The Milnor number of plane irreducible singularities in positive characteristic

Evelia García Barroso

Universidad de La Laguna, Tenerife

In this talk we present some results of

First definitions: intersection multiplicity

\(K \) is algebraically closed field of characteristic \(p \geq 0 \).
First definitions: intersection multiplicity

K is algebraically closed field of characteristic $p \geq 0$.

A **branch** is a curve $\{ f = 0 \}$, where $f \in K[[x, y]]$ is irreducible.
First definitions: intersection multiplicity

\(K \) is algebraically closed field of characteristic \(p \geq 0 \).

A **branch** is a curve \(\{ f = 0 \} \), where \(f \in K[[x, y]] \) is irreducible.

For any power series \(f, h \in K[[x, y]] \) we define the **intersection multiplicity** \(i_0(f, h) \) by putting

\[
i_0(f, h) = \dim_K K[[x, y]]/(f, h),
\]

where \((f, h) \) is the ideal of \(K[[x, y]] \) generated by \(f \) and \(h \).
First definitions: intersection multiplicity

K is algebraically closed field of characteristic $p \geq 0$.

A **branch** is a curve \(\{ f = 0 \} \), where $f \in K[[x, y]]$ is irreducible.

For any power series $f, h \in K[[x, y]]$ we define the **intersection multiplicity** $i_0(f, h)$ by putting

$$i_0(f, h) = \dim_K K[[x, y]]/(f, h),$$

where (f, h) is the ideal of $K[[x, y]]$ generated by f and h.

Property

Let f, h be non-zero power series without constant term. Then $i_0(f, h) < +\infty$ if and only if $\{ f = 0 \}$ and $\{ h = 0 \}$ have no common branch.
First definitions: semigroup of a branch

Properties

- $i_0(f, h_1 h_2) = i_0(f, h_1) + i_0(f, h_2)$.
- $i_0(f, 1) = 0$.

For any irreducible power series $f \in K[[x, y]]$, where K is an algebraically closed field of characteristic $p \geq 0$, we put $\Gamma(f) = \{i_0(f, h) : h \text{ runs over all power series such that } h \not\equiv 0 \text{ (mod } f)\}$. $\Gamma(f)$ is a semigroup called the semigroup associated with the branch $\{f = 0\}$.
First definitions: semigroup of a branch

Properties

- \(i_0(f, h_1 h_2) = i_0(f, h_1) + i_0(f, h_2) \).
- \(i_0(f, 1) = 0 \).

For any irreducible power series \(f \in K[[x, y]] \), where \(K \) is an algebraically closed field of characteristic \(p \geq 0 \), we put

\[
\Gamma(f) = \{ i_0(f, h) : h \text{ runs over all power series such that } h \not\equiv 0 \text{ (mod } f) \}.
\]
First definitions: semigroup of a branch

Properties

- $i_0(f, h_1 h_2) = i_0(f, h_1) + i_0(f, h_2)$.
- $i_0(f, 1) = 0$.

For any irreducible power series $f \in K[[x, y]]$, where K is an algebraically closed field of characteristic $p \geq 0$, we put

$$\Gamma(f) = \{i_0(f, h) : h \text{ runs over all power series such that } h \not\equiv 0 \pmod{f}\}.$$

$\Gamma(f)$ is a semigroup called the **semigroup associated with the branch** $\{f = 0\}$.
Properties of the semigroup

Lemma

- $\Gamma(f)$ is a numerical semigroup (i.e. $\gcd(\Gamma(f)) = 1$).
- There exists a unique sequence v_0, \ldots, v_g such that
 - $v_0 = \min(\Gamma(f) \setminus \{0\}) = \text{ord } f$,
 - $v_k = \min(\Gamma(f) \setminus Nv_0 + \cdots + Nv_{k-1})$ for $k \in \{1, \ldots, g\}$,
 - $\Gamma(f) = Nv_0 + \cdots + Nv_g$.
Properties of the semigroup

Lemma

- $\Gamma(f)$ is a numerical semigroup (i.e. $\gcd(\Gamma(f)) = 1$).
- There exists a unique sequence v_0, \ldots, v_g such that
 - $v_0 = \min(\Gamma(f) \setminus \{0\}) = \text{ord } f$,
 - $v_k = \min(\Gamma(f) \setminus \mathbf{N}v_0 + \cdots + \mathbf{N}v_{k-1})$ for $k \in \{1, \ldots, g\}$,
 - $\Gamma(f) = \mathbf{N}v_0 + \cdots + \mathbf{N}v_g$.

