. In this section we follow the approach in [RR2,
§ 3] to obtain a variational characterization of the geodesics.

Let γ : I → S3 be a C2 horizontal curve. A smooth variation of γ is a C2 map F : I × J → S3,
where J is an open interval around the origin, such that F(s, 0) = γ(s). We denote γε(s) =
F(s, ε). Let Xε(s) be the vector field along γε given by (∂F/∂ε)(s, ε). Trivially [Xε, γ̇ε] = 0.
Let X = X0. We say that the variation is admissible if the curves γε are horizontal and have
fixed extreme points. For such a variation the vector field X vanishes at the endpoints of γ
and satisfies

0 = γ̇
(〈

X, V
〉)

− 2
〈
Xh, J(γ̇)

〉
.

The equation above characterizes the vector fields along γ associated to admissible vari-
ations. By using the first variation of length in Riemannian geometry we can prove the
following result, see [RR2, Proposition 3.1] for details.

Proposition 3.1. Let γ : I → S3 be a C2 horizontal curve parameterized by arc-length. Then γ is a
critical point of length for any admissible variation if and only if there is λ ∈ R such that γ satisfies
the second order ordinary differential equation

(3.1) Dγ̇γ̇ + 2λ J(γ̇) = 0.

We will say that a C2 horizontal curve γ is a geodesic of curvature λ in (S
3, gh) if γ is pa-

rameterized by arc-length and satisfies equation (3.1). Observe that the parameter λ in (3.1)
changes to −λ for the reversed curve γ(−s), while it is preserved for the antipodal curve
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−γ(s). In general, any isometry of (S3, g) preserving the horizontal distribution transforms
geodesics in geodesics since it respects the connection D of g and commutes with J.

Given a point p ∈ S3, a unit horizontal vector v ∈ TpS3, and λ ∈ R, we denote by γλ
p,v

the unique solution to (3.1) with initial conditions γ(0) = p and γ̇(0) = v. The curve γλ
p,v is

a geodesic since it is horizontal and parameterized by arc-length (the functions
〈
γ̇, V

〉
and

|γ̇|2 are constant along any solution of (3.1)). Clearly for any right translation Rq we have

Rq(γλ
p,v) = γλ

p·q,v·q.

Now we compute the geodesics in Euclidean coordinates. Consider a C2 smooth curve

γ = (x1, y1, x2, y2) ∈ S3 parameterized by arc-length s. We denote γ̈ = (ẍ1, ÿ1, ẍ2, ÿ2). The

tangent and normal projections of γ̈ onto TS3 and (TS3)⊥ are given respectively by Dγ̇γ̇

and II(γ̇, γ̇) η, where II is the second fundamental form of S3 in R4 with respect to the unit
normal vector η(p) = p. Hence we obtain

(3.2) γ̈ = Dγ̇γ̇ − γ.

As a consequence equation (3.1) reads

γ̈ + γ + 2λ (i · γ̇) = 0.

If we denote zn = xn + iyn then the previous equation is equivalent to

z̈n + zn + 2λi żn = 0, n = 1, 2.

Therefore, an explicit integration gives for n = 1, 2

(3.3) zn(s) = C1n exp{(−λ +
√

1 + λ2) is} + C2n exp{−(λ +
√

1 + λ2) is},

where C1n and C2n are complex constants. Thus, if we denote Cr
mn = Re(Cmn) and Ci

mn =
Im(Cmn) then we have

xn(s) = (Cr
1n + Cr

2n) cos(λs) cos(
√

1 + λ2 s) + (Cr
1n − Cr

2n) sin(λs) sin(
√

1 + λ2 s)

+ (Ci
1n + Ci

2n) sin(λs) cos(
√

1 + λ2 s) + (Ci
2n − Ci

1n) cos(λs) sin(
√

1 + λ2 s),

yn(s) = (Ci
1n + Ci

2n) cos(λs) cos(
√

1 + λ2 s) − (Ci
2n − Ci

1n) sin(λs) sin(
√

1 + λ2 s)

− (Cr
1n + Cr

2n) sin(λs) cos(
√

1 + λ2 s) + (Cr
1n − Cr

2n) cos(λs) sin(
√

1 + λ2 s).

Suppose that γ(0) = (x0
1, y0

1, x0
2, y0

2) and γ̇(0) = (u0
1, w0

1, u0
2, w0

2). It is easy to see from (3.3)
that

Cr
1n + Cr

2n = x0
n, Cr

1n − Cr
2n =

w0
n + λx0

n√
1 + λ2

,

Ci
1n + Ci

2n = y0
n, Ci

2n − Ci
1n =

u0
n − λy0

n√
1 + λ2

.

So, by substituting the previous equalities in the expressions of xn(s) and yn(s) we obtain

xn(s) = x0
n cos(λs) cos(

√
1 + λ2 s) +

w0
n + λx0

n√
1 + λ2

sin(λs) sin(
√

1 + λ2 s)(3.4)

+ y0
n sin(λs) cos(

√
1 + λ2 s) +

u0
n − λy0

n√
1 + λ2

cos(λs) sin(
√

1 + λ2 s).

yn(s) = y0
n cos(λs) cos(

√
1 + λ2 s) − u0

n − λy0
n√

1 + λ2
sin(λs) sin(

√
1 + λ2 s)

− x0
n sin(λs) cos(

√
1 + λ2 s) +

w0
n + λx0

n√
1 + λ2

cos(λs) sin(
√

1 + λ2 s).
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We conclude that the geodesic γλ
p,v is given for any s ∈ R by

γλ
p,v(s) = cos(λs) cos(

√
1 + λ2 s) p +

sin(λs) sin(
√

1 + λ2 s)√
1 + λ2

(λp − J(v))(3.5)

− sin(λs) cos(
√

1 + λ2 s) V(p) +
cos(λs) sin(

√
1 + λ2 s)√

1 + λ2
(λV(p) + v).

In particular, for λ = 0 we get

γ0
p,v(s) = cos(s) p + sin(s) v,

which is a horizontal great circle of S
3. This was already observed in [CHMY, Lemma 7.1].

Now we prove a characterization of the geodesics that will be useful in Section 5. The

result also shows that the geodesics are horizontal lifts via the Hopf fibration F : S
3 → S

2 of

the geodesic circles in S
2, see [M, Thm. 1.26] for a general statement for principal bundles.

Lemma 3.2. Let γ : I → S
3 be a C2 horizontal curve parameterized by arc-length. The following

assertions are equivalent

(i) γ is a geodesic of curvature λ in (S3, gh),
(ii)

〈
γ̈, J(γ̇)

〉
= −2λ,

(iii) the Hopf fibration F (γ) is a piece of a geodesic circle in S2 with constant geodesic curvature
λ in S2.

Proof. As γ is horizontal and parameterized by arc-length we have

0 = γ̇ (
〈

γ̇, γ̇
〉
) = 2

〈
Dγ̇γ̇, γ̇

〉
,

0 = γ̇ (
〈

γ̇, V(γ)
〉
) =

〈
Dγ̇γ̇, V(γ)

〉
+
〈
γ̇, J(γ̇)

〉
=
〈

Dγ̇γ̇, V(γ)
〉
.

As {γ̇, J(γ̇), V(γ)} is an orthonormal basis of TS3 along γ, we deduce that Dγ̇γ̇ is propor-
tional to J(γ̇) at any point of γ. On the other hand from (3.2) we have

〈
Dγ̇γ̇, J(γ̇)

〉
=
〈

γ̈ + γ, J(γ̇)
〉

=
〈
γ̈, J(γ̇)

〉
,

where in the second equality we have used that the position vector field η(p) = p in R4

provides a unit normal to S3. This proves that (i) and (ii) are equivalent.

Let us see that (i) is equivalent to (iii). Note that F (Rq(p)) = (Lq ◦ Rq)(F (p)) for

any p, q ∈ S3. Hence we only have to prove the claim for a geodesic γ leaving from
p = (1, 0, 0, 0). Let v = (cos θ) E1(p) + (sin θ) E2(p) be the initial velocity of such a geo-
desic. A direct computation from (3.4) shows that the Euclidean coordinates (y1, x2, y2) of
the curve c = F (γ) are given by

y1(s) = 1 − 2

1 + λ2
sin2(

√
1 + λ2 s),

x2(s) =
− sin(2

√
1 + λ2 s)√

1 + λ2
sin θ +

2λ sin2(
√

1 + λ2 s)

1 + λ2
cos θ.

y2(s) =
sin(2

√
1 + λ2 s)√

1 + λ2
cos θ +

2λ sin2(
√

1 + λ2 s)

1 + λ2
sin θ.

From the equations above it is not difficult to check that the binormal vector to c in R3 is

|ċ ∧ c̈|−1(ċ ∧ c̈)(s) = (1 + λ2)−1/2 (λ, sin θ, cos θ). It follows that the curve c lies inside a
Euclidean plane and so, it must be a piece of a geodesic circle in S2. Moreover, the geodesic

curvature of c in S2 with respect to the unit normal vector given by |c ∧ ċ|−1 (c ∧ ċ) equals
λ. This proves that (i) implies (iii). Conversely, let us suppose that c = F (γ) is a piece of
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a geodesic circle of curvature λ in S2. We consider the geodesic γλ
p,v in (S3, gh) with initial

conditions p = γ(0) and v = γ̇(0). The previous arguments and the uniqueness of con-

stant geodesic curvature curves in S2 for given initial conditions imply that F (γλ
p,v) = c.

