Outline	Lattice paths	Syzygies	Duals
	0000	0000	00000000

Duality and syzygies for semimodules over numerical semigroups.

Julio José Moyano-Fernández

University Jaume I of Castellón

International meeting AMS-EMS-SPM — Porto 2015 June 11th, 2015

Outline	Lattice paths	Syzygies	Duals
	0000	0000	00000000

Reference

The talk is based on my joint work with Jan Uliczka

Duality and syzygies for semimodules over numerical semigroups

published "on-line first" in Semigroup Forum.

Outline	Lattice paths	Syzygies	Duals
	0000	0000	00000000
Outline			

Our motivation was to gain a better understanding of certain semimodules over numerical semigroups with 2 generators appearing in previous investigations concerning *Hilbert depth*.

Outline	Lattice paths	Syzygies	Duals
	0000	0000	00000000
Outline			

Our motivation was to gain a better understanding of certain semimodules over numerical semigroups with 2 generators appearing in previous investigations concerning *Hilbert depth*.

1 Lattice paths and $\langle \alpha, \beta \rangle$ -lean sets

2 Syzygies of $\langle \alpha, \beta \rangle$ -semimodules

Syzygies

Γ-lean sets and Γ-semimodules

Definition

Let Γ be a numerical semigroup. A set $\{x_0 = 0, x_1, \dots, x_n\} \subseteq \mathbb{N}$ is called Γ -lean if $|x_i - x_j| \notin \Gamma$ for $0 \le i < j \le n$.

A key notion will be that of a *module* over a numerical semigroup Γ :

Definition

A Γ -semimodule Δ is a non-empty subset of $\mathbb N$ such that $\Delta + \Gamma \subseteq \Delta$.

Every Γ -semimodule Δ has a unique minimal system of generators.

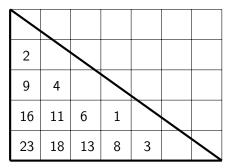
The minimal system of generators of a normalized Γ -semimodule is Γ -lean, and conversely, every Γ -lean subset of \mathbb{N} generates minimally a normalized Γ -semimodule.

< ロ > (同 > (回 > (回 >))) 目 = (回 > (回 >)) 目 = (回 > (回 >)) 目 = (回 > (回 >)) 目 = (回 > (回 >)) 目 = (回 > (回 >)) (回 >) (回 >)) [回 > (回 >)] [回 > (回 >)] [回 > (回 >)] [回 > (回 >)] [回 >)] [回 > (回 >)] [回 >)] [回 >)] [回 > (回 >)] [回 >)] [回 >)] [回 > (回 >)] [回 >)] [□ >)] [□ >)] [□ > (\square >)] [□ >] [□ >)] [□ >)] [□ >]] [□ >)] [□ >] [□ >]] [□ =]] [□ >]] [□ >]] [□ >]] [□ >]] [□ =]] [] []] [] []] []] []] []] []]

Outline	Lattice paths	Syzygies	Duals
	0000		
	\sim 1 1 \sim 1		
(jans of (γ β and lattice points		

From now on we only consider semigroups $\Gamma = \langle \alpha, \beta \rangle$ with $\alpha < \beta$.

There is a map $G \to \mathbb{N}^2$, $\alpha\beta - a\alpha - b\beta \mapsto (a, b)$ which identifies a gap with a lattice point. Since $\alpha\beta - a\alpha - b\beta > 0$, the point lies inside the triangle with corners $(0, 0), (\beta, 0), (0, \alpha)$.



Gaps of $\langle 5,7 \rangle$

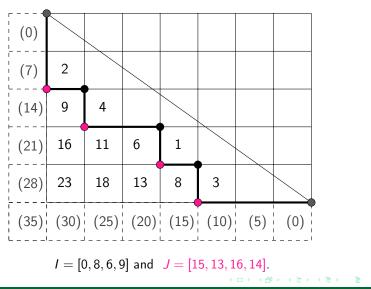
Duality and syzygies for semimodules over numerical semigroups.

