Puiseux Monoids and Their Atomic Structure

Felix Gotti
felixgotti@berkeley.edu

UC Berkeley

International Meeting
on Numerical Semigroups

July 6, 2016
Outline

1. Basic Notions

2. Atomicity Conditions

3. Bounded Puiseux Monoids

4. Monotone Puiseux Monoids
Outline

1 Basic Notions

2 Atomicity Conditions

3 Bounded Puiseux Monoids

4 Monotone Puiseux Monoids
Outline

1. Basic Notions
2. Atomicity Conditions
3. Bounded Puiseux Monoids
4. Monotone Puiseux Monoids
Outline

1. Basic Notions
2. Atomicity Conditions
3. Bounded Puiseux Monoids
4. Monotone Puiseux Monoids
What is a Puiseux monoid?

Definition

A Puiseux monoid is an additive submonoid of $\mathbb{Q}_{\geq 0}$.

Remark: Puiseux monoids are a generalization of numerical semigroups. However, the former are not necessarily
- finitely generated;
- atomic.

Example: For a prime p, consider the Puiseux monoid

$$M = \langle 1/p^n \mid n \in \mathbb{N} \rangle.$$

The set of atoms of M is empty, i.e., $\mathcal{A}(M) = \emptyset$; hence M is not atomic. In addition, M fails to be finitely generated.
What is a Puiseux monoid?

Definition
A Puiseux monoid is an additive submonoid of \(\mathbb{Q}_{\geq 0}\).

Remark: Puiseux monoids are a generalization of numerical semigroups. However, the former are not necessarily
- finitely generated;
- atomic.

Example: For a prime \(p\), consider the Puiseux monoid

\[M = \langle 1/p^n \mid n \in \mathbb{N} \rangle. \]

The set of atoms of \(M\) is empty, i.e., \(\mathcal{A}(M) = \emptyset\); hence \(M\) is not atomic. In addition, \(M\) fails to be finitely generated.
A Puiseux monoid is an additive submonoid of $\mathbb{Q}_{\geq 0}$.

Remark: Puiseux monoids are a generalization of numerical semigroups. However, the former are not necessarily

- finitely generated;
- atomic.

Example: For a prime p, consider the Puiseux monoid

$$M = \langle 1/p^n \mid n \in \mathbb{N} \rangle.$$

The set of atoms of M is empty, i.e., $\mathcal{A}(M) = \emptyset$; hence M is not atomic. In addition, M fails to be finitely generated.
What is a Puiseux monoid?

Definition

A Puiseux monoid is an additive submonoid of $\mathbb{Q}_{\geq 0}$.

Remark: Puiseux monoids are a generalization of numerical semigroups. However, the former are not necessarily
- finitely generated;
- atomic.

Example: For a prime p, consider the Puiseux monoid

$$M = \langle 1/p^n \mid n \in \mathbb{N} \rangle.$$

The set of atoms of M is empty, i.e., $\mathcal{A}(M) = \emptyset$; hence M is not atomic. In addition, M fails to be finitely generated.
What is a Puiseux monoid?

Definition

A Puiseux monoid is an additive submonoid of \(\mathbb{Q}_{\geq 0} \).

Remark: Puiseux monoids are a generalization of numerical semigroups. However, the former are not necessarily

- finitely generated;
- atomic.

Example: For a prime \(p \), consider the Puiseux monoid

\[
M = \langle 1/p^n \mid n \in \mathbb{N} \rangle.
\]

The set of atoms of \(M \) is empty, i.e., \(\mathcal{A}(M) = \emptyset \); hence \(M \) is not atomic. In addition, \(M \) fails to be finitely generated.
Every numerical semigroup is finitely generated, while:

Observation (1)

A Puiseux monoid is finitely generated iff it is isomorphic to a numerical semigroup.

Numerical semigroups are atomic and minimally generated, while:

Observation (2)

A Puiseux monoid is atomic iff it is minimally generated.

Numerical semigroups have a *unique* minimal generating set, while:

Observation (3)

If a Puiseux monoid has a minimal generating set, then such a generating must be *unique*.
Every numerical semigroup is finitely generated, while:

Observation (1)

A Puiseux monoid is finitely generated iff it is isomorphic to a numerical semigroup.

Numerical semigroups are atomic and minimally generated, while:

Observation (2)

A Puiseux monoid is atomic iff it is minimally generated.

Numerical semigroups have a unique minimal generating set, while:

Observation (3)

If a Puiseux monoid has a minimal generating set, then such a generating must be unique.
Intuition from Numerical Semigroups

Every numerical semigroup is finitely generated, while:

Observation (1)

A Puiseux monoid is finitely generated iff it is isomorphic to a numerical semigroup.

Numerical semigroups are atomic and minimally generated, while:

Observation (2)

A Puiseux monoid is atomic iff it is minimally generated.

Numerical semigroups have a unique minimal generating set, while:

Observation (3)

If a Puiseux monoid has a minimal generating set, then such a generating must be unique.
Every numerical semigroup is finitely generated, while:

Observation (1)

A Puiseux monoid is finitely generated iff it is isomorphic to a numerical semigroup.

Numerical semigroups are atomic and minimally generated, while:

Observation (2)

A Puiseux monoid is atomic iff it is minimally generated.

Numerical semigroups have a unique minimal generating set, while:

Observation (3)

If a Puiseux monoid has a minimal generating set, then such a generating must be unique.
Every numerical semigroup is finitely generated, while:

Observation (1)
A *Puiseux monoid* is finitely generated iff it is isomorphic to a numerical semigroup.

Numerical semigroups are atomic and minimally generated, while:

Observation (2)
A *Puiseux monoid* is atomic iff it is minimally generated.

Numerical semigroups have a unique minimal generating set, while:

Observation (3)
If a *Puiseux monoid* has a minimal generating set, then such a generating must be unique.
Intuition from Numerical Semigroups

Every numerical semigroup is finitely generated, while:

Observation (1)

A Puiseux monoid is finitely generated iff it is isomorphic to a numerical semigroup.

Numerical semigroups are atomic and minimally generated, while:

Observation (2)

A Puiseux monoid is atomic iff it is minimally generated.