By using the uniqueness of the horizontal lifts of a curve we conclude that γ = γλ
p,v. �

In the next result we show that the topological behaviour of a geodesic in (S3, gh) de-
pends on the curvature of the geodesic. Recall that Tρ denotes the Clifford torus consisting

of the pairs (z1, z2) ∈ S3 such that |z1|2 = ρ2.

Proposition 3.3. Let γ : R → S3 be a complete geodesic of curvature λ. Then γ is a closed curve

diffeomorphic to a circle if and only if λ/
√

1 + λ2 is a rational number. Otherwise γ is diffeomor-
phic to a straight line and there is a right translation Rq such that Rq(γ) is a dense subset inside a
Clifford torus Tρ.

Proof. In order to characterize when γ is a closed curve diffeomorphic to a circle it would
be enough to analyze the equality γ(s1) = γ(s2) from (3.5). However we will prove the
proposition by using the description of a geodesic contained inside a Clifford torus Tρ.

We shall use complex notation for the points in S3. Let q = (z1, z2) ∈ Tρ. It is easy to

check that there are only two unit horizontal vectors in TqTρ. These are w = i · (αz1,−α−1z2)

and −w, where α = ρ−1
√

1 − ρ2. Take the geodesic γλ
q,w = (z1(s), z2(s)) of curvature λ. A

direct computation from (3.4) gives us

|z1(s)|2 = ρ2

(
cos2(

√
1 + λ2 s) +

(λ + α)2

1 + λ2
sin2(

√
1 + λ2 s)

)
,

so that γλ
q,w is entirely contained in Tρ if and only if λ = (2ρ2 − 1)/(2ρ

√
1 − ρ2). Consider

the map ϕ(x, y) = (ρ exp(2πix),
√

1 − ρ2 exp(2πiy)), which is a diffeomorphism between

the flat torus R2/Z2 and Tρ . If we choose the curvature λ as above and we put q = ϕ(θ, θ′)
then we deduce from (3.4) that

γλ
q,w(s) = ϕ

(
(
√

1 + λ2 − λ) s

2π
+ θ,

−(λ +
√

1 + λ2) s

2π
+ θ′

)
.

This implies that γλ
q,w is a reparameterization of ϕ(r(t)), where r(t) = mt + n is a straight

line in R2/Z2 with slope

m =
λ +

√
1 + λ2

λ −
√

1 + λ2
=

(λ/
√

1 + λ2) + 1

(λ/
√

1 + λ2) − 1
.

As a consequence γλ
q,w is a closed curve diffeomorphic to a circle if and only if λ/

√
1 + λ2

is a rational number. Otherwise γλ
q,w is a dense curve in Tρ diffeomorphic to a straight line.

Finally, let us consider any complete geodesic γ = γλ
p,v in (S3, gh). After applying a

right translation we can suppose that p = (1, 0) and v = (0, exp(iθ)). Let ρ ∈ (0, 1) so that

λ/
√

1 + λ2 = 2ρ2 − 1. Take the point q = (ρ,
√

1 − ρ2 i exp(iθ)) ∈ Tρ. It is easy to check

that the vector v · q coincides with the unit horizontal vector w ∈ TqTρ such that γλ
q,w ⊂ Tρ.

The proof of the proposition then follows by using that Rq(γλ
p,v) = γλ

q,w and the properties

previously shown for geodesics inside Tρ. �

We finish this section with some analytical properties for the vector field associated to a
variation of a curve which is a geodesic. The proofs use the same arguments as in Lemma
3.5 and Lemma 3.6 in [RR2].
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FIGURE 1. Stereographic projection from S3 − {north pole} to R3 of a sub-
Riemannian geodesic which is dense inside a Clifford torus.

Lemma 3.4. Let γ : I → S3 be a geodesic of curvature λ. Suppose that X is the C1 vector field
associated to a variation of γ by horizontal curves γε parameterized by arc-length. Then we have

(i) The function λ
〈

X, V(γ)
〉

+
〈

X, γ̇
〉

is constant along γ.

(ii) If any γε is a geodesic of curvature λ and X is C2 smooth, then X satisfies the second order
differential equation Dγ̇Dγ̇X + R(X, γ̇)γ̇ + 2λ (J(Dγ̇X) −

〈
X, γ̇

〉
V(γ)) = 0, where R

denotes the Riemannian curvature tensor in (S3, g).

The linear differential equation in Lemma 3.4 (ii) is the Jacobi equation for geodesics of

curvature λ in (S3, gh). We will call any solution of this equation a Jacobi field along γ.

4. AREA-STATIONARY SURFACES WITH OR WITHOUT A VOLUME CONSTRAINT

In this section we introduce and characterize critical surfaces for the area functional (2.2)
with or without a volume constraint. We also state without proof some properties for such
surfaces that will be useful in order to obtain classifications results. For a detailed develop-
ment we refer the reader to [RR2, §4] and the references therein.

Let Σ ⊂ S3 be an oriented immersed surface of class C2. Consider a C1 vector field X with
compact support on Σ and tangent to S

3. For t small we denote Σt = {expp(tXp); p ∈ Σ},

which is an immersed surface. Here expp is the exponential map of (S3, g) at the point p.

The family {Σt}, for t small, is the variation of Σ induced by X. Note that we allow the
variations to move the singular set Σ0 of Σ. Define A(t) := A(Σt). If Σ is the boundary

of a region Ω ⊂ S3 then we can consider a C1 family of regions Ωt such that Ω0 = Ω

and ∂Ωt = Σt. We define V(t) := V(Ωt). We say that the variation induced by X is
volume-preserving if V(t) is constant for any t small enough. We say that Σ is area-stationary
if A′(0) = 0 for any variation of Σ. In case that Σ encloses a region Ω, we say that Σ is
area-stationary under a volume constraint or volume-preserving area-stationary if A′(0) = 0 for
any volume-preserving variation of Σ.

Suppose that Ω is the region bounded by a C2 embedded compact surface Σ. We shall

always choose the unit normal N to Σ in (S3, g) pointing into Ω. The computation of V′(0)
is well known, and it is given by ([Si, §9])

(4.1) V′(0) =

∫

Ω

div X dv = −
∫

Σ

u dΣ,
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where u =
〈

X, N
〉
. It follows that u has mean zero whenever the variation is volume-

preserving. Conversely, it was proved in [BdCE, Lemma 2.2] that, given a C1 function
u : Σ → R with mean zero, we can construct a volume-preserving variation of Ω so that
the normal component of X equals u.

Remark 4.1. For a compact immersed C2 surface Σ in S
3 there is a notion of volume en-

closed by Σ. The first variation for this volume functional is given by (4.1). We refer the
reader to [BdCE, p. 125] for details.

Now assume that the divergence relative to Σ of the horizontal Gauss map νh defined in

(2.3) satisfies divΣ νh ∈ L1(Σ). In this case the first variation of the area functional A(t) can
be obtained as in [RR2, Lemma 4.3]. We get

(4.2) A′(0) =

∫

Σ

u
(

divΣ νh

)
dΣ −

∫

Σ

divΣ

(
u (νh)

⊤) dΣ,

where (νh)
⊤ is the projection of νh onto the tangent space to Σ.

Let Σ be a C2 immersed surface in S3 with a C1 unit normal vector N. Outside the sin-
gular set Σ0 of Σ we define the mean curvature H in (S3, gh) by the equality

(4.3) −2H(p) := (divΣ νh)(p), p ∈ Σ − Σ0.

This notion of mean curvature agrees with the ones introduced in [CHMY] and [HP]. We
say that Σ is a minimal surface if H ≡ 0 on Σ − Σ0. By using variations supported in Σ − Σ0,
the first variation of area (4.2), and the first variation of volume (4.1), we deduce that the
mean curvature of Σ − Σ0 is respectively zero or constant if Σ is area-stationary or volume-
preserving area-stationary. In Σ − Σ0 we can consider the orthonormal basis {Z, S} defined
in (2.3) and (2.4), so that we get from (4.3)

−2H =
〈

DZνh, Z
〉

+
〈

DSνh, S
〉
.

It is easy to check ([RR2, Lemma 4.2]) that for any tangent vector X to Σ we have

DXνh = |Nh|−1
(〈

DX N, Z
〉

+
〈

N, V
〉 〈

X, νh

〉)
Z +

〈
Z, X

〉
V.

In particular by taking X = Z and X = S we deduce the following expression for the mean
curvature

(4.4) 2H = |Nh|−1 II(Z, Z),

where II is the second fundamental form of Σ with respect to N in (S3, g).

On the other hand, by the arguments in [RR2, Thm. 4.8], any characteristic curve γ of a

C2 immersed surface Σ satisfies

(4.5) Dγ̇γ̇ = −2H J(γ̇).

From the previous equality we deduce that Σ − Σ0 is a ruled surface in (S3, gh) whenever
H is constant, see also [HP, Cor. 6.10].

Theorem 4.2. Let Σ be an oriented C2 immersed surface in (S3, gh) with constant mean curva-
ture H outside the singular set. Then any characteristic curve of Σ is an open arc of a geodesic of
curvature H in (S3, gh).