Outline				

Lattice paths

Syzygies

$\langle \alpha, \beta \rangle$ -lean sets and lattice paths



Duality and syzygies for semimodules over numerical semigroups.

Outline	Lattice paths	Syzygies	Duals
	000●	0000	0000000

Gaps and ordering

For $\Gamma = \langle \alpha, \beta \rangle$ it holds

$$\ell \in \mathbb{N} \setminus \Gamma \iff \exists a, b \in \mathbb{N}_{>0} \text{ with } \ell = \alpha \beta - a \alpha - b \beta.$$

This means that, for gaps $i_k = \alpha\beta - a_k\alpha - b_k\beta$, k = 1, 2, we have that

$$|i_1-i_2|\in\mathbb{N}\setminus\Gamma\iff (a_2-a_1)(b_2-b_1)<0.$$

This allows us to introduce a partial ordering for the gaps:

$$i_1 \prec i_2$$
 : \iff $a_1 > a_2 \land b_1 < b_2$.

Syzygies

Syzygies of $\langle \alpha, \beta \rangle$ -semimodules

Next we explain the meaning of J in terms of $\langle \alpha, \beta \rangle$ -semimodules: Every $\langle \alpha, \beta \rangle$ -semimodule Δ yields another $\langle \alpha, \beta \rangle$ -semimodule Syz(Δ).

Definition

Let I be an $\langle \alpha, \beta \rangle$ -lean set, and let Δ be the $\langle \alpha, \beta \rangle$ -semimodule generated by I. The syzygy of Δ is the $\langle \alpha, \beta \rangle$ -semimodule

$$\mathsf{Syz}(\Delta) := \bigcup_{\substack{i,i' \in I \\ i \neq i'}} \left(\left(i + \langle \alpha, \beta \rangle \right) \cap \left(i' + \langle \alpha, \beta \rangle \right) \right).$$

The semimodule Syz(Δ) consists of those elements in Δ which admit more than one presentation of the form i + x with $i \in I, x \in \langle \alpha, \beta \rangle$.

Syzygies 0●00

Fundamental couples and syzygies

 $\operatorname{Syz}(\Delta)$ can be also recognized in the lattice path corresponding to Δ :

Theorem

Let I, J sets of turning points as in the example. Let Δ be the $\langle \alpha, \beta \rangle$ -semimodule generated by the elements of I. Then

$$\operatorname{Syz}(\Delta) = \bigcup_{0 \le k < m \le n} \left(i_k + \langle \alpha, \beta \rangle \cap i_m + \langle \alpha, \beta \rangle \right) = \bigcup_{k=0}^n (j_k + \langle \alpha, \beta \rangle).$$

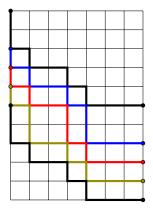
i. e. , $Syz(\Delta)$ is generated by the elements of J.

Syzygies

Iterated syzygies and their orbits

The procedure of building a syzygy can be iterated; we set

$$\operatorname{\mathsf{Syz}}^\ell(\Delta):=\operatorname{\mathsf{Syz}}(\operatorname{\mathsf{Syz}}^{\ell-1}(\Delta)), \ \ \ell\geq 2.$$



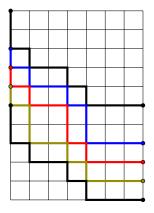
Since all semimodules $Syz^{\ell}(\Delta)$ share the same number of generators, it is clear that this sequence must be periodic up to isomorphism.

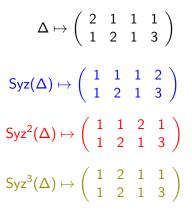
The set of isomorphism classes appearing in such a sequence of syzygies will be called an orbit.