Numerical semigroups have a **unique** minimal generating set, while:

Observation (3)

If a Puiseux monoid has a minimal generating set, then such a generating must be unique.
Intuition from Numerical Semigroups

Every numerical semigroup is finitely generated, while:

Observation (1)

A *Puiseux monoid* is finitely generated iff it is isomorphic to a numerical semigroup.

Numerical semigroups are atomic and minimally generated, while:

Observation (2)

A *Puiseux monoid* is atomic iff it is minimally generated.

Numerical semigroups have a unique minimal generating set, while:

Observation (3)

If a Puiseux monoid has a minimal generating set, then such a generating must be unique.
Let P denote the set of primes.

Example 1: The Puiseux monoid $M = \langle 1/p \mid p \in P \rangle$ is atomic, and $A(M) = \{1/p \mid p \in P\}$. Therefore $|A(M)| = \infty$.

Example 2: Let M be the Puiseux monoid generated by the set $S \cup T$, where $S = \{1/2^n \mid n \in \mathbb{N}\}$ and $T = \{1/p \mid n \in P\setminus\{2\}\}$. It follows that M is not atomic; however, $A(M)$ is the infinite set T.

Example 3 If $\{d_n\}$ is a sequence of natural numbers such that $d_n \mid d_{n+1}$ properly for every $n \in \mathbb{N}$, then $M = \langle 1/d_n \mid n \in \mathbb{N} \rangle$ is a Puiseux monoid satisfying $A(M) = \emptyset$; this is because

$$\frac{1}{d_n} = \frac{d_{n+1}}{d_n} \frac{1}{d_{n+1}}$$

for every $n \in \mathbb{N}$.

Felix Gotti felixgotti@berkeley.edu

Puiseux Monoids and Their Atomic Structure
Examples

Let P denote the set of primes.

Example 1: The Puiseux monoid $M = \langle 1/p \mid p \in P \rangle$ is atomic, and $A(M) = \{1/p \mid p \in P\}$. Therefore $|A(M)| = \infty$.

Example 2: Let M be the Puiseux monoid generated by the set $S \cup T$, where $S = \{1/2^n \mid n \in \mathbb{N}\}$ and $T = \{1/p \mid n \in P \setminus \{2\}\}$. It follows that M is not atomic; however, $A(M)$ is the infinite set T.

Example 3 If $\{d_n\}$ is a sequence of natural numbers such that $d_n \mid d_{n+1}$ properly for every $n \in \mathbb{N}$, then $M = \langle 1/d_n \mid n \in \mathbb{N} \rangle$ is a Puiseux monoid satisfying $A(M) = \emptyset$; this is because

$$\frac{1}{d_n} = \frac{d_{n+1}}{d_n} \frac{1}{d_{n+1}}$$

for every $n \in \mathbb{N}$.
Examples

Let P denote the set of primes.

Example 1: The Puiseux monoid $M = \langle 1/p \mid p \in P \rangle$ is atomic, and $A(M) = \{1/p \mid p \in P\}$. Therefore $|A(M)| = \infty$.

Example 2: Let M be the Puiseux monoid generated by the set $S \cup T$, where $S = \{1/2^n \mid n \in \mathbb{N}\}$ and $T = \{1/p \mid n \in P \setminus \{2\}\}$. It follows that M is not atomic; however, $A(M)$ is the infinite set T.

Example 3 If $\{d_n\}$ is a sequence of natural numbers such that $d_n \mid d_{n+1}$ properly for every $n \in \mathbb{N}$, then $M = \langle 1/d_n \mid n \in \mathbb{N} \rangle$ is a Puiseux monoid satisfying $A(M) = \emptyset$; this is because

$$
\frac{1}{d_n} = \frac{d_{n+1}}{d_n} \cdot \frac{1}{d_{n+1}} \quad \text{for every} \quad n \in \mathbb{N}.
$$
Let P denote the set of primes.

Example 1: The Puiseux monoid $M = \langle 1/p \mid p \in P \rangle$ is atomic, and $A(M) = \{1/p \mid p \in P\}$. Therefore $|A(M)| = \infty$.

Example 2: Let M be the Puiseux monoid generated by the set $S \cup T$, where $S = \{1/2^n \mid n \in \mathbb{N}\}$ and $T = \{1/p \mid n \in P \setminus \{2\}\}$. It follows that M is not atomic; however, $A(M)$ is the infinite set T.

Example 3 If $\{d_n\}$ is a sequence of natural numbers such that $d_n \mid d_{n+1}$ properly for every $n \in \mathbb{N}$, then $M = \langle 1/d_n \mid n \in \mathbb{N} \rangle$ is a Puiseux monoid satisfying $A(M) = \emptyset$; this is because

$$\frac{1}{d_n} = \frac{d_{n+1}}{d_n} \frac{1}{d_{n+1}}$$

for every $n \in \mathbb{N}$.
Examples

Let P denote the set of primes.

Example 1: The Puiseux monoid $M = \langle 1/p \mid p \in P \rangle$ is atomic, and $A(M) = \{1/p \mid p \in P\}$. Therefore $|A(M)| = \infty$.

Example 2: Let M be the Puiseux monoid generated by the set $S \cup T$, where $S = \{1/2^n \mid n \in \mathbb{N}\}$ and $T = \{1/p \mid n \in P\setminus\{2\}\}$. It follows that M is not atomic; however, $A(M)$ is the infinite set T.

Example 3 If $\{d_n\}$ is a sequence of natural numbers such that $d_n \mid d_{n+1}$ properly for every $n \in \mathbb{N}$, then $M = \langle 1/d_n \mid n \in \mathbb{N}\rangle$ is a Puiseux monoid satisfying $A(M) = \emptyset$; this is because

$$\frac{1}{d_n} = \frac{d_{n+1}}{d_n} \frac{1}{d_{n+1}}$$

for every $n \in \mathbb{N}$.

Felix Gotti felixgotti@berkeley.edu
For \(r \in \mathbb{Q}\setminus\{0\} \), we denote by \(n(r) \) (resp., \(d(r) \)) the positive numerator (reps., denominator) when \(r \) is represented as a reduced fraction.