Now we describe the configuration of the singular set Σ0 of a constant mean curvature

surface Σ in (S3, gh). The set Σ0 was studied by J.-H. Cheng, J.-F. Hwang, A. Malchiodi
and P. Yang [CHMY] for surfaces with bounded mean curvature inside the first Heisen-
berg group. As indicated by the authors in [CHMY, Lemma 7.3] and [CHMY, Proof of
Thm. E], their local arguments also apply for spherical pseudohermitian 3-manifolds. We
gather their results in the following theorem.
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Theorem 4.3 ([CHMY, Theorem B]). Let Σ be a C2 oriented immersed surface in (S3, gh) with

constant mean curvature H off of the singular set Σ0. Then Σ0 consists of isolated points and C1

curves with non-vanishing tangent vector. Moreover, we have

(i) ([CHMY, Thm. 3.10]) If p ∈ Σ0 is isolated then there exists r > 0 and λ ∈ R with |λ| =
|H| such that the set described as

Dr(p) = {γλ
p,v(s); v ∈ TpΣ, |v| = 1, s ∈ [0, r)},

is an open neighborhood of p in Σ.

(ii) ([CHMY, Prop. 3.5 and Cor. 3.6]) If p is contained in a C1 curve Γ ⊂ Σ0 then there is
a neighborhood B of p in Σ such that B ∩ Γ is a connected curve and B − Γ is the union
of two disjoint connected open sets B+ and B− contained in Σ − Σ0. Furthermore, for any

q ∈ Γ∩ B there are exactly two geodesics γλ
1 ⊂ B+ and γλ

2 ⊂ B− starting from q and meet-
ing transversally Γ at q with opposite initial velocities. The curvature λ does not depend on
q ∈ Γ ∩ B and satisfies |λ| = |H|.

Remark 4.4. The relation between λ and H depends on the value of the normal N to Σ in
the singular point p. If Np = Vp then λ = H, whereas λ = −H when Np = −Vp. In case

λ = H the geodesics γλ in Theorem 4.3 are characteristic curves of Σ.

The characterization of area-stationary surfaces with or without a volume constraint

in (S3, gh) is similar to the one obtained by M. Ritoré and the second author in [RR2,

Thm. 4.16]. We can also improve, as in [RR2, Prop. 4.19], the C1 regularity of the singular
curves of an area-stationary surface.

Theorem 4.5. Let Σ be an oriented C2 immersed surface in S
3. The followings assertions are

equivalent

(i) Σ is area-stationary (resp. volume-preserving area-stationary) in (S3, gh).
(ii) The mean curvature of Σ − Σ0 is zero (resp. constant) and the characteristic curves meet

orthogonally the singular curves when they exist.

Moreover, if (i) holds then the singular curves of Σ are C2 smooth.

Example 4.6. 1. Every totally geodesic 2-sphere in (S3, g) is a compact minimal surface in

(S3, gh). In fact, for any q ∈ S3, the 2-sphere S3 ∩ q⊥ is the union of all the points γ0
p,v(s)

where p = −i · q, the unit vector v ∈ TpS3 is horizontal, and s ∈ [0, π]. These spheres
have two singular points at p and −p. In particular they are area-stationary surfaces by
Theorem 4.5.

2. For any ρ ∈ (0, 1) the Clifford torus Tρ has no singular points since the vertical vector

V is tangent to this surface. We consider the unit normal vector to Tρ in (S3, g) given for

q = (z1, z2) by N(q) = (αz1,−α−1z2), where α = ρ−1
√

1 − ρ2. As
〈

N, V
〉

= 0 then we have

N = Nh = νh and so Z = J(N). Let λ = (2ρ2 − 1)/(2ρ
√

1 − ρ2). It was shown in the proof

of Proposition 3.3 that the geodesic γλ
q,w with w = Z(q) is entirely contained in Tρ. The tan-

gent vector to this geodesic equals Z since the singular set is empty. We conclude that γλ
q,w

is a characteristic curve of Tρ. By using (4.5) we deduce that Tρ has constant mean curva-

ture H = (2ρ2 − 1)/(2ρ
√

1 − ρ2) with respect to the normal N. By Theorem 4.5 the surface
Tρ is volume-preserving area-stationary for any ρ ∈ (0, 1). Moreover, Tρ is area-stationary

for ρ =
√

2/2.
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The previous examples were found in [CHMY]. In [CHMY, Theorem E], J.- H. Cheng,
J.-F. Hwang, A. Malchiodi and P. Yang described the possible topological types for a com-
pact surface with bounded mean curvature inside a spherical pseudohermitian 3-manifold
were. More precisely, they proved the following result.

Theorem 4.7. Let Σ be an immersed C2 compact, connected, oriented surface in (S3, gh) with
bounded mean curvature outside the singular set. If Σ contains an isolated singular point then Σ is
homeomorphic to a sphere. Otherwise Σ is homeomorphic to a torus.

5. CLASSIFICATION RESULTS FOR COMPLETE STATIONARY SURFACES

An immersed surface Σ ⊂ S
3 is complete if it is complete in (S

3, g). We say that a com-

plete, noncompact, oriented C2 surface Σ is volume-preserving area-stationary if it has con-
stant mean curvature off of the singular set and the characteristic curves meet orthogonally
the singular curves when they exist. By Theorem 4.5 this implies that Σ is a critical point
for the area functional of any variation with compact support of Σ such that the “volume
enclosed” by the perturbed region is constant, see Remark 4.1.

5.1. Complete surfaces with isolated singularities. It was shown in [CHMY, Proof of
Cor. F] that any C2 compact, connected, embedded, minimal surface in (S3, gh) with an

isolated singular point coincides with a totally geodesic 2-sphere in (S3, g). In this section
we generalize this result for complete immersed surfaces with constant mean curvature.

First we describe the surface which results when we join two certain points in S3 by all the
geodesics of the same curvature.

For p = (1, 0, 0, 0) and λ ∈ R, let γθ be the geodesic of curvature λ in (S3, gh) with initial
conditions γθ(0) = p and γ̇θ(0) = v = (cos θ) E1(p) + (sin θ) E2(p). By (3.4) the Euclidean
coordinates of γθ are given by

x1(s) = cos(λs) cos(
√

1 + λ2 s) +
λ√

1 + λ2
sin(λs) sin(

√
1 + λ2 s),(5.1)

y1(s) = − sin(λs) cos(
√

1 + λ2 s) +
λ√

1 + λ2
cos(λs) sin(

√
1 + λ2 s),

x2(θ, s) =
1√

1 + λ2
sin(

√
1 + λ2 s) cos(θ − λs),

y2(θ, s) =
1√

1 + λ2
sin(

√
1 + λ2 s) sin(θ − λs).

We remark that the functions x1(s) and y1(s) in (5.1) do not depend on θ. We define Sλ to

be the set of points γθ(s) where θ ∈ [0, 2π] and s ∈ [0, π/
√

1 + λ2]. From (5.1) it is clear that

the point pλ := γθ(π/
√

1 + λ2) is the same for any θ. In fact, we have

pλ = − cos

(
λπ√

1 + λ2

)
p + sin

(
λπ√

1 + λ2

)
V(p).

It follows that pλ moves along the vertical great circle of S3 passing through p. Note that
p0 = −p and pλ → p when λ → ±∞. We will call p and pλ the poles of Sλ. Observe that

S0 coincides with a totally geodesic 2-sphere in (S3, g), see Example 4.6. From (5.1) we also
see that Sλ is invariant under any rotation rθ in (2.5).

Proposition 5.1. The set Sλ is a C2 embedded volume-preserving area-stationary 2-sphere with
constant mean curvature λ off of the poles.
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Proof. We consider the C∞ map F : [0, 2π] × [0, π/
√

1 + λ2] → S3 defined by F(θ, s) =

γθ(s). Clearly F(0, s) = F(2π, s), F(θ, 0) = p and F(θ, π/
√

1 + λ2) = pλ. Suppose that

F(θ1, s1) = F(θ2, s2) for θi ∈ [0, 2π) and si ∈ (0, π/
√

1 + λ2). This is equivalent to that

γθ1
(s1) = γθ2

(s2). For λ 6= 0 the function y1(s) in (5.1) is monotonic on (0, π/
√

1 + λ2)

since its first derivative equals (1 + λ2)−1/2 sin(λs) sin(
√

1 + λ2 s). For λ = 0 we have
x1(s) = cos(s), which is decreasing on (0, π). So, equality γθ1

(s1) = γθ2
(s2) implies

s1 = s2 = s0. Moreover, the equalities between the x2-coordinates and the y2-coordinates of
γθ1

(s0) and γθ2
(s0) yield θ1 = θ2. The previous arguments show that Sλ is homeomorphic

to a 2-sphere.

Note that (∂F/∂s)(θ, s) = γ̇θ(s), which is a horizontal vector. Let Xθ(s) := (∂F/∂θ)(θ, s).
By Lemma 3.4 (ii) this is a Jacobi vector field along γθ vanishing for s = 0 and s =

π/
√

1 + λ2. The components of Xθ with respect to γ̇θ and V(γθ) can be computed from
(5.1) so that we get

〈
Xθ(s), γ̇θ(s)

〉
=

(
∂x2

∂θ

∂x2

∂s
+

∂y2

∂θ

∂y2

∂s

)
(θ, s) = −λ sin2(

√
1 + λ2 s)

1 + λ2
,

〈
Xθ(s), V(γθ(s))

〉
=

(
x2

∂y2

∂θ
− y2

∂x2

∂θ

)
(θ, s) =

sin2(
√

1 + λ2 s)

1 + λ2
.

