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Reference

The talk is based on my joint work with Jan Uliczka

Duality and syzygies for semimodules
over numerical semigroups

published “on-line first” in Semigroup Forum.
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Outline

Our motivation was to gain a better understanding of certain semimodules
over numerical semigroups with 2 generators appearing in previous
investigations concerning Hilbert depth.

1 Lattice paths and 〈α, β〉-lean sets

2 Syzygies of 〈α, β〉-semimodules

3 Dual semimodules
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Γ-lean sets and Γ-semimodules

Definition
Let Γ be a numerical semigroup. A set {x0 = 0, x1, . . . , xn} ⊆ N
is called Γ-lean if |xi − xj | /∈ Γ for 0 ≤ i < j ≤ n.

A key notion will be that of a module over a numerical semigroup Γ:

Definition
A Γ-semimodule ∆ is a non-empty subset of N such that ∆ + Γ ⊆ ∆.

Every Γ-semimodule ∆ has a unique minimal system of generators.

The minimal system of generators of a normalized Γ-semimodule is Γ-lean,
and conversely, every Γ-lean subset of N generates minimally a normalized
Γ-semimodule.
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Gaps of 〈α, β〉 and lattice points

From now on we only consider semigroups Γ = 〈α, β〉 with α < β.

There is a map G → N2, αβ − aα− bβ 7→ (a, b) which identifies a gap
with a lattice point. Since αβ − aα− bβ > 0, the point lies inside the
triangle with corners (0, 0), (β, 0), (0, α).
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Gaps of 〈5, 7〉
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〈α, β〉-lean sets and lattice paths

23 18 13 8 3

16 11 6 1

9 4

2

(35) (30) (25) (20) (15) (10) (5) (0)

(28)

(21)

(14)

(7)

(0)

I = [0, 8, 6, 9] and J = [15, 13, 16, 14].
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Gaps and ordering

For Γ = 〈α, β〉 it holds

` ∈ N \ Γ ⇐⇒ ∃ a, b ∈ N>0 with ` = αβ − aα− bβ.

This means that, for gaps ik = αβ − akα− bkβ, k = 1, 2, we have that

|i1 − i2| ∈ N \ Γ ⇐⇒ (a2 − a1)(b2 − b1) < 0.

This allows us to introduce a partial ordering for the gaps:

i1 ≺ i2 :⇐⇒ a1 > a2 ∧ b1 < b2.
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Syzygies of 〈α, β〉-semimodules

Next we explain the meaning of J in terms of 〈α, β〉-semimodules: Every
〈α, β〉-semimodule ∆ yields another 〈α, β〉-semimodule Syz(∆).

Definition
Let I be an 〈α, β〉-lean set, and let ∆ be the 〈α, β〉-semimodule generated
by I . The syzygy of ∆ is the 〈α, β〉-semimodule

Syz(∆) :=
⋃
i ,i ′∈I
i 6=i ′

((
i + 〈α, β〉

)
∩
(
i ′ + 〈α, β〉

))
.

The semimodule Syz(∆) consists of those elements in ∆ which admit more
than one presentation of the form i + x with i ∈ I , x ∈ 〈α, β〉.
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Fundamental couples and syzygies

Syz(∆) can be also recognized in the lattice path corresponding to ∆:

Theorem
Let I , J sets of turning points as in the example. Let ∆ be the
〈α, β〉-semimodule generated by the elements of I . Then

Syz(∆) =
⋃

0≤k<m≤n

(
ik + 〈α, β〉 ∩ im + 〈α, β〉

)
=

n⋃
k=0

(jk + 〈α, β〉).

i. e. , Syz(∆) is generated by the elements of J.
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Iterated syzygies and their orbits

The procedure of building a syzygy can be iterated; we set

Syz`(∆) := Syz(Syz`−1(∆)), ` ≥ 2.

Since all semimodules Syz`(∆)
share the same number of
generators, it is clear that this
sequence must be periodic up
to isomorphism.

The set of isomorphism classes
appearing in such a sequence
of syzygies will be called an
orbit.
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Syzygies and the matrix description

It is easily seen that taking the syzygy cyclically permutates the top row of
the matrix by one position to the left:

∆ 7→
(

2 1 1 1
1 2 1 3

)

Syz(∆) 7→
(

1 1 1 2
1 2 1 3

)

Syz2(∆) 7→
(

1 1 2 1
1 2 1 3

)

Syz3(∆) 7→
(

1 2 1 1
1 2 1 3

)
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Dual semimodules

For any Γ-semimodule ∆ we set the dual of ∆

∆∗ := HomΓ(∆, Γ) ∼= {c ∈ Z | c + ∆ ⊆ Γ} =: Γ−∆.