For \(R \subseteq \mathbb{Q}\setminus\{0\} \), we define the numerator set (resp., denominator set) of \(R \) to be \(n(R) = \{ n(r) \mid r \in R \} \) (resp., \(d(R) = \{ d(r) \mid r \in R \} \)).

Proposition (1)

Let \(M \) be a Puiseux monoid. Then \(d(M\setminus\{0\}) \) is bounded iff \(M \) is atomic (indeed, isomorphic to a numerical semigroup).

Proposition (2)

Let \(M \) be a Puiseux monoid. If 0 is not a limit point of \(M \), then \(M \) is atomic.
Sufficient Conditions for Atomicity

- For \(r \in \mathbb{Q} \setminus \{0\} \), we denote by \(n(r) \) (resp., \(d(r) \)) the positive numerator (reps., denominator) when \(r \) is represented as a reduced fraction.

- For \(R \subseteq \mathbb{Q} \setminus \{0\} \), we define the numerator set (resp., denominator set) of \(R \) to be \(n(R) = \{n(r) \mid r \in R\} \) (resp., \(d(R) = \{d(r) \mid r \in R\} \)).

Proposition (1)

Let \(M \) be a Puiseux monoid. Then \(d(M \setminus \{0\}) \) is bounded iff \(M \) is atomic (indeed, isomorphic to a numerical semigroup).

Proposition (2)

Let \(M \) be a Puiseux monoid. If 0 is not a limit point of \(M \), then \(M \) is atomic.
For $r \in \mathbb{Q}\backslash\{0\}$, we denote by $n(r)$ (resp., $d(r)$) the positive numerator (resp., denominator) when r is represented as a reduced fraction.

For $R \subseteq \mathbb{Q}\backslash\{0\}$, we define the numerator set (resp., denominator set) of R to be $n(R) = \{n(r) \mid r \in R\}$ (resp., $d(R) = \{d(r) \mid r \in R\}$).

Proposition (1)
Let M be a Puiseux monoid. Then $d(M\backslash\{0\})$ is bounded iff M is atomic (indeed, isomorphic to a numerical semigroup).

Proposition (2)
Let M be a Puiseux monoid. If 0 is not a limit point of M, then M is atomic.
Sufficient Conditions for Atomicity

- For \(r \in \mathbb{Q}\backslash\{0\} \), we denote by \(n(r) \) (resp., \(d(r) \)) the positive numerator (reps., denominator) when \(r \) is represented as a reduced fraction.

- For \(R \subseteq \mathbb{Q}\backslash\{0\} \), we define the \textit{numerator set} (resp., \textit{denominator set}) of \(R \) to be \(n(R) = \{ n(r) \mid r \in R \} \) (resp., \(d(R) = \{ d(r) \mid r \in R \} \)).

Proposition (1)

\textit{Let \(M \) be a Puiseux monoid. Then \(d(M\backslash\{0\}) \) is bounded iff \(M \) is atomic (indeed, isomorphic to a numerical semigroup).}

Proposition (2)

\textit{Let \(M \) be a Puiseux monoid. If 0 is not a limit point of \(M \), then \(M \) is atomic.}
For \(r \in \mathbb{Q} \setminus \{0\} \), we denote by \(n(r) \) (resp., \(d(r) \)) the positive numerator (resp., denominator) when \(r \) is represented as a reduced fraction.

For \(R \subseteq \mathbb{Q} \setminus \{0\} \), we define the numerator set (resp., denominator set) of \(R \) to be \(n(R) = \{ n(r) \mid r \in R \} \) (resp., \(d(R) = \{ d(r) \mid r \in R \} \)).

Proposition (1)

Let \(M \) be a Puiseux monoid. Then \(d(M \setminus \{0\}) \) is bounded iff \(M \) is atomic (indeed, isomorphic to a numerical semigroup).

Proposition (2)

Let \(M \) be a Puiseux monoid. If 0 is not a limit point of \(M \), then \(M \) is atomic.
As we have seen before, not every Puiseux monoid is atomic. However, every Puiseux monoid contains a nontrivial atomic submonoid.

Theorem

If M is Puiseux monoid, then it satisfies **exactly one of the following conditions**:

- M is isomorphic to a numerical semigroup;
- M contains an atomic submonoid with infinitely many atoms.
Existence of Nontrivial Atomic Submonoids

As we have seen before, not every Puiseux monoid is atomic. However, every Puiseux monoid contains a nontrivial atomic submonoid.

Theorem

If M is a Puiseux monoid, then it satisfies exactly one of the following conditions:

- M is isomorphic to a numerical semigroup;
- M contains an atomic submonoid with infinitely many atoms.
As we have seen before, not every Puiseux monoid is atomic. However, every Puiseux monoid contains a nontrivial atomic submonoid.

Theorem

If M is Puiseux monoid, then it satisfies exactly one of the following conditions:

- M is isomorphic to a numerical semigroup;
- M contains an atomic submonoid with infinitely many atoms.
Realizability of $|\mathcal{A}(M)|$

Theorem

For every $m \in \mathbb{N}_0 \cup \{\infty\}$, there exists a Puiseux monoid M such that $|\mathcal{A}(M)| = m$.

Sketch of Proof:

- For $m = 0$, we can take $M = \langle 1/p^n \mid n \in \mathbb{N} \rangle$, where p is a prime.
- Let $m \in \mathbb{N}$. For distinct primes p and q, define

$$M = \left\langle m, \ldots, 2m - 1, \frac{q}{p^{m+1}}, \frac{q}{p^{m+2}}, \ldots \right\rangle.$$

If $q > m$, then $\mathcal{A}(M) = \{m, \ldots, 2m - 1\}$ and so $|\mathcal{A}(M)| = m$.
- Finally, suppose $m = \infty$. Let P denote the set of primes, and take $M = \langle 1/p \mid p \in P \rangle$. Then $\mathcal{A}(M) = \{1/p \mid p \in P\}$ and so $|\mathcal{A}(M)| = \infty$.