It follows that Xθ(s) has a non-trivial vertical component for s ∈ (0, π/
√

1 + λ2). As a

consequence, Sλ with the poles removed is a C∞ smooth embedded surface in S3 without
singular points.

To prove that Sλ is volume-preserving area-stationary it suffices by Theorem 4.5 to show
that the mean curvature is constant off of the poles. Consider the unit normal vector along

Sλ −{p, pλ} defined by N = (1−
〈

Xθ , γ̇θ

〉2
)−1/2 (−

〈
Xθ , V(γθ)

〉
J(γ̇θ) +

〈
Xθ , J(γ̇θ)

〉
V(γθ)).

The characteristic vector field associated to N is given by Z(θ, s) = γ̇θ(s). By using (4.5) we
deduce that Sλ − {p, pλ} has constant mean curvature λ with respect to N. To complete the

proof it is enough to observe that Sλ is also a C2 embedded surface around the poles. This
is a consequence of Remark 5.2 below. �

FIGURE 2. Stereographic projection from S3 − {north pole} to R3 of a
spherical surface Sλ given by the union of all the geodesics of curvature

λ and length π/
√

1 + λ2 leaving from p = (1, 0, 0, 0).
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Remark 5.2. The surface Sλ can be described as the union of two radial graphs over the

x2y2 plane. Let rλ = 1/
√

1 + λ2 and ϕ(r) = rλ arcsin(r/rλ) for r ∈ [0, rλ]. We can see from
(5.1) that the lower half of Sλ is given by

x1(r) =
√

1 − (r/rλ)2 cos(λϕ(r)) + λr sin(λϕ(r)),

y1(r) = λr cos(λϕ(r)) −
√

1 − (r/rλ)2 sin(λϕ(r)),

where r = (x2
2 + y2

2)
1/2 belongs to [0, rλ]. Similarly, the upper half of Sλ can be described as

x1(r) = −
√

1 − (r/rλ)2 cos(λψ(r)) + λr sin(λψ(r)),

y1(r) = λr cos(λψ(r)) +
√

1 − (r/rλ)2 sin(λψ(r)),

where ψ(r) = πrλ − ϕ(r). The poles are the points obtained for r = 0 and they are singular

points of Sλ. From the equations above it can be shown that Sλ is C2 around these points.

Moreover, Sλ is C3 around the north pole if and only if λ = 0, i.e., Sλ is a totally geodesic

2-sphere in (S3, g).

Now we can prove our first classification result.

Theorem 5.3. Let Σ be a complete, connected, oriented, immersed C2 surface with constant mean

curvature in (S3, gh) . If Σ contains an isolated singular point then Σ is congruent with a sphere Sλ.

Proof. We reproduce the arguments in [RR2, Thm. 6.1]. Let H be the mean curvature of Σ

with respect to a unit normal vector N. After a right translation of S3 we can assume that
Σ has an isolated singularity at p = (1, 0, 0, 0). Suppose that Np = V(p). By Theorem 4.3 (i)
and Remark 4.4, there exists a neighborhood Dr of p in Σ which consists of all the geodesics
of curvature λ = H and length r leaving from p. By using Theorem 4.2 and the complete-
ness of Σ we deduce that these geodesics can be extended until they meet a singular point.
As Σ is immersed and connected we conclude that Σ = Sλ. Finally, if Np = −V(p) we
repeat the previous arguments by using geodesics of curvature λ = −H and we obtain that

Σ = φ(Sλ), where φ is the isometry of (S3, g) given by φ(x1, y1, x2, y2) = (x1,−y1, x2,−y2).
Clearly φ preserves the horizontal distribution so that Σ is congruent with Sλ. �

5.2. Complete surfaces with singular curves. In this section we follow the arguments in

[RR2, §6] to describe complete area-stationary surfaces in S3 with or without a volume con-

straint and non-empty singular set consisting of C2 curves. For such a surface we know
by Theorem 4.5 that the characteristic curves meet orthogonally the singular curves. More-
over, if the surface is compact then it is homeomorphic to a torus by virtue of Theorem 4.7.

We first study in more detail the behaviour of the characteristic curves of a volume-

preserving area-stationary surface far away from a singular curve. Let Γ : I → S
3 be a C2

curve defined on an open interval. We suppose that Γ is horizontal with arc-length param-

eter ε ∈ I. We denote by Γ̈ the covariant derivative of Γ̇ for the flat connection on R4. Note

that {Γ, Γ̇, J(Γ̇), V(Γ)} is an orthonormal basis of R4 for any ε ∈ I. Thus we get

(5.2) Γ̈ = −Γ + h J(Γ̇),

where h =
〈
Γ̈, J(Γ̇)

〉
. Fix λ ∈ R. For any ε ∈ I, let γε(s) be the geodesic in (S3, gh) of curva-

ture λ with initial conditions γε(0) = Γ(ε) and γ̇ε(0) = J(Γ̇(ε)). Clearly γε is orthogonal to
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Γ at s = 0. By equation (3.5) we have

γε(s) =

(
cos(λs) cos(

√
1 + λ2 s) +

λ sin(λs) sin(
√

1 + λ2 s)√
1 + λ2

)
Γ(ε)(5.3)

+
sin(λs) sin(

√
1 + λ2 s)√

1 + λ2
Γ̇(ε) +

cos(λs) sin(
√

1 + λ2 s)√
1 + λ2

J(Γ̇(ε))

+

(
− sin(λs) cos(

√
1 + λ2 s) +

λ cos(λs) sin(
√

1 + λ2 s)√
1 + λ2

)
V(Γ(ε)).

We define the C1 map F(ε, s) = γε(s), for ε ∈ I and s ∈ [0, π/
√

1 + λ2]. Note that
(∂F/∂s)(ε, s) = γ̇ε(s). We define Xε(s) := (∂F/∂ε)(ε, s). In the next result we prove some
properties of Xε.

Lemma 5.4. In the situation above, Xε is a Jacobi vector field along γε with Xε(0) = Γ̇(ε).

For any ε ∈ I there is a unique sε ∈ (0, π/
√

1 + λ2) such that
〈

Xε(sε), V(γε(sε))
〉

= 0.

We have
〈

Xε, V(γε)
〉

< 0 on (0, sε) and
〈

Xε, V(γε)
〉

> 0 on (sε, π/
√

1 + λ2). Moreover
Xε(sε) = J(γ̇ε(sε)).

Proof. We denote by a(s), b(s), c(s) and d(s) the components of γε(s) with respect to the
orthonormal basis {Γ, Γ̇, J(Γ̇), V(Γ)}, see (5.3). By using (5.2) we have that

d

dε
J(Γ̇(ε)) =

d

dε
(i · Γ̇(ε)) = i · Γ̈(ε) = −V(Γ(ε)) − h(ε)Γ̇(ε),

d

dε
V(Γ(ε)) =

d

dε
(i · Γ(ε)) = i · Γ̇(ε) = J(Γ̇(ε)).

From here, the definition of Xε, and (5.2) we obtain

Xε(s) = −b(s) Γ(ε) + (a(s) − h(ε)c(s)) Γ̇(ε) + (d(s) + h(ε)b(s)) J(Γ̇(ε)) − c(s) V(Γ(ε)).

It follows that Xε(0) = Γ̇(ε) and that Xε is a C∞ vector field along γε. Moreover, Xε is a Ja-
cobi vector field along γε by Lemma 3.4 (ii). The vertical component of Xε can be computed
from (5.3) so that we get

〈
Xε, V(γε)

〉
(s) =

〈
Xε(s), i · γε(s)

〉
= 2 (b(s)d(s) − a(s)c(s)) + h(ε) (b(s)2 + c(s)2)

=
sin(

√
1 + λ2 s)√

1 + λ2

(
sin(

√
1 + λ2 s)√

1 + λ2
h(ε) − 2 cos(

√
1 + λ2 s)

)
.

Thus
〈

Xε(sε), V(γε(sε))
〉

= 0 for some sε ∈ (0, π/
√

1 + λ2) if and only if

(5.4) h(ε) = 2
√

1 + λ2 cot(
√

1 + λ2 sε).

From (5.4) we obtain the existence and uniqueness of sε as that as the sign of
〈

Xε, V(γε)
〉
.

Now we use Lemma 3.4 (i) and that Xε(0) = Γ̇(ε) to deduce that the function given
by λ

〈
Xε, V(γε)

〉
+
〈

Xε, γ̇ε

〉
vanishes along γε. In particular, Xε(sε) is a horizontal vector

orthogonal to γ̇ε(sε). Finally, a straightforward computation gives us
〈

Xε, J(γ̇ε)
〉
(s) = b(s)ḋ(s) − (a(s) − h(ε)c(s)) ċ(s) + (d(s) + h(ε)b(s)) ḃ(s) − ȧ(s)c(s)

=
sin(2

√
1 + λ2 s)

2
√

1 + λ2
h(ε) − cos(2

√
1 + λ2 s), s ∈ [0, π/

√
1 + λ2].

By using (5.4) we see that the expression above equals 1 for s = sε. This completes the
proof. �
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In the next result we construct immersed surfaces with constant mean curvature boun-
ded by two singular curves. Geometrically we only have to leave from a given horizontal
curve by segments of orthogonal geodesics of the same curvature. The length of these seg-
ments is indicated by the cut function sε defined in Lemma 5.4. We also characterize when
the resulting surfaces are area-stationary with or without a volume constraint.