Outline	Lattice paths	Syzygies	Duals
	0000	000●	00000000

Syzygies and the matrix description

It is easily seen that taking the syzygy cyclically permutates the top row of the matrix by one position to the left:





Outline	Lattice paths	Syzygies	Duals
	0000	0000	●0000000
Dual comin			

Dual semimodules

For any $\Gamma\text{-semimodule}\;\Delta$ we set the $\mathit{dual}\;\text{of}\;\Delta$

 $\Delta^* := \operatorname{Hom}_{\Gamma}(\Delta, \Gamma) \cong \{ c \in \mathbb{Z} \ | \ c + \Delta \subseteq \Gamma \} =: \Gamma - \Delta.$

Dual semimodules behave as expected:

Let
$$\Delta, \Delta'$$
 be Γ -semimodules, and let $d \in \mathbb{Z}$. Then
(a) $(\Delta + d)^* = \Delta^* - d$.
(b) $(\Delta \cup \Delta')^* = \Delta^* \cap (\Delta')^*$.
(c) $\Gamma^* = \Gamma$.

Outline	Lattice paths 0000	Syzygies 0000	Duals o●oooooo			
We found a describing formula:						
Theorem						
Let $I = \{0, i_1,, i_n\}$,} be a Γ-lean set w	vith gaps				
	$i_k = lpha eta - a_k$	$_{k}lpha - b_{k}eta$				
which are ordered in $\Delta_I = \bigcup_{i \in I} (\Gamma + i)$, t	0, ,	pect to \prec , and let				
$\Delta_I^* = (\Gamma +$	$+ a_1 lpha) \cup \bigcup^{n-1} (\Gamma + a_n)$	$_{k+1}lpha+b_keta)\cup(\Gamma+b_k$	nβ).			

Corollary

$$(\Delta_I^*)^* = \Delta_I.$$

k=1

Duality and syzygies for semimodules over numerical semigroups.

Julio José Moyano-Fernández

Outline	Lattice paths 0000	Syzygies 0000	Duals 00●00000
lat I≣ ha a fi	ald Canaidar II[[] which	may be identified with	

Let \mathbb{F} be a field. Consider $\mathbb{F}[\Gamma]$, which may be identified with $R = \mathbb{F}[t^{\alpha}, t^{\beta}]$.

The counterparts of Γ -semimodules are the graded *R*-submodules of $\mathbb{F}[t]$. Let $I = \{0, i_1, \ldots, i_n\}$ be a Γ -lean set with $i_k > 0$, and let $M_I = \sum_{i \in I} Rt^i$. Consider the first syzygy of M_I , the kernel of the map

$$\bigoplus_{i \in I} R(-i) \xrightarrow{\varphi_1} M_I$$

$$(f_0, \dots, f_n) \longmapsto \sum_{k=0}^n f_k t^{i_k}.$$

Outline	Lattice paths	Syzygies	Duals
	0000	0000	000●0000

By a result of Piontkowski this kernel is generated by bivectors

$$(0, \ldots, 0, t^{\gamma_k}, 0, \ldots, 0, -t^{\gamma_m}, 0, \ldots, 0)$$
 with $i_k + \gamma_k = i_m + \gamma_m$.

In fact n + 1 special bivectors are sufficient, namely

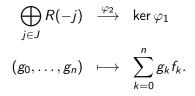
$$\begin{aligned} f_0 &= (t^{(\beta-a_1)\alpha}, -t^{b_1\beta}, 0, \dots, 0) \\ f_k &= (0, \dots, 0, t^{(a_k-a_{k+1})\alpha}, -t^{(b_{k+1}-b_k)\beta}, 0, \dots, 0) & \text{for } k = 1, \dots, n-1 \\ f_n &= (-t^{(\alpha-b_n)\beta}, 0, \dots, 0, t^{a_n\alpha}). \end{aligned}$$

The degrees deg $f_k = j_k$ are exactly the elements of the set *J*.