Felix Gotti felixgotti@berkeley.edu

Puiseux Monoids and Their Atomic Structure
Theorem

For every $m \in \mathbb{N}_0 \cup \{\infty\}$, there exists a Puiseux monoid M such that $|A(M)| = m$.

Sketch of Proof:

- For $m = 0$, we can take $M = \langle 1/p^n \mid n \in \mathbb{N} \rangle$, where p is a prime.
- Let $m \in \mathbb{N}$. For distinct primes p and q, define

 $$M = \left\langle m, \ldots, 2m - 1, \frac{q}{p^{m+1}}, \frac{q}{p^{m+2}}, \ldots \right\rangle.$$

 If $q > m$, then $A(M) = \{m, \ldots, 2m - 1\}$ and so $|A(M)| = m$.
- Finally, suppose $m = \infty$. Let P denote the set of primes, and take $M = \langle 1/p \mid p \in P \rangle$. Then $A(M) = \{1/p \mid p \in P\}$ and so $|A(M)| = \infty$.

\[\square\]
Realizability of $|\mathcal{A}(M)|$

Theorem

*For every $m \in \mathbb{N}_0 \cup \{\infty\}$, there exists a Puiseux monoid M such that $|\mathcal{A}(M)| = m$."

Sketch of Proof:

- For $m = 0$, we can take $M = \langle 1/p^n \mid n \in \mathbb{N} \rangle$, where p is a prime.
- Let $m \in \mathbb{N}$. For distinct primes p and q, define

 $$M = \left\langle m, \ldots, 2m - 1, \frac{q}{p^{m+1}}, \frac{q}{p^{m+2}}, \ldots \right\rangle.$$

 If $q > m$, then $\mathcal{A}(M) = \{m, \ldots, 2m - 1\}$ and so $|\mathcal{A}(M)| = m$.
- Finally, suppose $m = \infty$. Let P denote the set of primes, and take $M = \langle 1/p \mid p \in P \rangle$. Then $\mathcal{A}(M) = \{1/p \mid p \in P\}$ and so $|\mathcal{A}(M)| = \infty$. ✅
Realizability of $|\mathcal{A}(M)|$

Theorem

For every $m \in \mathbb{N}_0 \cup \{\infty\}$, there exists a Puiseux monoid M such that $|\mathcal{A}(M)| = m$.

Sketch of Proof:

- For $m = 0$, we can take $M = \langle 1/p^n \mid n \in \mathbb{N} \rangle$, where p is a prime.
- Let $m \in \mathbb{N}$. For distinct primes p and q, define

$$M = \langle m, \ldots, 2m - 1, \frac{q}{p^{m+1}}, \frac{q}{p^{m+2}}, \ldots \rangle.$$

If $q > m$, then $\mathcal{A}(M) = \{m, \ldots, 2m - 1\}$ and so $|\mathcal{A}(M)| = m$.
- Finally, suppose $m = \infty$. Let P denote the set of primes, and take $M = \langle 1/p \mid p \in P \rangle$. Then $\mathcal{A}(M) = \{1/p \mid p \in P\}$ and so $|\mathcal{A}(M)| = \infty$.

Felix Gotti felixgotti@berkeley.edu

Puiseux Monoids and Their Atomic Structure
Realizability of $|\mathcal{A}(M)|$

Theorem

For every $m \in \mathbb{N}_0 \cup \{\infty\}$, there exists a Puiseux monoid M such that $|\mathcal{A}(M)| = m$.

Sketch of Proof:

- For $m = 0$, we can take $M = \langle 1/p^n \mid n \in \mathbb{N} \rangle$, where p is a prime.
- Let $m \in \mathbb{N}$. For distinct primes p and q, define

\[
M = \langle m, \ldots, 2m - 1, \frac{q}{p^{m+1}}, \frac{q}{p^{m+2}}, \ldots \rangle.
\]

If $q > m$, then $\mathcal{A}(M) = \{m, \ldots, 2m - 1\}$ and so $|\mathcal{A}(M)| = m$.

- Finally, suppose $m = \infty$. Let P denote the set of primes, and take $M = \langle 1/p \mid p \in P \rangle$. Then $\mathcal{A}(M) = \{1/p \mid p \in P\}$ and so $|\mathcal{A}(M)| = \infty$.

Realizability of $|\mathcal{A}(M)|$

Theorem

For every $m \in \mathbb{N}_0 \cup \{\infty\}$, there exists a Puiseux monoid M such that $|\mathcal{A}(M)| = m$.

Sketch of Proof:

- For $m = 0$, we can take $M = \langle 1/p^n \mid n \in \mathbb{N} \rangle$, where p is a prime.
- Let $m \in \mathbb{N}$. For distinct primes p and q, define

$$M = \left\langle m, \ldots, 2m - 1, \frac{q}{p^{m+1}}, \frac{q}{p^{m+2}}, \ldots \right\rangle.$$

If $q > m$, then $\mathcal{A}(M) = \{m, \ldots, 2m - 1\}$ and so $|\mathcal{A}(M)| = m$.
- Finally, suppose $m = \infty$. Let P denote the set of primes, and take $M = \langle 1/p \mid p \in P \rangle$. Then $\mathcal{A}(M) = \{1/p \mid p \in P\}$ and so $|\mathcal{A}(M)| = \infty$.

Felix Gotti felixgotti@berkeley.edu

Puiseux Monoids and Their Atomic Structure
Bounded Puiseux Monoids

Definition

Let M be a Puiseux monoid.

- We say that M is *bounded* if it can be generated by a bounded subset of rationals.
- We say that M is *strongly bounded* if it can be generated by a subset of rationals R such that $\mathfrak{n}(R)$ is bounded.

Observations:

1. Every strongly bounded Puiseux monoid is bounded.
2. If P denotes the set of primes, then $M = \langle \frac{p-1}{p} \mid p \in P \rangle$ is bounded but not strongly bounded.
3. If P denotes the set of primes, then $M = \langle \frac{p^2-1}{p} \mid p \in P \rangle$ is not bounded.
Bounded Puiseux Monoids

Definition
Let M be a Puiseux monoid.
- We say that M is *bounded* if it can be generated by a bounded subset of rationals.
- We say that M is *strongly bounded* if it can be generated by a subset of rationals R such that $n(R)$ is bounded.