Dual semimodules behave as expected:

Let ∆,∆′ be Γ-semimodules, and let d ∈ Z. Then
(a) (∆ + d)∗ = ∆∗ − d .
(b) (∆ ∪∆′)∗ = ∆∗ ∩ (∆′)∗.
(c) Γ∗ = Γ.
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We found a describing formula:

Theorem
Let I = {0, i1, . . . , in} be a Γ-lean set with gaps

ik = αβ − akα− bkβ

which are ordered increasingly with respect to ≺, and let
∆I =

⋃
i∈I (Γ + i), then

∆∗I = (Γ + a1α) ∪
n−1⋃
k=1

(Γ + ak+1α + bkβ) ∪ (Γ + bnβ) .

Corollary

(∆∗I )∗ = ∆I .
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Let F be a field. Consider F[Γ], which may be identified with
R = F[tα, tβ].

The counterparts of Γ-semimodules are the graded R-submodules of F[t].

Let I = {0, i1, . . . , in} be a Γ-lean set with ik > 0, and let MI =
∑

i∈I Rt
i .

Consider the first syzygy of MI , the kernel of the map⊕
i∈I

R(−i) ϕ1−→ MI

(f0, . . . , fn) 7−→
n∑

k=0

fkt
ik .
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By a result of Piontkowski this kernel is generated by bivectors

(0, . . . , 0, tγk , 0, . . . , 0,−tγm , 0, . . . , 0) with ik + γk = im + γm.

In fact n + 1 special bivectors are sufficient, namely

f0 = (t(β−a1)α,−tb1β, 0, . . . , 0)

fk = (0, . . . , 0, t(ak−ak+1)α,−t(bk+1−bk )β, 0, . . . , 0) for k = 1, . . . , n − 1
fn = (−t(α−bn)β, 0, . . . , 0, tanα).

The degrees deg fk = jk are exactly the elements of the set J.

Hence, the support of the syzygy kerϕ1 agrees with the object we called
the syzygy of ∆I .
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The second step of the free resolution of MI is the map⊕
j∈J

R(−j) ϕ2−→ kerϕ1

(g0, . . . , gn) 7−→
n∑

k=0

gk fk .

The condition ϕ2(g0, . . . , gn) = 0 yields the following system of equations:

g0t
(β−a1)α − gnt

(α−bn)β = 0
g1t

(a1−a2)α − g0t
b1β = 0

gkt
(ak−ak+1)α − gk−1t

(bk−bk−1)β = 0 for k = 2, . . . , n − 1
gnt

anα − gn−1t
(bn−bn−1)β = 0

Duality and syzygies for semimodules over numerical semigroups. Julio José Moyano-Fernández



Outline Lattice paths Syzygies Duals

We can solve for g0 and get

gk = g0t
bkβ−(a1−ak+1)α for k = 1, . . . , n − 1

gn = g0t
bnβ−a1α,

as one easily checks by induction on k .

Hence g = (g0, . . . , gn) is an element of kerϕ2 if and only if it can be
written in the form

g = g0

(
1, tb1β−(a1−a2)α, . . . , tbn−1β−(a1−an)α, tbnβ−a1α

)
with some g0 ∈ R such that all the entries are in R as well.
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In the language of Γ-semimodules this means that we are looking for the
dual of the semimodule

∆̂I := Γ ∪
n−1⋃
k=1

(Γ + (bkβ − (a1 − ak+1)α) ∪ (Γ + bnβ − a1α).

The Theorem above implies

∆̂I
∗

= a1α + ∆I ,

hence kerϕ2 equals{
g0

(
1, tb1β−(a1−a2)α, . . . , tbn−1β−(a1−an)α, tbnβ−a1α

)
| g0 ∈ MI · ta1α

}
,

∼= MI .
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Therefore we have shown:

Theorem
Let Γ = 〈α, β〉 be a numerical semigroup. Let I be a Γ-lean set, and let
MI =

∑
i∈I Rt

i with R = F[tα, tβ]. Then the minimal graded free
resolution of MI is —up to a shift— periodic of period 2.

So we recover part of a result of Eisenbud (TAMS 1980):

Theorem
Let A be a regular local ring, x ∈ A, and let B = A/x . If
F : · · · → F1 → F0 is the minimal B-free resolution of a finitely generated
B-module M, then:
(i) F becomes periodic of period 2 after dimA + 1 steps;
(ii) F is periodic (necessarily of period 2) iff M is a maximal CM

B-module with no free summand.
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