Hence, the support of the syzygy $\ker \varphi_1$ agrees with the object we called the syzygy of $\Delta_I.$

Outline	Lattice paths	Syzygies	Duals
l	0000	0000	00000000

The second step of the free resolution of M_I is the map



The condition $\varphi_2(g_0, \ldots, g_n) = 0$ yields the following system of equations:

$$g_{0}t^{(\beta-a_{1})\alpha} - g_{n}t^{(\alpha-b_{n})\beta} = 0$$

$$g_{1}t^{(a_{1}-a_{2})\alpha} - g_{0}t^{b_{1}\beta} = 0$$

$$g_{k}t^{(a_{k}-a_{k+1})\alpha} - g_{k-1}t^{(b_{k}-b_{k-1})\beta} = 0 \text{ for } k = 2, \dots, n-1$$

$$g_{n}t^{a_{n}\alpha} - g_{n-1}t^{(b_{n}-b_{n-1})\beta} = 0$$

Duality and syzygies for semimodules over numerical semigroups.

Julio José Moyano-Fernández

Outline	Lattice paths 0000	Syzygies 0000	Duals 00000●00
We can solve fo	or g_0 and get		

$$g_k = g_0 t^{b_k \beta - (a_1 - a_{k+1})\alpha} \text{ for } k = 1, \dots, n-1$$

$$g_n = g_0 t^{b_n \beta - a_1 \alpha},$$

as one easily checks by induction on k.

Hence $g = (g_0, \ldots, g_n)$ is an element of ker φ_2 if and only if it can be written in the form

$$g = g_0\left(1, t^{b_1\beta - (a_1 - a_2)\alpha}, \dots, t^{b_{n-1}\beta - (a_1 - a_n)\alpha}, t^{b_n\beta - a_1\alpha}\right)$$

with some $g_0 \in R$ such that all the entries are in R as well.

Outline	Lattice paths	Syzygies	Duals
	0000	0000	00000000

In the language of Γ -semimodules this means that we are looking for the dual of the semimodule

$$\widehat{\Delta_{I}} := \Gamma \cup \bigcup_{k=1}^{n-1} \left(\Gamma + (b_{k}\beta - (a_{1} - a_{k+1})\alpha) \cup (\Gamma + b_{n}\beta - a_{1}\alpha) \right)$$

The Theorem above implies

$$\widehat{\Delta_I}^* = a_1 \alpha + \Delta_I,$$

hence ker φ_2 equals

$$\left\{g_0\left(1,t^{b_1\beta-(a_1-a_2)\alpha},\ldots,t^{b_{n-1}\beta-(a_1-a_n)\alpha},t^{b_n\beta-a_1\alpha}\right)\mid g_0\in M_I\cdot t^{a_1\alpha}\right\},\\\cong M_I.$$

Duality and syzygies for semimodules over numerical semigroups.

Julio José Moyano-Fernández

Outline	Lattice paths	Syzygies	Duals
	0000	0000	0000000●

Therefore we have shown:

Theorem

Let $\Gamma = \langle \alpha, \beta \rangle$ be a numerical semigroup. Let I be a Γ -lean set, and let $M_I = \sum_{i \in I} Rt^i$ with $R = \mathbb{F}[t^{\alpha}, t^{\beta}]$. Then the minimal graded free resolution of M_I is —up to a shift— periodic of period 2.

Outline	Lattice paths	Syzygies	Duals
	0000	0000	0000000●

Therefore we have shown:

Theorem

Let $\Gamma = \langle \alpha, \beta \rangle$ be a numerical semigroup. Let I be a Γ -lean set, and let $M_I = \sum_{i \in I} Rt^i$ with $R = \mathbb{F}[t^{\alpha}, t^{\beta}]$. Then the minimal graded free resolution of M_I is —up to a shift— periodic of period 2.

So we recover part of a result of Eisenbud (TAMS 1980):

Theorem

Let A be a regular local ring, $x \in A$, and let B = A/x. If

 $F : \cdots \to F_1 \to F_0$ is the minimal *B*-free resolution of a finitely generated *B*-module *M*, then:

- (i) **F** becomes periodic of period 2 after dim A + 1 steps;
- (ii) F is periodic (necessarily of period 2) iff M is a maximal CM B-module with no free summand.

・ 同 ト ・ ヨ ト ・ ヨ ト