Observations:
1. Every strongly bounded Puiseux monoid is bounded.
2. If P denotes the set of primes, then $M = \langle \frac{p-1}{p} \mid p \in P \rangle$ is bounded but not strongly bounded.
3. If P denotes the set of primes, then $M = \langle \frac{p^2-1}{p} \mid p \in P \rangle$ is not bounded.
Definition

Let M be a Puiseux monoid.

- We say that M is *bounded* if it can be generated by a bounded subset of rationals.
- We say that M is *strongly bounded* if it can be generated by a subset of rationals R such that $n(R)$ is bounded.

Observations:

1. Every strongly bounded Puiseux monoid is bounded.
2. If P denotes the set of primes, then $M = \langle \frac{p-1}{p} \mid p \in P \rangle$ is bounded but not strongly bounded.
3. If P denotes the set of primes, then $M = \langle \frac{p^2-1}{p} \mid p \in P \rangle$ is not bounded.
Definition

Let M be a Puiseux monoid.

- We say that M is \textit{bounded} if it can be generated by a bounded subset of rationals.
- We say that M is \textit{strongly bounded} if it can be generated by a subset of rationals R such that $n(R)$ is bounded.

Observations:

1. Every strongly bounded Puiseux monoid is bounded.
2. If P denotes the set of primes, then $M = \langle \frac{p−1}{p} \mid p ∈ P \rangle$ is bounded but not strongly bounded.
3. If P denotes the set of primes, then $M = \langle \frac{p^2−1}{p} \mid p ∈ P \rangle$ is not bounded.
Bounded Puiseux Monoids

Definition

Let M be a Puiseux monoid.

- We say that M is *bounded* if it can be generated by a bounded subset of rationals.
- We say that M is *strongly bounded* if it can be generated by a subset of rationals R such that $n(R)$ is bounded.

Observations:

1. Every strongly bounded Puiseux monoid is bounded.
2. If P denotes the set of primes, then $M = \langle \frac{p-1}{p} \mid p \in P \rangle$ is bounded but not strongly bounded.
3. If P denotes the set of primes, then $M = \langle \frac{p^2-1}{p} \mid p \in P \rangle$ is not bounded.
Bounded Puiseux Monoids

Definition
Let \(M \) be a Puiseux monoid.
- We say that \(M \) is \textit{bounded} if it can be generated by a bounded subset of rationals.
- We say that \(M \) is \textit{strongly bounded} if it can be generated by a subset of rationals \(R \) such that \(n(R) \) is bounded.

Observations:

1. Every strongly bounded Puiseux monoid is bounded.
2. If \(P \) denotes the set of primes, then \(M = \langle \frac{p-1}{p} \mid p \in P \rangle \) is bounded but not strongly bounded.
3. If \(P \) denotes the set of primes, then \(M = \langle \frac{p^2-1}{p} \mid p \in P \rangle \) is not bounded.
Bounded Puiseux Monoids

Definition

Let M be a Puiseux monoid.

- We say that M is *bounded* if it can be generated by a bounded subset of rationals.
- We say that M is *strongly bounded* if it can be generated by a subset of rationals R such that $n(R)$ is bounded.

Observations:

1. Every strongly bounded Puiseux monoid is bounded.
2. If P denotes the set of primes, then $M = \langle \frac{p-1}{p} \mid p \in P \rangle$ is bounded but not strongly bounded.
3. If P denotes the set of primes, then $M = \langle \frac{p^2-1}{p} \mid p \in P \rangle$ is not bounded.
Definition

Let M be a Puiseux monoid.

- We say that M is *bounded* if it can be generated by a bounded subset of rationals.
- We say that M is *strongly bounded* if it can be generated by a subset of rationals R such that $n(R)$ is bounded.

Observations:

1. Every strongly bounded Puiseux monoid is bounded.
2. If P denotes the set of primes, then $M = \langle \frac{p-1}{p} \mid p \in P \rangle$ is bounded but not strongly bounded.
3. If P denotes the set of primes, then $M = \langle \frac{p^2-1}{p} \mid p \in P \rangle$ is not bounded.
Definition
A Puiseux monoid M is said to be *antimatter* if $\mathcal{A}(M)$ is empty.

Recall: If $\{d_n\} \subset \mathbb{N}$ such that $d_n \mid d_{n+1}$ properly, then $M = \langle 1/d_n \mid n \in \mathbb{N} \rangle$ satisfies that $\mathcal{A}(M) = \emptyset$, i.e., M is antimatter. The next result is a generalization of this fact.

Definition: The *spectrum* of a sequence $\{a_n\}$ is the set of primes p such that $p \mid a_n$ for every n large enough.

Theorem
Let $\{r_n \mid n \in \mathbb{N}\}$ be a strongly bounded subset of rationals generating M. If $d(r_n)$ divides $d(r_{n+1})$, the sequence $\{d(r_n)\}$ is unbounded, and the spectrum of $\{n(r_n)\}$ is empty, then M is antimatter.
Definition

A Puiseux monoid M is said to be antimatter if $\mathcal{A}(M)$ is empty.

Recall: If $\{d_n\} \subset \mathbb{N}$ such that $d_n \mid d_{n+1}$ properly, then $M = \langle 1/d_n \mid n \in \mathbb{N} \rangle$ satisfies that $\mathcal{A}(M) = \emptyset$, i.e., M is antimatter.

The next result is a generalization of this fact.

Definition: The spectrum of a sequence $\{a_n\}$ is the set of primes p such that $p \mid a_n$ for every n large enough.

Theorem

Let $\{r_n \mid n \in \mathbb{N}\}$ be a strongly bounded subset of rationals generating M. If $d(r_n)$ divides $d(r_{n+1})$, the sequence $\{d(r_n)\}$ is unbounded, and the spectrum of $\{n(r_n)\}$ is empty, then M is antimatter.
Definition

A Puiseux monoid M is said to be *antimatter* if $\mathcal{A}(M)$ is empty.