Proposition 5.5. Let Γ be a Ck+1 (k > 1) horizontal curve in S3 parameterized by arc-length

ε ∈ I. Consider the map F : I × [0, π/
√

1 + λ2] → S3 defined by F(ε, s) = γε(s), where γε is the
geodesic of curvature λ with initial conditions Γ(ε) and J(Γ̇(ε)). Let sε be the function introduced
in Lemma 5.4, and let Σλ(Γ) := {F(ε, s); ε ∈ I, s ∈ [0, sε]}. Then we have

(i) Σλ(Γ) is an immersed surface of class Ck in S3.
(ii) The singular set of Σλ(Γ) consists of two curves Γ(ε) and Γ1(ε) := F(ε, sε).

(iii) There is a Ck−1 unit normal vector N to Σλ(Γ) in (S3, g) such that N = V on Γ and
N = −V on Γ1.

(iv) The curve γε(s) for s ∈ (0, sε) is a characteristic curve of Σλ(Γ) for any ε ∈ I. In particular,

if k > 2 then Σλ(Γ) has constant mean curvature λ in (S3, gh) with respect to N.
(v) If Γ1 is a C2 smooth curve then the geodesics γε meet orthogonally Γ1 if and only if sε is

constant along Γ. This condition is equivalent to that Γ is a geodesic in (S3, gh).

Proof. That F is a Ck map is a consequence of (5.3) and the fact that Γ is Ck+1. Consider the
vector fields (∂F/∂ε)(ε, s) = Xε(s) and (∂F/∂s)(ε, s) = γ̇ε(s). By Lemma 5.4 we deduce that

the differential of F has rank two for any (s, ε) ∈ I × [0, π/
√

1 + λ2), and that the tangent
plane to Σλ(Γ) is horizontal only for the points in Γ and Γ1. This proves (i) and (ii).

Consider the Ck−1 unit normal vector to the immersion F : I × [0, π/
√

1 + λ2) → S3

given by N = (1 −
〈

Xε, γ̇ε
〉2

)−1/2 (
〈

Xε, V(γε)
〉

J(γ̇ε) −
〈

Xε, J(γ̇ε)
〉

V(γε)). Since we have

Xε(0) = Γ̇(ε) and Xε(sε) = J(γ̇ε(sε)) it follows that N = V along Γ and N = −V along Γ1.
On the other hand, the characteristic vector field associated to N is

Z(ε, s) = −
〈

Xε(s), V(γε(s))
〉

|
〈

Xε(s), V(γε(s))
〉
| γ̇ε(s), ε ∈ I, s 6= 0, sε,

and so Z(ε, s) = γ̇ε(s) whenever s ∈ (0, sε) by Lemma 5.4. This fact and (4.5) prove (iv).

Finally, suppose that Γ1 is a C2 smooth curve. In this case, the cut function s(ε) = sε is

C1, and the tangent vector to Γ1 is given by

Γ̇1(ε) = Xε(sε) + ṡ(ε) γ̇ε(sε).

As Xε(sε) = J(γ̇ε(sε)) we conclude that the geodesics γε meet Γ1 orthogonally if and only
if s(ε) is a constant function. By (5.4) the function h =

〈
Γ̈, J(Γ̇)

〉
is constant along Γ. By

Lemma 3.2 this is equivalent to that Γ is a geodesic. �

Remark 5.6. 1. In the proof of Proposition 5.5 we have shown that if we extend the surface
Σλ(Γ) by the geodesics γε beyond the singular curve Γ1 then the resulting surface has mean
curvature −λ beyond Γ1. As indicated in Theorem 4.3 (ii), to obtain an extension of Σλ(Γ)
with constant mean curvature λ we must leave from Γ1 by geodesics of curvature −λ.

2. Let Γ : I → S3 be a Ck+1 (k > 1) horizontal curve parameterized by arc-length.
We consider the geodesic γ̃ε of curvature λ and initial conditions Γ(ε) and −J(Γ̇(ε)). By
following the arguments in Lemma 5.4 and Proposition 5.5 we can construct the surface

Σ̃λ(Γ) := {γ̃ε(s); ε ∈ I, s ∈ [0, s̃ε]}, which is bounded by two singular curves Γ and Γ2. The

value s̃ε is defined as the unique s ∈ (0, π/
√

1 + λ2) such that
〈

X̃ε, V(γ̃ε)
〉
(s) = 0. Here X̃ε
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is the Jacobi vector field associated to the variation {γ̃ε}. The cut function s̃ε satisfies the
equality

(5.5) h(ε) = −2
√

1 + λ2 cot(
√

1 + λ2 s̃ε),

where h =
〈

Γ̈, J(Γ̇)
〉
. From (5.4) it follows that sε + s̃ε = π/

√
1 + λ2. The vector X̃ε coin-

cides with −J( ˙̃γε) for s = s̃ε. We can define a unit normal Ñ satisfying Ñ = V on Γ and

Ñ = −V on Γ2. For k ≥ 2 we deduce that Σλ(Γ) ∪ Σ̃λ(Γ) is an oriented immersed surface
with constant mean curvature λ outside the singular set and at most three singular curves.

Now we shall use Proposition 5.5 and Remark 5.6 to obtain examples of complete sur-
faces with constant mean curvature outside a non-empty set of singular curves. Taking into
account Theorem 4.5 and Proposition 5.5 (v), if we also require the surfaces to be volume-
preserving area-stationary then the initial curve Γ must be a geodesic.

Example 5.7 (The torus C0,λ). Let Γ be the horizontal great circle of S3 parameterized
by Γ(ε) = (cos(ε), 0, sin(ε), 0) (the geodesic of curvature µ = 0 with initial conditions
p = (1, 0, 0, 0) and v = E1(p)). For any λ ∈ R let C0,λ be the union of the surfaces Σλ(Γ) and

Σ̃λ(Γ) introduced in Proposition 5.5 and Remark 5.6. The resulting surface is C∞ outside the
singular set and has constant mean curvature λ. The cut functions sε and s̃ε associated to Γ

can be obtained from (5.4) and (5.5), so that we get sε = s̃ε = π/(2
√

1 + λ2). By using (5.3)

we can compute the map F(ε, s) = γε(s) defined for ε ∈ [0, 2π] and s ∈ [0, π/(2
√

1 + λ2)].
In particular we can give an explicit expression for the singular curve Γ1(ε), which is a hori-
zontal great circle different from Γ. Let ε0 ∈ (0, π) such that cot(ε0) = −λ. It is easy to check

that Γ1(ε0) = exp(iθ1) · p and Γ̇1(ε0) = exp(iθ1) · v, where θ1 = 3π/2 − (λπ)/(2
√

1 + λ2).
By using the uniqueness of the geodesics we deduce that Γ1(ε + ε0) = exp(iθ1) · Γ(ε). With
similar arguments we obtain that Γ2(ε + ε̃0) = exp(iθ2) · Γ(ε), where ε̃0 = π − ε0 and
θ2 = θ1 − π. Note that exp(iθ1) · p = − exp(iθ2) · p. As any great circle of S3 is invariant un-
der the antipodal map q 7→ −q, we conclude that Γ1 and Γ2 are different parameterizations
of the same horizontal great circle.

FIGURE 3. Stereographic projection from S3 − {north pole} to R3 of one
half of the surface C0,λ. It consists of the union of all the geodesics of cur-

vature λ and length π/(2
√

1 + λ2) connecting two singular circles.

In Figure 3 we see that the surface Σλ(Γ) is embedded. To prove this note that the func-
tion (x1y1 + x2y2)(ε, s) only depends on s, and its first derivative with respect to s equals



AREA-STATIONARY SURFACES IN THE SUB-RIEMANNIAN S3 19

(1 + λ2)−1/2 sin(2λs) sin(2
√

1 + λ2 s), which does not change sign on (0, π/(2
√

1 + λ2)).

Thus if F(ε1, s1) = F(ε2, s2) for some ε i ∈ [0, 2π) and si ∈ [0, π/(2
√

1 + λ2)] then s1 = s2,

which clearly implies ε1 = ε2. Similarly we obtain that Σ̃λ(Γ) is embedded. On the other

hand, observe that 2(x1y2 − x2y1)(ε, s) = sin(2
√

1 + λ2 s)/
√

1 + λ2 on Σλ(Γ), whereas the

same function evaluated on Σ̃λ equals − sin(2
√

1 + λ2 s)/
√

1 + λ2. It follows that C0,λ is an
embedded surface outside the singular curves. Finally, a long but easy computation shows
that there is a system of coordinates (u1, u2, u3, u4) such that C0,λ can be expressed as union
of certain graphs u1 = fi(u2, u3) and u4 = gi(u2, u3), i = 1, 2, defined over an annulus of

the u2u3-plane. The functions fi and gi are C2 near the singular curves. This proves that
C0,λ is a volume-preserving area-stationary embedded torus with two singular curves.

FIGURE 4. Stereographic projection from S3 −{north pole} to R3 of an em-
bedded torus C0,λ.

