When the catenary degree meets the tame degree in embedding dimension three numerical semigroups

Caterina Viola

Cortona - September 2014

based on

When the catenary degree meets the tame degree in embedding dimension three numerical semigroups, to appear in *Involve*.

S. T. Chapman, P. A. García-Sánchez, Z. Tripp, C. Viola, ω-primality in embedding dimension three numerical semigroups, preprint.

M. Delgado, P. A. García-Sánchez, J. J. Morais, GAP pakage numericalsgps

Let $S = \langle n_1, \dots, n_p \rangle$ be a *p*-generated numerical semigroup.

Let $S = \langle n_1, \dots, n_p \rangle$ be a *p*-generated numerical semigroup.

• A factorization of $s \in S$ is an element $x = (x_1, ..., x_p) \in \mathbb{N}^p$ such that $x_1 n_1 + \cdots + x_p n_p = s$.

Let $S = \langle n_1, \dots, n_p \rangle$ be a *p*-generated numerical semigroup.

- A factorization of $s \in S$ is an element $x = (x_1, ..., x_p) \in \mathbb{N}^p$ such that $x_1 n_1 + \cdots + x_p n_p = s$.
- The length of x is $|x| = x_1 + \cdots + x_p$.

Let $S = \langle n_1, \dots, n_p \rangle$ be a *p*-generated numerical semigroup.

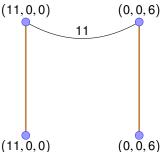
- A factorization of $s \in S$ is an element $x = (x_1, ..., x_p) \in \mathbb{N}^p$ such that $x_1 n_1 + \cdots + x_p n_p = s$.
- The length of x is $|x| = x_1 + \cdots + x_p$.
- Given another factorization $y = (y_1, ..., y_p)$, the distance between x and y is $d(x, y) = \max\{|x \gcd(x, y)|, |y \gcd(x, y)|\}$, where $\gcd(x, y) = (\min\{x_1, y_1\}, ..., \min\{x_p, y_p\})$.

$$66 \in S = (6, 9, 11), c(S) = 4$$

$$F(66) = \{(0,0,6), (1,3,3), (2,6,0), (4,1,3), (5,4,0), (8,2,0), (11,0,0)\}$$

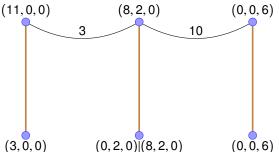
$$66 \in S = \langle 6, 9, 11 \rangle, c(S) = 4$$

$$F(66) = \{(0,0,6), (1,3,3), (2,6,0), (4,1,3), (5,4,0), (8,2,0), (11,0,0)\}$$



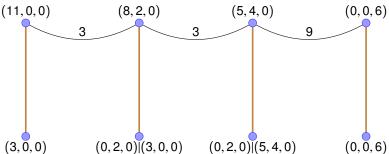
$$66 \in S = (6, 9, 11), c(S) = 4$$

$$F(66) = \{(0,0,6), (1,3,3), (2,6,0), (4,1,3), (5,4,0), (8,2,0), (11,0,0)\}$$



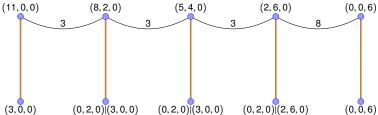
$$66 \in S = (6, 9, 11), c(S) = 4$$

$$F(66) = \{(0,0,6), (1,3,3), (2,6,0), (4,1,3), (5,4,0), (8,2,0), (11,0,0)\}$$



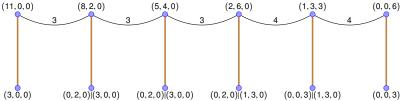
$$66 \in S = (6, 9, 11), c(S) = 4$$

$$F(66) = \{(0,0,6), (1,3,3), (2,6,0), (4,1,3), (5,4,0), (8,2,0), (11,0,0)\}$$



$$66 \in S = \langle 6, 9, 11 \rangle, c(S) = 4$$

$$F(66) = \{(0,0,6), (1,3,3), (2,6,0), (4,1,3), (5,4,0), (8,2,0), (11,0,0)\}$$

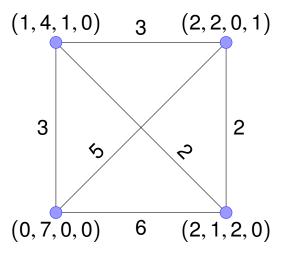


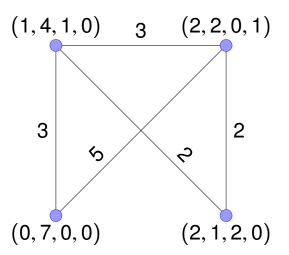
The catenary degree of $s \in S$, c(s), is the minimum nonnegative integer N such that for any two factorizations x and y of s, there exists a sequence of factorizations x_1, \ldots, x_t of s such that

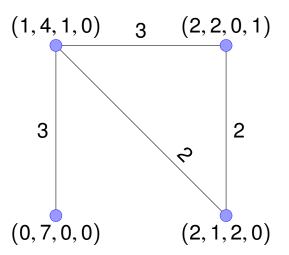
- $x_1 = x, x_t = y,$
- for all $i \in \{1, ..., t-1\}$, $d(x_i, x_{i+1}) \le N$.