Recall: If $\{d_n\} \subset \mathbb{N}$ such that $d_n \mid d_{n+1}$ properly, then $M = \langle 1/d_n \mid n \in \mathbb{N} \rangle$ satisfies that $\mathcal{A}(M) = \emptyset$, i.e., M is antimatter. The next result is a generalization of this fact.

Definition: The *spectrum* of a sequence $\{a_n\}$ is the set of primes p such that $p \mid a_n$ for every n large enough.

Theorem

Let $\{r_n \mid n \in \mathbb{N}\}$ be a strongly bounded subset of rationals generating M. If $d(r_n)$ divides $d(r_{n+1})$, the sequence $\{d(r_n)\}$ is unbounded, and the spectrum of $\{n(r_n)\}$ is empty, then M is antimatter.
Antimatter Puiseux Monoids

Definition

A Puiseux monoid M is said to be *antimatter* if $A(M)$ is empty.

Recall: If $\{d_n\} \subset \mathbb{N}$ such that $d_n \mid d_{n+1}$ properly, then $M = \langle 1/d_n \mid n \in \mathbb{N} \rangle$ satisfies that $A(M) = \emptyset$, i.e., M is antimatter. The next result is a generalization of this fact.

Definition: The *spectrum* of a sequence $\{a_n\}$ is the set of primes p such that $p \mid a_n$ for every n large enough.

Theorem

Let $\{r_n \mid n \in \mathbb{N} \}$ be a strongly bounded subset of rationals generating M. If $d(r_n)$ divides $d(r_{n+1})$, the sequence $\{d(r_n)\}$ is unbounded, and the spectrum of $\{n(r_n)\}$ is empty, then M is antimatter.
Definition

A Puiseux monoid M is said to be \textit{antimatter} if $A(M)$ is empty.

Recall: If $\{d_n\} \subset \mathbb{N}$ such that $d_n | d_{n+1}$ properly, then $M = \langle 1/d_n \mid n \in \mathbb{N} \rangle$ satisfies that $A(M) = \emptyset$, i.e., M is antimatter. The next result is a generalization of this fact.

Definition: The \textit{spectrum} of a sequence $\{a_n\}$ is the set of primes p such that $p | a_n$ for every n large enough.

Theorem

Let $\{r_n \mid n \in \mathbb{N}\}$ be a strongly bounded subset of rationals generating M. If $d(r_n)$ divides $d(r_{n+1})$, the sequence $\{d(r_n)\}$ is unbounded, and the spectrum of $\{n(r_n)\}$ is empty, then M is antimatter.
A Puiseux monoid M is said to be finite if there are only finitely many primes dividing elements of $d(M)$.

Example: If P denotes the set of primes and $p \in P$, then $\langle 1/p^n \mid n \in \mathbb{N} \rangle$ is finite, but $\langle 1/q \mid q \in P \rangle$ is not.

Theorem

Let M be a strongly bounded finite Puiseux monoid. Then M is atomic iff M is isomorphic to a numerical semigroup.
Definition

A Puiseux monoid M is said to be finite if there are only finitely many primes dividing elements of $d(M)$.

Example: If P denotes the set of primes and $p \in P$, then $\langle 1/p^n \mid n \in \mathbb{N} \rangle$ is finite, but $\langle 1/q \mid q \in P \rangle$ is not.

Theorem

Let M be a strongly bounded finite Puiseux monoid. Then M is atomic iff M is isomorphic to a numerical semigroup.
Finite Puiseux Monoid

Definition

A Puiseux monoid M is said to be finite if there are only finitely many primes dividing elements of $d(M)$.

Example: If P denotes the set of primes and $p \in P$, then $\langle 1/p^n \mid n \in \mathbb{N} \rangle$ is finite, but $\langle 1/q \mid q \in P \rangle$ is not.

Theorem

Let M be a strongly bounded finite Puiseux monoid. Then M is atomic iff M is isomorphic to a numerical semigroup.
Definition

A Puiseux monoid M is said to be finite if there are only finitely many primes dividing elements of $d(M)$.

Example: If P denotes the set of primes and $p \in P$, then $\langle 1/p^n \mid n \in \mathbb{N} \rangle$ is finite, but $\langle 1/q \mid q \in P \rangle$ is not.

Theorem

Let M be a strongly bounded finite Puiseux monoid. Then M is atomic iff M is isomorphic to a numerical semigroup.
We say that a subset of \mathbb{R} is increasing (resp., decreasing) if we can list its elements increasingly (resp., decreasingly).

Definition

A Puiseux monoid M is said to be *increasing* (resp., *decreasing*) if it can be generated by an increasing (resp., decreasing) set of rationals. A Puiseux monoid is *monotone* if it is either increasing or decreasing.

Observations:

- Increasing Puiseux monoids are atomic.
- Decreasing Puiseux monoids are bounded.
- A Puiseux monoid is increasing and decreasing iff it is isomorphic to a numerical semigroup.
We say that a subset of \mathbb{R} is increasing (resp., decreasing) if we can list its elements increasingly (resp., decreasingly).

Definition
A Puiseux monoid M is said to be *increasing* (resp., *decreasing*) if it can be generated by an increasing (resp., decreasing) set of rationals. A Puiseux monoid is *monotone* if it is either increasing or decreasing.

Observations:
- Increasing Puiseux monoids are atomic.
- Decreasing Puiseux monoids are bounded.
- A Puiseux monoid is increasing and decreasing iff it is isomorphic to a numerical semigroup.
We say that a subset of \mathbb{R} is increasing (resp., decreasing) if we can list its elements increasingly (resp., decreasingly).

Definition

A Puiseux monoid M is said to be *increasing* (resp., *decreasing*) if it can be generated by an increasing (resp., decreasing) set of rationals. A Puiseux monoid is *monotone* if it is either increasing or decreasing.

Observations:

- Increasing Puiseux monoids are atomic.
- Decreasing Puiseux monoids are bounded.
- A Puiseux monoid is increasing and decreasing iff it is isomorphic to a numerical semigroup.
We say that a subset of \(\mathbb{R} \) is increasing (resp., decreasing) if we can list its elements increasingly (resp., decreasingly).