Example 5.8 (The surfaces Cµ,λ). Let Γ be the geodesic of curvature µ in (S3, gh) with initial

conditions p = (1, 0, 0, 0) and v = E1(p). We know that the function h =
〈
Γ̈, J(Γ̇)

〉
equals

−2µ along Γ by Lemma 3.2. For any λ ∈ R we consider the union Σλ(Γ) ∪ Σ̃λ(Γ), which
is a C∞ surface with constant mean curvature λ outside the singular curves Γ, Γ1 and Γ2.
By using Lemma 3.2 (ii) we can prove that any Γi is a geodesic of curvature µ. The cut
functions sε and s̃ε are determined by equalities (5.4) and (5.5). Define εµ as the unique

ε ∈ (0, π/
√

1 + µ2) such that cot(
√

1 + µ2 εµ) = −λ/
√

1 + µ2. Let ε̃µ = π/
√

1 + µ2 − εµ.
Easy computations from (5.3) show that

Γ1(sµ) = exp(iθ1) · p, Γ̇1(sµ) = exp(iθ1) · v,

Γ2(s̃µ) = exp(iθ2) · p, Γ̇2(s̃µ) = exp(iθ2) · v,

where θ1 = 3π/2 − λsε − µεµ and θ2 = π/2 − λs̃ε − µε̃µ. By the uniqueness of the
geodesics we deduce that Γ1(ε + εµ) = exp(iθ1) · Γ(ε) and Γ2(ε + ε̃µ) = exp(iθ2) · Γ(ε).
In general Γ1 6= Γ2 so that we can extend the surface by geodesics orthogonal to Γi of the
same curvature. As we pointed out in Remark 5.6 and according with the initial velocity
of Γi, in order to preserve the constant mean curvature λ we must consider the surfaces

Σ̃−λ(Γ1) and Σ−λ(Γ2). Two new singular curves Γ12 and Γ22 are obtained. It is straightfor-
ward to check that, after a translation of the parameter ε, we have Γ12 = exp(iθ12) · Γ and
Γ22 = exp(iθ22) · Γ, where θ12 = θ1 + π/2 + λs̃ε − µεµ and θ22 = θ2 + 3π/2 + λsε − µε̃µ.

Let θ̃1 = θ12 − θ1 and θ̃2 = θ22 − θ2. We repeat this process by induction so that at any
step k + 1 we leave from the singular curves Γ1k and Γ2k by the corresponding orthogonal
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geodesics of curvature (−1)kλ. We denote by Cµ,λ the union of all these surfaces. After
a translation of ε, any singular curve Γjk is of the form exp(iθjk) · Γ, where the angles are

given by θj 2m = m(θj + θ̃j) and θj 2m+1 = (m + 1)θj + mθ̃j. This implies that all the singular

curves are geodesics of curvature µ and their projections to S2 via the Hopf fibration give
the same geodesic circle. It follows by uniqueness of the horizontal lifts that two singular

curves meeting at one point must coincide as subsets of S3. In fact it is possible that two
singular curves coincide. For example, the surface Cµ,0 is a compact surface with two or

four singular curves (depending on if µ/
√

1 + µ2 is rational or not). On the other hand it

can be shown that if µ/
√

1 + µ2 and λ/
√

1 + λ2 are rational numbers and (λsε + µεµ)/π

is irrational (take λ = µ = 1/
√

3) then Cµ,λ is a noncompact surface with infinitely many
singular curves.

The surface Cµ,λ is C∞ off of the singular set and has constant mean curvature λ. A

necessary condition to get a surface which is also C2 near the singular curves is that Γ

locally separates Cµ,λ into two disjoint domains, see Theorem 4.3 (ii). By Proposition 3.3

this is equivalent to that µ/
√

1 + µ2 is a rational number. In such a case Cµ,λ is a volume-
preserving area-stationary surface by construction. In general the surfaces Cµ,λ are not
embedded.

Now we can classify complete area-stationary surfaces under a volume constraint with
a non-empty set of singular curves.

Theorem 5.9. Let Σ be a complete, oriented, connected, C2 immersed surface. Suppose that Σ is

volume-preserving area-stationary in (S3, gh) and Γ is a connected singular curve of Σ. Then Γ is a
closed geodesic, and Σ is congruent with a surface Cµ,λ.

Proof. By Theorem 4.5 we have that Γ is a C2 horizontal curve. We can assume that Γ is
parameterized by arc-length. We take the unit normal N to Σ such that N = V along Γ.
Let H be the mean curvature of Σ with respect to N. Let p ∈ Γ. By Theorem 4.3 (ii) and
Remark 4.4 there is a small neighborhood B of p in Σ such that B ∩ Γ is a connected curve
separating B into two disjoint connected open sets foliated by geodesics γε of curvature
λ = H leaving from Γ. These geodesics are characteristic curves of Σ. Moreover, by Theo-
rem 4.5 they must leave from Γ orthogonally. As Σ is complete and connected we deduce
that any γε can be extended until it meets a singular point. Thus there exists a small piece
Γ
′ ⊂ Γ containing p and such that Σλ(Γ

′) ⊂ Σ. In particular we find another singular

curve Γ
′
1 of Σ which is also C2 smooth by Theorem 4.5. As Σ is volume-preserving area-

stationary, any γε meet Γ
′
1 orthogonally and so Γ

′ is a geodesic by Proposition 5.5 (v). Since

p ∈ Γ is arbitrary we have proved that Γ is a geodesic in (S3, gh). That Γ is closed follows
from Proposition 3.3; otherwise, the intersection of Γ with any open neighborhood of p in Σ

would have infinitely many connected components, a contradiction with Theorem 4.3 (ii).
After applying a right translation Rq and a rotation rθ we can suppose that Γ leaves from
p = (1, 0, 0, 0) with velocity v = E1(p). By using again the local description of Σ around Γ in
Theorem 4.3 (ii) together with the completeness and the connectedness of Σ, we conclude
that Σ is congruent with Cµ,λ. �

5.3. Complete surfaces with empty singular set. Here we prove some classification re-
sults for complete constant mean curvature surfaces with empty singular set. Such a sur-
face must be area-stationary with or without a volume constraint by Theorem 4.5. More-
over, if the surface is compact then it must be homeomorphic to a torus by Theorem 4.7.
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The following result uses the behaviour of geodesics in (S3, gh) described in Proposi-
tion 3.3 to establish a strong restriction on a compact embedded surface with constant mean
curvature.

Theorem 5.10. Let Σ be a C2 compact, connected, embedded surface in (S3, gh) without singular

points. If Σ has constant mean curvature H such that H/
√

1 + H2 is an irrational number, then Σ

is congruent with a Clifford torus.

Proof. As Σ is compact with empty singular set we deduce by Theorem 4.2 that there is a
complete geodesic γ of curvature H contained in Σ. After a right translation Rq we have,
by Proposition 3.3, that Rq(γ) is a dense subset of a Clifford torus Tρ. By using that Σ is
compact, connected and embedded we conclude that Rq(Σ) = Tρ, proving the claim. �

In Remark 6.6 we will give examples showing that all the hypotheses Theorem 5.10 are
necessary. We finish this section with a characterization of the Clifford tori Tρ as the unique

vertical surfaces with constant mean curvature. We say that a C1 surface Σ ⊂ S3 is vertical
if the vector field V is tangent to Σ.

Proposition 5.11. Let Σ be a C2 complete, connected, oriented, constant mean curvature surface
in (S3, gh). If Σ is vertical then Σ is congruent with a Clifford torus.

Proof. It is clear that Σ has no singular points. Thus we can find by Theorem 4.2 a complete

geodesic γ contained in Σ. By Proposition 3.3 there is a point q ∈ S
3 such that Rq(γ) is con-

tained inside a Clifford torus Tρ. By assumption, the vertical great circle passing through
any point of γ is entirely contained in Rq(Σ). Clearly the union of all these circles is Tρ.
Finally as Σ is complete and connected we conclude that Rq(Σ) = Tρ. �

6. ROTATIONALLY INVARIANT CONSTANT MEAN CURVATURE SURFACES

In this section we classify C2 constant mean curvature surfaces of revolution in (S3, gh).
We will follow arguments similar to those in [RR, §5].

Let R be the great circle given by the intersection of S3 with the x1y1-plane. The rotation

rθ of the x2y2-plane defined in (2.5) is an isometry of (S3, g) leaving invariant the horizontal

distribution and fixing R. Let Σ be a C2 surface in S3 which is invariant under any rotation

rθ . We denote by γ the generating curve of Σ inside the hemisphere S2
+ := {x2 > 0, y2 = 0}.

If we parameterize γ = (x1, y1, x2) by arc-length s ∈ I, then Σ − R is given in cylindrical
coordinates by φ(s, θ) = rθ(γ(s)) = (x1(s), y1(s), x2(s) cos θ, x2(s) sin θ). Denote by {e1, e2}
the usual orthonormal frame in the Euclidean plane. The tangent plane to Σ − R is gen-
erated by the vector fields ∂1 := e1(φ) and ∂2 := e2(φ). Note that |∂1| = 1, |∂2| = x2 and〈

∂1, ∂2

〉
= 0. A unit normal vector along φ is given by

(6.1) N = (x2ẏ1 − ẋ2y1, x1ẋ2 − ẋ1x2, (ẋ1y1 − x1ẏ1) cos θ, (ẋ1y1 − x1ẏ1) sin θ).

It follows that |Nh|2 =
〈

N, E1

〉2
+
〈

N, E2

〉2
= (ẋ1y1 − x1ẏ1)

2 + x2
2. In particular, the singular

points of Σ are contained inside R.