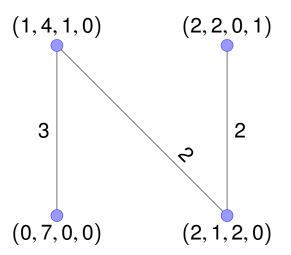
The catenary degree of S, c(S), is the supremum (maximum) of the catenary degrees of the elements of S.

The catenary degree of $77 \in \langle 10, 11, 23, 35 \rangle$









$$66 \in S = \langle 6, 9, 11 \rangle, t(S) = 7$$

The factorizations of $66 \in (6, 9, 11)$ are

$$F(66) = \{(0,0,6), (1,3,3), (2,6,0), (4,1,3), (5,4,0), (8,2,0), (11,0,0)\}$$

Besides, 9 divides 66

$$66 \in S = \langle 6, 9, 11 \rangle, t(S) = 7$$

The factorizations of $66 \in (6, 9, 11)$ are

$$F(66) = \{(0,0,6), (1,3,3), (2,6,0), (4,1,3), (5,4,0), (8,2,0), (11,0,0)\}$$

and 11 also divides 66

$$66 \in S = \langle 6, 9, 11 \rangle, t(S) = 7$$

$$F(66) = \{(0,0,6), (1,3,3), (2,6,0), (4,1,3), (5,4,0), (8,2,0), (11,0,0)\}$$

$$(8,2,0)$$

The tame degree

The tame degree of S, t(S), is defined as the minimum N such that for any $s \in S$ and any factorization x of s, if $s - n_i \in S$ for some $i \in \{1, ..., p\}$, then there exists another factorization y of s such that $d(x, y) \le N$ and the ith coordinate of y is nonzero (n_i "occurs" in this factorization).

The catenary degree of S is less than or equal to the tame degree of S.

$$\mathsf{c}(S) \leq \mathsf{t}(S)$$

The catenary degree of *S* is less than or equal to the tame degree of *S*.

$$c(S) \leq t(S)$$

It is known that in some cases both coincide (for instance for monoids with a generic presentation).

The catenary degree of *S* is less than or equal to the tame degree of *S*.

$$c(S) \leq t(S)$$

It is known that in some cases both coincide (for instance for monoids with a generic presentation).

We want to characterize when the equality holds if the embedding dimension of *S* is three.

Let $S = \langle n_1 < n_2 < n_3 \rangle$ be a numerical semigroup with embedding dimension 3.

Define

$$c_i = \min\{k \in \mathbb{N} \setminus \{0\} \mid kn_i \in \langle n_j, n_k \rangle, \{i, j, k\} = \{1, 2, 3\}\}.$$

Then, for all $\{i, j, k\} = \{1, 2, 3\}$, there exist some $r_{ij}, r_{ik} \in \mathbb{N}$ such that

$$c_i n_i = r_{ij} n_j + r_{ik} n_k.$$

We know that

Betti(
$$S$$
) = { $c_1 n_1, c_2 n_2, c_3 n_3$ }.

Hence $1 \le \# \operatorname{Betti}(S) \le 3$.

We know that

Betti(
$$S$$
) = { $c_1 n_1, c_2 n_2, c_3 n_3$ }.

Hence $1 \le \# \operatorname{Betti}(S) \le 3$.

Herzog proved that S is symmetric if and only if $r_{ij} = 0$ for some $i, j \in \{1, 2, 3\}$, or equivalently, # Betti(S) $\in \{1, 2\}$.

We know that

Betti(
$$S$$
) = { $c_1 n_1, c_2 n_2, c_3 n_3$ }.

Hence $1 \le \# \operatorname{Betti}(S) \le 3$.

Herzog proved that S is symmetric if and only if $r_{ij}=0$ for some $i,j \in \{1,2,3\}$, or equivalently, # Betti $(S) \in \{1,2\}$. Therefore, S is nonsymmetric if and only if # Betti(S)=3.