Definition

A Puiseux monoid \(M \) is said to be *increasing* (resp., *decreasing*) if it can be generated by an increasing (resp., decreasing) set of rationals. A Puiseux monoid is *monotone* if it is either increasing or decreasing.

Observations:

- Increasing Puiseux monoids are atomic.
- Decreasing Puiseux monoids are bounded.
- A Puiseux monoid is increasing and decreasing iff it is isomorphic to a numerical semigroup.
We say that a subset of \mathbb{R} is increasing (resp., decreasing) if we can list its elements increasingly (resp., decreasingly).

Definition

A Puiseux monoid M is said to be *increasing* (resp., *decreasing*) if it can be generated by an increasing (resp., decreasing) set of rationals. A Puiseux monoid is *monotone* if it is either increasing or decreasing.

Observations:

- Increasing Puiseux monoids are atomic.
- Decreasing Puiseux monoids are bounded.
- A Puiseux monoid is increasing and decreasing iff it is isomorphic to a numerical semigroup.
We say that a subset of \mathbb{R} is increasing (resp., decreasing) if we can list its elements increasingly (resp., decreasingly).

Definition

A Puiseux monoid M is said to be *increasing* (resp., *decreasing*) if it can be generated by an increasing (resp., decreasing) set of rationals. A Puiseux monoid is *monotone* if it is either increasing or decreasing.

Observations:

- Increasing Puiseux monoids are atomic.
- Decreasing Puiseux monoids are bounded.
- A Puiseux monoid is increasing and decreasing iff it is isomorphic to a numerical semigroup.
We say that a subset of \mathbb{R} is increasing (resp., decreasing) if we can list its elements increasingly (resp., decreasingly).

Definition

A Puiseux monoid M is said to be *increasing* (resp., *decreasing*) if it can be generated by an increasing (resp., decreasing) set of rationals. A Puiseux monoid is *monotone* if it is either increasing or decreasing.

Observations:

- Increasing Puiseux monoids are atomic.
- Decreasing Puiseux monoids are bounded.
- A Puiseux monoid is increasing and decreasing *iff* it is isomorphic to a numerical semigroup.
Prime Reciprocal Puiseux Monoid

Definition
A Puiseux monoid M is prime reciprocal if there exists a subset of primes P such that $M = \langle \frac{1}{p} \mid p \in P \rangle$.

Theorem (G-Gotti)
Every submonoid of a reciprocal Puiseux monoid is atomic.

Remark: In particular, a prime reciprocal Puiseux monoid is atomic. The next question suggests itself.

Question: Are the submonoids of an atomic Puiseux monoid atomic?
Prime Reciprocal Puiseux Monoid

Definition
A Puiseux monoid M is *prime reciprocal* if there exists a subset of primes P such that $M = \langle 1/p \mid p \in P \rangle$.

Theorem (G-Gotti)
Every submonoid of a reciprocal Puiseux monoid is atomic.

Remark: In particular, a prime reciprocal Puiseux monoid is atomic. The next question suggests itself.

Question: Are the submonoids of an atomic Puiseux monoid atomic?
Definition
A Puiseux monoid M is *prime reciprocal* if there exists a subset of primes P such that $M = \langle 1/p \mid p \in P \rangle$.

Theorem (G-Gotti)
Every submonoid of a reciprocal Puiseux monoid is atomic.

Remark: In particular, a prime reciprocal Puiseux monoid is atomic. The next question suggests itself.

Question: Are the submonoids of an atomic Puiseux monoid atomic?
Definition
A Puiseux monoid M is prime reciprocal if there exists a subset of primes P such that $M = \langle 1/p \mid p \in P \rangle$.

Theorem (G-Gotti)
Every submonoid of a reciprocal Puiseux monoid is atomic.

Remark: In particular, a prime reciprocal Puiseux monoid is atomic. The next question suggests itself.

Question: Are the submonoids of an atomic Puiseux monoid atomic?
Definition

A Puiseux monoid M is *prime reciprocal* if there exists a subset of primes P such that $M = \langle 1/p \mid p \in P \rangle$.

Theorem (G-Gotti)

Every submonoid of a reciprocal Puiseux monoid is atomic.

Remark: In particular, a prime reciprocal Puiseux monoid is atomic. The next question suggests itself.

Question: Are the submonoids of an atomic Puiseux monoid atomic?
Definition
A Puiseux monoid M is *prime reciprocal* if there exists a subset of primes P such that $M = \langle 1/p \mid p \in P \rangle$.

Theorem (G-Gotti)
Every submonoid of a reciprocal Puiseux monoid is atomic.

Remark: In particular, a prime reciprocal Puiseux monoid is atomic. The next question suggests itself.

Question: Are the submonoids of an atomic Puiseux monoid atomic?
A Puiseux monoid M is \emph{prime reciprocal} if there exists a subset of primes P such that $M = \langle 1/p \mid p \in P \rangle$.

\textbf{Theorem (G-Gotti)}

\textit{Every submonoid of a reciprocal Puiseux monoid is atomic.}

\textbf{Remark:} In particular, a prime reciprocal Puiseux monoid is atomic. The next question suggests itself.

\textbf{Question:} Are the submonoids of an atomic Puiseux monoid atomic?
Definition

For \(r \in \mathbb{Q}_{>0} \), we call \(\text{multiplicative } r\text{-cyclic} \) to the Puiseux monoid generated by the positive powers of \(r \), and we denote it by \(M_r \), that is \(M_r = \langle r^n \mid n \in \mathbb{N} \rangle \).

The next theorem describes the atomic structure of multiplicatively cyclic Puiseux monoids.

Theorem (G-Gotti)

For \(r \in \mathbb{Q}_{>0} \), let \(M_r \) be the multiplicative \(r\)-cyclic Puiseux monoid. Then the following statements hold.