The sequence v_0, \ldots, v_g is called the minimal sequence of generators of $\Gamma(f)$.
Properties of the semigroup

Lemma

- \(\Gamma(f) \) is a numerical semigroup (i.e. \(\gcd(\Gamma(f)) = 1 \)).
- There exists a unique sequence \(v_0, \ldots, v_g \) such that
 - \(v_0 = \min(\Gamma(f) \setminus \{0\}) = \operatorname{ord} f \),
 - \(v_k = \min(\Gamma(f) \setminus Nv_0 + \cdots + Nv_{k-1}) \) for \(k \in \{1, \ldots, g\} \),
 - \(\Gamma(f) = Nv_0 + \cdots + Nv_g \).

The sequence \(v_0, \ldots, v_g \) is called the **minimal sequence of generators** of \(\Gamma(f) \).

Definition

\(\Gamma(f) \) is a **tame semigroup** if \(p \) does not divide \(v_k \) for all \(k \in \{0, 1, \ldots, g\} \).
Properties of the semigroup

Let $e_k := \gcd(v_0, \ldots, v_k)$ for $k \in \{1, \ldots, g\}$. Then
- $e_0 > e_1 > \cdots e_{g-1} > e_g = 1$ and
- $e_{k-1}v_k < e_kv_{k+1}$ for $k \in \{1, \ldots, g - 1\}$.

Let $n_k := e_{k-1}/e_k$ for $k \in \{1, \ldots, g\}$. Then
- $n_k > 1$ for $k \in \{1, \ldots, g\}$ and
- $n_kv_k < v_{k+1}$ for $k \in \{1, \ldots, g - 1\}$.
Properties of the semigroup

Let $e_k := \gcd(v_0, \ldots, v_k)$ for $k \in \{1, \ldots, g\}$. Then

- $e_0 > e_1 > \cdots e_{g-1} > e_g = 1$ and
- $e_k v_k < e_k v_{k+1}$ for $k \in \{1, \ldots, g-1\}$.

Let $n_k := e_k^{-1} e_k$ for $k \in \{1, \ldots, g\}$. Then

- $n_k > 1$ for $k \in \{1, \ldots, g\}$ and
- $n_k v_k < v_{k+1}$ for $k \in \{1, \ldots, g-1\}$.

Properties

- $\Gamma(f)$ is a strongly increasing semigroup.
- $\Gamma(f)$ has **conductor**

$$c(f) = \sum_{k=1}^{g} (n_k - 1) v_k - v_0 + 1.$$
Properties of the semigroup

Let $e_k := \gcd(v_0, \ldots, v_k)$ for $k \in \{1, \ldots, g\}$. Then
- $e_0 > e_1 > \cdots e_{g-1} > e_g = 1$ and
- $e_{k-1}v_k < e_kv_{k+1}$ for $k \in \{1, \ldots, g-1\}$.

Let $n_k := e_{k-1}/e_k$ for $k \in \{1, \ldots, g\}$. Then
- $n_k > 1$ for $k \in \{1, \ldots, g\}$ and
- $n_kv_k < v_{k+1}$ for $k \in \{1, \ldots, g-1\}$.

Properties
- $\Gamma(f)$ is a strongly increasing semigroup.
- $\Gamma(f)$ has conductor

$$c(f) = \sum_{k=1}^{g} (n_k - 1)v_k - v_0 + 1.$$
Milnor number

The **Milnor number** of f is the intersection multiplicity

$$\mu(f) := i_0(f_x, f_y).$$
The **Milnor number** of f is the intersection multiplicity

$$\mu(f) := i_0(f_x, f_y).$$

In **characteristic zero** we have

$$\mu(f) = c(f),$$

for any irreducible power series $f \in K[[x, y]]$, and consequently $\mu(f)$ **is determined by** $\Gamma(f)$.
But in positive characteristic is not, in general, true:

Example (Boubakri-Greuel-Markwig)

\[f = x^p + y^{p-1} \text{ and } g = (1 + x)f, \text{ where } p > 2. \]

Then \(\Gamma(f) = \Gamma(g) \), \(c(f) = c(g) = (p - 1)(p - 2) \) but \(\mu(f) = +\infty \) and \(\mu(g) = p(p - 2) \).
But in positive characteristic is not, in general, true:

Example (Boubakri-Greuel-Markwig)

\[f = x^p + y^{p-1} \text{ and } g = (1 + x)f, \text{ where } p > 2. \]
Then \(\Gamma(f) = \Gamma(g), \)
\(c(f) = c(g) = (p - 1)(p - 2) \) but \(\mu(f) = +\infty \) and \(\mu(g) = p(p - 2). \)

In positive characteristic it is well-known that \(\mu(f) \geq c(f). \)
But in positive characteristic is not, in general, true:

Example (Boubakri-Greuel-Markwig)

\[f = x^p + y^{p-1} \] and \[g = (1 + x)f, \] where \(p > 2 \). Then \(\Gamma(f) = \Gamma(g) \), \(c(f) = c(g) = (p - 1)(p - 2) \) but \(\mu(f) = +\infty \) and \(\mu(g) = p(p - 2) \).