Now we compute the mean curvature H of Σ − R with respect to the normal N defined

in (6.1). By equality (4.4) we know that 2H = |Nh|−1II(Z, Z) and so, it is enough to compute
the second fundamental form II of φ with respect to N. It is clear that the coefficients of II
in the basis {∂1, ∂2} are given by IIij = II(∂i, ∂j) = −

〈
D∂i

N, ∂j

〉
=
〈

N, Dei
∂j

〉
. On the other

hand, if (a1j, a2j, a3j) are the coordinates of ∂j in the orthonormal basis {E1, E2, V}, then a
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straightforward calculation by using (2.1) shows that the coordinates of Dei
∂j with respect

to {E1, E2, V} are
(

∂a1j

∂ei
+ a3i a2j − a2i a3j,

∂a2j

∂ei
− a3i a1j + a1i a3j,

∂a3j

∂ei
+ a2i a1j − a1i a2j

)
.

This allows us to compute IIij and we obtain the following

II11 = x2 (ẍ1ẏ1 − ẋ1ÿ1) − ẋ2 (ẍ1y1 − x1ÿ1) + ẍ2 (ẋ1y1 − x1ẏ1),

II12 = II21 = 0,

II22 = x2 (x1ẏ1 − ẋ1y1).

On the other hand, the coordinates of the characteristic vector field Z with respect to

{∂1, ∂2} are
〈

Z, ∂1

〉
and x−2

2

〈
Z, ∂2

〉
. Thus we can use equation (4.4) to deduce that the

mean curvature of Σ − R with respect to N is

2H =
(x1ẏ1 − ẋ1y1)

3 + x3
2 {x2 (ẍ1ẏ1 − ẋ1ÿ1) − ẋ2 (ẍ1y1 − x1ÿ1) + ẍ2 (ẋ1y1 − x1ẏ1)}

x2 (ẋ1 + ẏ1)3/2
.

Now we take spherical coordinates (ω, τ) in S2 ≡ {y2 = 0}. In precise terms, we choose

ω ∈ (−π/2, π/2) and τ ∈ R so that the Euclidean coordinates of a point in S2 different
from the poles can be expressed as x1 = cos ω cos τ, y1 = cos ω sin τ and x2 = sin ω. The

vector fields ∂ω and ∂τ/(cos ω) provide an orthonormal basis of the tangent plane to S2 off
of the poles. The integral curves of ∂ω and ∂τ are the meridians and the circles of revolution
about the x2-axis, respectively.

Let (ω(s), τ(s)) with ω(s) ∈ [0, π/2) be the spherical coordinates of the generating curve
γ(s). Denote by σ(s) the oriented angle between ∂ω and γ̇(s). Then we have ω̇ = cos σ and
τ̇ = (sin σ)/(cos ω). Now we replace Euclidean coordinates with spherical coordinates in
the expression given above for the mean curvature H of Σ − R and we get

Lemma 6.1. The generating curve γ = (ω, τ) in S
2
+ of a C2 surface which is invariant under

any rotation rθ and has mean curvature H in (S3, gh) satisfies the following system of ordinary
differential equations

(∗)H






ω̇ = cos σ,

τ̇ =
sin σ

cos ω
,

σ̇ = tan ω sin σ − cot3 ω sin3 σ + 2H
(sin2 ω cos2 σ + sin2 σ)3/2

sin2 ω
,

whenever ω ∈ (0, π/2). Moreover, if H is constant then the function

(6.2)
sin ω cos ω sin σ√

sin2 ω cos2 σ + sin2 σ
− H sin2 ω

is constant along any solution of (∗)H .

Note that the system (∗)H has singularities for ω = 0, π/2. We will show that the possi-
ble contact between a solution (ω, τ, σ) and R is perpendicular. This means that the gener-

ated surface Σ is of class C1 near R.

The existence of a first integral for (∗)H follows from Noether’s theorem [GiH, §4 in
Chap. 3] by taking into account that the translations along the τ-axis preserve the solutions
of (∗)H . The constant value E of the function (6.2) will be called the energy of the solution
(ω, τ, σ). Notice that

sin ω cos ω sin σ = (E + H sin2 ω)
√

sin2 ω cos2 σ + sin2 σ.
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The equation above clearly implies

(6.3) (sin2 ω cos2 ω − (E + H sin2 ω)2) sin2 σ = (E + H sin2 ω)2 sin2 ω cos2 σ,

from which we deduce the inequality

(6.4) sin ω cos ω > |E + H sin2 ω|,
which is an equality if and only if cos σ = 0.

Moreover, by using (6.3) we get

(6.5) sin σ =
(E + H sin2 ω) sin ω

cos ω
√

sin2 ω − (E + H sin2 ω)2
.

By substituting (6.5) in the third equation of (∗)H we deduce

(6.6) σ̇ =
p(sin2 ω)

cos2 ω (sin2 ω − (E + H sin2 ω)2)3/2
,

where p is the polynomial given by p(x) = −(E + Hx)3 − Hx3 + (E + 2H)x2.

From the uniqueness of the solutions of (∗)H for given initial conditions we easily obtain

Lemma 6.2. Let (ω(s), τ(s), σ(s)) be a solution of (∗)H with energy E. Then, we have

(i) The solution can be translated along the τ-axis. More precisely, (ω(s), τ(s) + τ0, σ(s)) is
a solution of (∗)H with energy E for any τ0 ∈ R.

(ii) The solution is symmetric with respect to any meridian {τ = τ(s0)} such that ω̇(s0) = 0.
As a consequence, we can continue a solution by reflecting across the critical points of ω(s).

(iii) The curve (ω(s0 − s), τ(s0 − s), π + σ(s0 − s)) is a solution of (∗)−H with energy −E.

Lemma 6.3. Let (ω(s), τ(s), σ(s)) be a solution of (∗)H . If sin σ(s0) 6= 0, then the coordinate ω
is a function over a small τ-interval around τ(s0). Moreover

(6.7)
dω

dτ
= cos ω cot σ,

d2ω

dτ2
= − sin ω cos ω sin σ cos2 σ + σ̇ cos2 ω

sin3 σ
,

where σ̇ is the derivative of σ with respect to s.

Now we describe the complete solutions of (∗)H . They are of the same types as the
ones obtained by W. Y. Hsiang [Hs] when he studied constant mean curvature surfaces of

revolution in (S3, g).

Theorem 6.4. Let γ be the generating curve of a C2 complete, connected, rotationally invariant
surface Σ with constant mean curvature H and energy E. Then the surface Σ must be of one of the
following types

(i) If H = 0 and E = 0 then γ is a half-meridian and Σ is a totally geodesic 2-sphere in (S3, g).
(ii) If H = 0 and E 6= 0 then Σ coincides either with the minimal Clifford torus T√2/2 or with

a compact embedded surface of unduloidal type.
(iii) If H 6= 0 and E = 0 then Σ is a compact surface congruent with a sphere SH .
(iv) If EH 6= 0 and H 6= −E then Σ coincides either with a non-minimal Clifford torus Tρ,

or with an unduloidal type surface, or with a nodoidal type surface which has selfintersec-

tions. Moreover, unduloids and nodoids are compact surfaces if and only if H/
√

1 + H2 is
a rational number.

(v) If H = −E then γ consists of a union of circles meeting at the north pole. The generated Σ

is a compact surface if and only if H/
√

1 + H2 is a rational number.
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FIGURE 5. Generating curves in spherical coordinates of rotationally in-

variant surfaces with constant mean curvature in (S3, gh). The horizontal
segments represent the τ-axis and the line ω = π/2, which is identified
with the north pole. The vertical segment represents the ω-axis. The gener-
ated surfaces are, respectively, a totally geodesic 2-sphere, a Clifford torus,
a spherical surface Sλ, an unduloidal type surface, a nodoidal type surface,
and a surface consisting of “petals” meeting at the north pole.

Proof. By removing the points where the generating curve meets the north pole and R, we
can suppose that γ = (ω, τ, σ) is a complete solution of (∗)H with energy E. By Lemma 6.2
(i) we can assume that γ is defined over an open interval I containing the origin, and that
the initial conditions are (ω0, 0, σ0). We can also suppose that H > 0 by Lemma 6.2 (iii).

To prove the theorem we distinguish several cases depending on the value of E.

• E = 0. Suppose first that H = 0. Then sin σ ≡ 0 along γ from (6.5) and so, the solution
is given by τ ≡ 0, ω(s) = s + ω0 and σ ≡ 0. We conclude that γ is a half-meridian. The

generated surface is a totally geodesic 2-sphere in (S
3, g) with two isolated singular points.

Now suppose H > 0. In this case we get sin σ > 0 by (6.5) and so we can see the ω-
coordinate as a function of τ. Moreover, tan ω 6 1/H by (6.4), so that the solution could

approach the τ-axis. We can take the initial conditions of γ as (arctan(H−1), 0, π/2). By
the symmetry of the solutions we only have to study the function ω(τ) for τ > 0. By using
(6.6) we obtain σ̇ > 0, which together with the fact that sin σ > 0, implies that σ ∈ (π/2, π).
Therefore cos σ < 0 and the function ω(τ) is strictly decreasing. In addition sin σ → 0 as
ω → 0 by (6.5) and so, γ meets the τ-axis orthogonally.

On the other hand as cos σ < 0 we can see the τ-coordinate as a function of ω. This
function satisfies that

dτ

dω
=

−H sin2 ω

cos ω
√

cos2 ω − H2 sin2 ω
, ω ∈ (0, arctan(H−1)).