- If \(d(r) = 1 \), then \(M_r \) is atomic with \(\mathcal{A}(M_r) = \{n(r)\} \).
- If \(d(r) > 1 \) and \(n(r) = 1 \), then \(M_r \) is antimatter.
- If \(n(r) > 1 \) and \(d(r) > 1 \), then \(M_r \) is atomic with \(\mathcal{A}(M_r) = \{r^n \mid n \in \mathbb{N}\} \).
Multiplicatively Cyclic Puiseux Monoid

Definition

For \(r \in \mathbb{Q}_{>0} \), we call *multiplicative r-cyclic* to the Puiseux monoid generated by the positive powers of \(r \), and we denote it by \(M_r \), that is \(M_r = \langle r^n \mid n \in \mathbb{N} \rangle \).

The next theorem describes the atomic structure of multiplicatively cyclic Puiseux monoids.

Theorem (G-Gotti)

For \(r \in \mathbb{Q}_{>0} \), let \(M_r \) be the multiplicative r-cyclic Puiseux monoid. Then the following statements hold.

- If \(d(r) = 1 \), then \(M_r \) is atomic with \(\mathcal{A}(M_r) = \{n(r)\} \).
- If \(d(r) > 1 \) and \(n(r) = 1 \), then \(M_r \) is antimatter.
- If \(n(r) > 1 \) and \(d(r) > 1 \), then \(M_r \) is atomic with \(\mathcal{A}(M_r) = \{r^n \mid n \in \mathbb{N}\} \).
Multiplicatively Cyclic Puiseux Monoid

Definition
For $r \in \mathbb{Q}_{>0}$, we call multiplicative r-cyclic to the Puiseux monoid generated by the positive powers of r, and we denote it by M_r, that is $M_r = \langle r^n \mid n \in \mathbb{N} \rangle$.

The next theorem describes the atomic structure of multiplicatively cyclic Puiseux monoids.

Theorem (G-Gotti)
For $r \in \mathbb{Q}_{>0}$, let M_r be the multiplicative r-cyclic Puiseux monoid. Then the following statements hold.

- If $d(r) = 1$, then M_r is atomic with $\mathcal{A}(M_r) = \{n(r)\}$.
- If $d(r) > 1$ and $n(r) = 1$, then M_r is antimatter.
- If $n(r) > 1$ and $d(r) > 1$, then M_r is atomic with $\mathcal{A}(M_r) = \{r^n \mid n \in \mathbb{N}\}$.
Multiplicatively Cyclic Puiseux Monoid

Definition
For \(r \in \mathbb{Q}_{>0} \), we call \textit{multiplicative} \(r \)-cyclic to the Puiseux monoid generated by the positive powers of \(r \), and we denote it by \(M_r \), that is \(M_r = \langle r^n \mid n \in \mathbb{N} \rangle \).

The next theorem describes the atomic structure of multiplicatively cyclic Puiseux monoids.

Theorem (G-Gotti)
For \(r \in \mathbb{Q}_{>0} \), let \(M_r \) be the multiplicative \(r \)-cyclic Puiseux monoid. Then the following statements hold.

- If \(d(r) = 1 \), then \(M_r \) is atomic with \(\mathcal{A}(M_r) = \{n(r)\} \).
- If \(d(r) > 1 \) and \(n(r) = 1 \), then \(M_r \) is antimatter.
- If \(n(r) > 1 \) and \(d(r) > 1 \), then \(M_r \) is atomic with \(\mathcal{A}(M_r) = \{r^n \mid n \in \mathbb{N} \} \).
Definition
For $r \in \mathbb{Q}_{>0}$, we call multiplicative r-cyclic to the Puiseux monoid generated by the positive powers of r, and we denote it by M_r, that is $M_r = \langle r^n \mid n \in \mathbb{N} \rangle$.

The next theorem describes the atomic structure of multiplicatively cyclic Puiseux monoids.

Theorem (G-Gotti)
For $r \in \mathbb{Q}_{>0}$, let M_r be the multiplicative r-cyclic Puiseux monoid. Then the following statements hold.

1. If $d(r) = 1$, then M_r is atomic with $\mathcal{A}(M_r) = \{n(r)\}$.
2. If $d(r) > 1$ and $n(r) = 1$, then M_r is antimatter.
3. If $n(r) > 1$ and $d(r) > 1$, then M_r is atomic with $\mathcal{A}(M_r) = \{r^n \mid n \in \mathbb{N}\}$.
Multiplicatively Cyclic Puiseux Monoid

Definition
For \(r \in \mathbb{Q}_{>0} \), we call *multiplicative r-cyclic* to the Puiseux monoid generated by the positive powers of \(r \), and we denote it by \(M_r \), that is \(M_r = \langle r^n \mid n \in \mathbb{N} \rangle \).

The next theorem describes the atomic structure of multiplicatively cyclic Puiseux monoids.

Theorem (G-Gotti)

For \(r \in \mathbb{Q}_{>0} \), let \(M_r \) be the multiplicative r-cyclic Puiseux monoid. Then the following statements hold.

- If \(d(r) = 1 \), then \(M_r \) is atomic with \(A(M_r) = \{n(r)\} \).
- If \(d(r) > 1 \) and \(n(r) = 1 \), then \(M_r \) is antimatter.
- If \(n(r) > 1 \) and \(d(r) > 1 \), then \(M_r \) is atomic with \(A(M_r) = \{r^n \mid n \in \mathbb{N}\} \).
Definition

For $r \in \mathbb{Q}_{>0}$, we call *multiplicative r-cyclic* to the Puiseux monoid generated by the positive powers of r, and we denote it by M_r, that is $M_r = \langle r^n \mid n \in \mathbb{N} \rangle$.

The next theorem describes the atomic structure of multiplicatively cyclic Puiseux monoids.

Theorem (G-Gotti)

For $r \in \mathbb{Q}_{>0}$, let M_r be the multiplicative r-cyclic Puiseux monoid. Then the following statements hold.

- *If* $d(r) = 1$, *then* M_r *is atomic with* $A(M_r) = \{n(r)\}$.
- *If* $d(r) > 1$ and $n(r) = 1$, *then* M_r *is antimatter*.
- *If* $n(r) > 1$ and $d(r) > 1$, *then* M_r *is atomic with* $A(M_r) = \{r^n \mid n \in \mathbb{N}\}$.
References

P. A. Garcia-Sanchez and J. C. Rosales. *Numerical Semigroups*.

THANK YOU FOR YOUR KIND ATTENTION!