In positive characteristic it is well-known that \(\mu(f) \geq c(f) \).

We give necessary and sufficient conditions for the equality \(\mu(f) = c(f) \) in terms of the semigroup associated with \(f \), provided that \(p > v_0 = \text{ord } f = \text{multiplicity of } \Gamma(f) \).
Main result

Theorem (GB-P, May 2015)

Let $f \in K[[x, y]]$ be an irreducible singularity and let v_0, \ldots, v_g be the minimal system of generators of $\Gamma(f)$. Suppose that $p = \text{char } K > v_0$. Then the following two conditions are equivalent:

- $\mu(f) = c(f)$
- $\Gamma(f)$ is a tame semigroup ($v_k \not\equiv 0 \pmod{p}$ for $k = 1, \ldots, g$).
Main result

Theorem (GB-P, May 2015)

Let $f \in K[[x, y]]$ be an irreducible singularity and let v_0, \ldots, v_g be the minimal system of generators of $\Gamma(f)$. Suppose that $p = \text{char } K > v_0$. Then the following two conditions are equivalent:

- $\mu(f) = c(f)$
- $\Gamma(f)$ is a tame semigroup ($v_k \not\equiv 0 \pmod{p}$ for $k = 1, \ldots, g$).

Example

Let $f(x, y) = (y^2 + x^3)^2 + x^5y$. Then f is irreducible and $\Gamma(f) = 4N + 6N + 13N$, so the conductor is $c(f) = 16$. Let $p = \text{char } K > v_0 = 4$. If $p \neq 13$ then $\mu(f) = c(f)$ by Theorem. If $p = 13$ then a direct calculation shows that $\mu(f) = 17$.
Ingredients of the proof

Let \(f \in K[[x, y]] \) be an irreducible singularity with

\[
\Gamma(f) = N v_0 + \cdots + N v_g.
\]

Since \(f \) is unitangent \(i_0(f, x) = \text{ord} f = v_0 \) or \(i_0(f, y) = \text{ord} f = v_0 \).

We assume that \(i_0(f, x) = \text{ord} f = v_0 \).
Ingredients of the proof

We need a sharpened version of Merle’s factorization theorem on polar curves:

Theorem (Factorization of the polar curve)

Suppose that \(v_0 = \text{ord } f \not\equiv 0 \pmod{p} \). Then \(\frac{\partial f}{\partial y} = \psi_1 \cdots \psi_g \) in \(K[[x, y]] \), where

(i) \(\text{ord } \psi_k = \frac{v_0}{e_k} - \frac{v_0}{e_{k-1}} \) for \(k \in \{1, \ldots, g\} \).

(ii) If \(\phi \in K[[x, y]] \) is an irreducible factor of \(\psi_k \), \(k \in \{1, \ldots, g\} \), then

\[
\frac{i_0(f, \phi)}{\text{ord } \phi} = \frac{e_{k-1} v_k}{v_0},
\]

and

(iii) \(\text{ord } \phi \equiv 0 \pmod{\frac{v_0}{e_{k-1}}} \).
Ingredients of the proof

Lemma

Suppose that \(v_0 = \text{ord } f \not\equiv 0 \pmod{p} \). Then

\[
i_0 \left(f, \frac{\partial f}{\partial y} \right) = c(f) + \text{ord } f - 1.
\]
Ingredients of the proof

Lemma

Suppose that $v_0 = \text{ord } f \not\equiv 0 \pmod{p}$. Then

$$i_0 \left(f, \frac{\partial f}{\partial y} \right) = c(f) + \text{ord } f - 1.$$

Lemma

Suppose that $p > \text{ord } f$. Then $i_0 \left(f, \frac{\partial f}{\partial y} \right) \leq \mu(f) + \text{ord } f - 1$ with equality if and only if $v_k \not\equiv 0 \pmod{p}$ for $k \in \{1, \ldots, g\}$.
Ingredients of the proof

Lemma

Suppose that $v_0 = \text{ord } f \not\equiv 0 \pmod{p}$. Then

$$i_0 \left(f, \frac{\partial f}{\partial y} \right) = c(f) + \text{ord } f - 1.$$

Lemma

Suppose that $p > \text{ord } f$. Then $i_0 \left(f, \frac{\partial f}{\partial y} \right) \leq \mu(f) + \text{ord } f - 1$ with equality if and only if $v_k \not\equiv 0 \pmod{p}$ for $k \in \{1, \ldots, g\}$.