We can integrate the equality above to conclude that

τ(ω) =
H√

1 + H2
arcsin(

√
1 + H2 sin ω) − arcsin(H tan ω) +

π

2

(
1 − H√

1 + H2

)
.

Finally it is easy to see that, after a translation along the τ-axis, the expression of the gener-
ated Σ in Euclidean coordinates coincides with the one given in (5.1) for the sphere SH .

• E 6= 0. From (6.4) we get that (1 + H2) sin4 ω − (1 − 2EH) sin2 ω + E2 6 0, which

implies that (1 − 2EH)2 − 4E2(1 + H2) > 0. In this case, ω1 6 ω 6 ω2, where sin ω1 and
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sin ω2 coincide with the positive zeroes of the polynomial (1 + H2)x4 − (1 − 2EH)x2 + E2.
Therefore the solution does not approach the τ-axis. We distinguish several cases:

(i) E > 0. If (1 − 2EH)2 − 4E2(1 + H2) = 0 (ω1 = ω2) then E = (
√

1 + H2 − H)/2 and
the solution is given by

ω ≡ arcsin
(√1

2
− H

2
√

1 + H2

)
.

The generated Σ is the Clifford torus Tρ with ρ2 = (1/2)(1 + H/
√

1 + H2). Otherwise, by
equation (6.5) we get that sin σ > 0 and then the ω-coordinate is a function of τ. After a
translation along the τ-axis we can suppose that the initial conditions of γ are (ω1, 0, π/2).
Moreover, by symmetry of the solutions, it is enough to study ω(τ) for τ > 0.

Call s2 to the first s > 0 such that σ(s) = π/2. Taking into account (6.6), it is easy to see
that there exists a unique s1 ∈ (0, s2) such that σ̇(s1) = 0. By the definition of s1 and s2 we
get σ̇ < 0 on (0, s1) and σ̇ > 0 on (s1, s2), so that σ reaches a minimal value in σ(s1). As
a consequence, σ ∈ (0, π/2) and cos σ > 0 on (0, s2). Thus, if we define τ2 = τ(s2) then
the function ω(τ) is strictly increasing on (0, τ2) and so, ω(τ2) = ω2. On the other hand by
substituting (6.5) and (6.6) into (6.7) we get

(6.8)
d2ω

dτ2
=

cos ω

sin3 ω (E + H sin2 ω)3
((E + H sin2 ω)3 − 2(E + H) sin4 ω cos2 ω).

It follows that there exists a unique value τ1 ∈ (0, τ2) such that (d2ω/dτ2)(τ1) = 0. We can
conclude that the graph ω(τ) is strictly increasing and strictly convex on (0, τ1) whereas
it is strictly increasing and strictly concave on (τ1, τ2). By successive reflections across the
vertical lines on which ω(τ) reaches its critical points, we get the full solution which is
periodic and similar to a Euclidean unduloid.

As cos σ > 0 on (0, s2), we can see the τ-coordinate as a function of ω ∈ (ω1, ω2). Then,
the period of γ is given by

T = 2

∫ ω2

ω1

τ̇(ω) dω = 2

∫ ω2

ω1

(E + H sin2 ω) sin ω

cos ω
√

cos2 ω sin2 ω − (E + H sin2 ω)2
dω.

A straightforward computation shows that T = (1 − H/
√

1 + H2)π. Then the generated

Σ is an unduloidal type surfaces which is compact if and only if H/
√

1 + H2 is a rational
number. Moreover, Σ is embedded if and only if T = 2π/k for some integer k. In the par-
ticular case of H = 0, we have proved that the generated Σ is either the minimal Clifford
torus or a compact embedded unduloidal type surface.

(ii) E < 0. Assuming that H < −E we get that sin σ < 0 along γ by (6.5). By using the
same arguments as in the previous case we deduce that Σ coincides either with the Clifford

torus Tρ with ρ2 = (1/2)(1− H/
√

1 + H2), or with an unduloidal type surface with period

T = (1 + H/
√

1 + H2) π. Hence these unduloidal surfaces are never embedded. Moreover

they are compact if and only if H/
√

1 + H2 is a rational number.

Thus we can suppose H > −E. In this case we have sin σ < 0 if sin ω ∈ [sin ω1,
√
−E/H)

while sin σ > 0 if sin ω ∈ (
√
−E/H, sin ω2]. Moreover, from (6.6) it is easy to check that

σ̇ > 0 along the solution. After a translation along the τ-axis, we can suppose that the
initial conditions of γ are (ω2, 0, π/2). By the symmetry property we only have to study
the solution for s > 0.

Call s1 and s2 to the first positive numbers such that s1 < s2, σ(s1) = π and σ(s2) =

3π/2. Then ω(s1) =
√
−E/H and ω(s2) = ω1. Call τi = τ(si), i = 1, 2. We have that
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σ ∈ (π/2, π) on (0, s1) and σ ∈ (π, 3π/2) on (s1, s2). As a consequence, the restriction
of γ to [0, s2] consists of two graphs of the function ω(τ) meeting at τ = τ1. Taking into
account (6.8) we can conclude that ω(τ) is strictly decreasing and strictly concave on (0, τ1)
whereas it is strictly increasing and strictly convex on (τ2, τ1). As {τ = 0} and {τ = τ2} are
lines of symmetry for γ, we can reflect successively to obtain the complete solution, which
is periodic. The generating curve is embedded if and only if τ2 = 0. Let us see that this is
not possible.

As cos σ < 0 on (0, s2), we can see the τ-coordinate as a function of ω. Then,

τ2 = −
∫ ω2

ω1

τ̇(ω) dω =

∫ ω2

ω1

(E + H sin2 ω) sin ω

cos ω
√

cos2 ω sin2 ω − (E + H sin2 ω)2
dω.

A straightforward computation shows that

τ2 =
π

2

(
1 − H√

1 + H2

)
> 0.

It follows that the period of γ is given by (1 − H/
√

1 + H2)π, and Σ is a nodoidal type

surface which is compact if and only if H/
√

1 + H2 is a rational number.

To finish the prove we only have to study the case H = −E. Now sin ω1 = H/
√

1 + H2

and sin ω2 = 1. Then the solution could approach the north pole. Note that sin σ < 0
far away of the north pole by (6.5). Thus along any connected component of γ − {pole}
we can see the ω-coordinate as a function of τ. Using (6.5) and the expressions of σ̇ and

d2ω/dτ2 given by (∗)H and (6.8) respectively, it is easy to see that σ̇ > 0 if ω 6= π/2 and

that d2ω/dτ2
> 0. In addition, sin σ → 0 as ω → π/2. We can suppose that the initial

conditions of γ are (ω1, 0, 3π/2). By the symmetry of the solution, we only have to study
γ(s) for s > 0.

Call s0 to the first s > 0 such that sin σ(s) = 0. As σ is strictly increasing we get
σ ∈ (3π/2, 2π) on (0, s0) and lims→s−0

σ(s) = 2π. If we call τ0 = lims→s−0
τ(s) < 0, we

have that the function ω(s) is strictly increasing and strictly convex on (0, s0), while ω(τ)
is strictly decreasing and strictly convex on (0, τ0). For τ = τ0 the curve meets the north
pole and the tangent vector of the curve is parallel to the meridian {τ = τ0}. We continue
the generating curve so that we obtain another branch of the graph of the function ω(τ)
meeting the north pole. We can assume that τ(s) → π + τ0 modulo 2π and σ(s) → π when
s → s+

0 . Call s1 to the first s > s0 such that σ(s) = 3π/2. As σ̇ > 0 then σ ∈ (π, 3π/2) and
the function ω(s) is strictly decreasing on (s0, s1). Conversely, ω(τ) is a function strictly
increasing and strictly convex on (τ1, π + τ0) where τ1 = τ(s1). Note that if ω(s) = ω(s̃)
with s ∈ (0, s0) and s̃ ∈ (s0, s1), then sin σ(s) = sin σ(s̃) and so, σ(s) + σ(s̃) = 3π. In other
words, the branch of ω(τ) on (τ1, π + τ0) is the reflection of ω(τ) on (τ0, 0) across the ver-
tical line {τ = (π + 2τ0)/2} and τ1 = π + 2τ0. By successive reflections across the critical
points of ω, we obtain the full solution which is periodic. The solution is embedded if and
only if τ0 = −π/2. Let us see that this is not possible.

As cos σ > 0 on (0, s0) we can see the τ-coordinate as a function of ω. Then we have

τ0 =

∫ π/2

ω1

τ̇(ω) dω = −
∫ π/2

ω1

H sin ω√
1 − (1 + H2) cos2 ω

dω = −π

2

H√
1 + H2

> −π

2
.

Moreover, γ is a closed curve if and only if π − 2τ0 is a rational multiple of 2π, which is

equivalent to that H/
√

1 + H2 is a rational number. �
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Remark 6.5. The surfaces described in Theorem 6.4 (v) also appear in the classification of

rotationally invariant constant mean curvature surfaces in (S3, g). However they were not
explicitly studied in [Hs].

Remark 6.6. Now we can give examples showing that all the hypotheses in Theorem 5.10
are necessary. In Theorem 6.4 we have shown that for any H > 0 there is a family of com-
pact immersed nodoids and a family of unduloids with constant mean curvature H. As it

is shown in the proof for some values of H such that H/
√

1 + H2 is rational (for example
H = 0) the corresponding unduloids are compact and embedded.
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