Proof: we use the factorization of the polar curve.
Ingredients of the proof

Lemma

Suppose that $v_0 = \text{ord } f \not\equiv 0 \pmod{p}$. Then

$$i_0 \left(f, \frac{\partial f}{\partial y} \right) = c(f) + \text{ord } f - 1.$$

Lemma

Suppose that $p > \text{ord } f$. Then $i_0 \left(f, \frac{\partial f}{\partial y} \right) \leq \mu(f) + \text{ord } f - 1$ with equality if and only if $v_k \not\equiv 0 \pmod{p}$ for $k \in \{1, \ldots, g\}$.

Proof: we use the factorization of the polar curve.

Proof of main theorem: it is a consequence of Lemmas.
What happens if \(p = \text{char } K \leq \nu_0 = \text{ord } f \)?

What happens if we do not suppose \(p = \text{char } K > \nu_0 = \text{ord } f \)?
What happens if $p = \text{char } K \leq \nu_0 = \text{ord } f$?

What happens if we do not suppose $p = \text{char } K > \nu_0 = \text{ord } f$?

Proposición (Case $g = 1$)

If $\Gamma(f) = N\nu_0 + N\nu_1$ (so $c(f) = (\nu_0 - 1)(\nu_1 - 1)$) then

$$\mu(f) \geq (\nu_0 - 1)(\nu_1 - 1)$$

with equality if and only if $\nu_0 \not\equiv 0 \pmod{p}$ and $\nu_1 \not\equiv 0 \pmod{p}$.
What happens if \(p = \text{char } K \leq \nu_0 = \text{ord } f \)?

What happens if we do not suppose \(p = \text{char } K > \nu_0 = \text{ord } f \)?

Proposición (Case } g = 1\)

If \(\Gamma(f) = N\nu_0 + N\nu_1 \) (so \(c(f) = (\nu_0 - 1)(\nu_1 - 1) \))

then

\[
\mu(f) \geq (\nu_0 - 1)(\nu_1 - 1)
\]

with equality if and only if \(\nu_0 \not\equiv 0 \pmod{p} \) and \(\nu_1 \not\equiv 0 \pmod{p} \).
Conjecture

Let $f \in \mathbb{K}[[x, y]]$ be an irreducible singularity with semigroup $\Gamma(f) = Nv_0 + \cdots + Nv_g$. Suppose that $p = \text{char} \mathbb{K} > \text{ord } f$. Then the following two conditions are equivalent:

- $\mu(f) = c(f)$
- $\Gamma(f)$ is a tame semigroup ($v_k \not\equiv 0 \pmod{p}$ for $k = 1, \ldots, g$).
Conjecture

Let $f \in K[[x, y]]$ be an irreducible singularity with semigroup $\Gamma(f) = N v_0 + \cdots + N v_g$. Suppose that $p = \text{char } K > \text{ord } f$. Then the following two conditions are equivalent:

1. $\mu(f) = c(f)$
2. $\Gamma(f)$ is a tame semigroup ($v_k \not\equiv 0 \pmod{p}$ for $k = 1, \ldots, g$).

Second lemma fails if we remove the hypothesis $p > \text{ord } f$.

Conjecture

Let $f \in K[[x, y]]$ be an irreducible singularity with semigroup $\Gamma(f) = Nv_0 + \cdots + Nv_g$. Suppose that $\rho = \text{char } K > \text{ord } f$. Then the following two conditions are equivalent:

- $\mu(f) = c(f)$
- $\Gamma(f)$ is a tame semigroup ($v_k \not\equiv 0 \pmod{\rho}$ for $k = 1, \ldots, g$).

Second lemma fails if we remove the hypothesis $\rho > \text{ord } f$.

If $\Gamma(f)$ is a tame semigroup then $\mu(f) = c(f)$.
Conjecture

Let $f \in K[[x, y]]$ be an irreducible singularity with semigroup $\Gamma(f) = Nv_0 + \cdots + Nv_g$. Suppose that $p = \text{char } K > \text{ord } f$. Then the following two conditions are equivalent:

- $\mu(f) = c(f)$
- $\Gamma(f)$ is a tame semigroup ($v_k \not\equiv 0 \pmod{p}$ for $k = 1, \ldots, g$).

Second lemma fails if we remove the hypothesis $p > \text{ord } f$.

If $\Gamma(f)$ is a tame semigroup then $\mu(f) = c(f)$.

The other implication is still open.