The nonsymmetric case

Let *S* be a numerical semigroup minimally generated by $\{n_1, n_2, n_3\}$ with $n_1 < n_2 < n_3$.

The nonsymmetric case

Let *S* be a numerical semigroup minimally generated by $\{n_1, n_2, n_3\}$ with $n_1 < n_2 < n_3$.

V. Blanco, P. A. García-Sánchez, A. Geroldinger proved that c(S) = t(S) for S a nonsymmetric embedding dimension three numerical semigroup.

The nonsymmetric case

Let *S* be a numerical semigroup minimally generated by $\{n_1, n_2, n_3\}$ with $n_1 < n_2 < n_3$.

V. Blanco, P. A. García-Sánchez, A. Geroldinger proved that c(S) = t(S) for S a nonsymmetric embedding dimension three numerical semigroup.

For this reason we focus henceforth in the case S is symmetric, and thus # Betti(S) \in {1, 2}.

When S has two Betti elements

When *S* has two Betti elements, we distinguish the three subcases:

- $c_1 n_1 = c_2 n_2 \neq c_3 n_3;$
- $c_1 n_1 = c_3 n_3 \neq c_2 n_2;$
- $c_1 n_1 \neq c_2 n_2 = c_3 n_3;$

The case
$$c_1 n_1 = c_2 n_2 \neq c_3 n_3$$

Proposition

Let
$$S = \langle n_1, n_2, n_3 \rangle$$
 with $n_1 < n_2 < n_3$ and $c_1 n_1 = c_2 n_2 \neq c_3 n_3$.
Then $c(S) < t(S)$.

$$S = \langle 4, 6, 7 \rangle \ \mathsf{c}(S) = 3 < \mathsf{t}(S) = 5$$

The case $c_1 n_1 = c_3 n_3 \neq c_2 n_2$

Proposition

Let
$$S = \langle n_1, n_2, n_3 \rangle$$
 with $n_1 < n_2 < n_3$ and $c_1 n_1 = c_3 n_3 \neq c_2 n_2$.
Then $c(S) < t(S)$.

$$S = \langle 4, 5, 6 \rangle c(S) = 3 < t(S) = 4$$

The case $c_1 n_1 \neq c_2 n_2 = c_3 n_3$

Proposition

Let $S = \langle n_1, n_2, n_3 \rangle$ with $n_1 < n_2 < n_3$ and $c_1 n_1 \neq c_2 n_2 = c_3 n_3$. If $c_2 n_2 \nmid c_1 n_1$, then c(S) < t(S).

$$S = \langle 5, 8, 12 \rangle \ c(S) = 4 < t(S) = 6$$

The case $c_1 n_1 \neq c_2 n_2 = c_3 n_3$

Proposition

Let $S = \langle n_1, n_2, n_3 \rangle$ with $n_1 < n_2 < n_3$ and $c_1 n_1 \neq c_2 n_2 = c_3 n_3$. If $c_2 n_2 \nmid c_1 n_1$, then c(S) < t(S).

Example

$$S = \langle 5, 8, 12 \rangle \ c(S) = 4 < t(S) = 6$$

Proposition

Let $S = \langle n_1, n_2, n_3 \rangle$ with $n_1 < n_2 < n_3$ and $c_1 n_1 \neq c_2 n_2 = c_3 n_3$. If $c_2 n_2 \mid c_1 n_1$, then c(S) = t(S).

$$S = \langle 12, 14, 21 \rangle \ c(S) = t(S) = 7$$

When S has a single Betti element

Proposition

Let
$$S = \langle n_1, n_2, n_3 \rangle$$
 with $n_1 < n_2 < n_3$ and $c_1 n_1 = c_2 n_2 = c_3 n_3$.
Then $c(S) = t(S)$.

Example

$$S = \langle 6, 10, 15 \rangle c(S) = t(S) = 5$$

Main result

Theorem

Let S be an embedding dimension three numerical semigroup minimally generated by $\{n_1, n_2, n_3\}$. For every $\{i, j, k\} = \{1, 2, 3\}$, define

$$c_i = \min\{k \in \mathbb{N} \setminus \{0\} \mid kn_i \in \langle n_j, n_k \rangle\}.$$

Then c(S) = t(S) if and only if

- either # Betti(S) \neq 2,
- or $c_1 n_1 \neq c_2 n_2 = c_3 n_3$ and $c_2 n_2$ divides $c_1 n_1$.

ω -primality, the definition

The ω -primality function assigns to each element $n \in S$ the value $\omega(n) = m$ if m is the smallest positive integer with the property that whenever $\sum_{i=1}^p a_i n_i - n \in S$ for |a| > m, there exists $b = (b_1, \ldots, b_p) \in \mathbb{N}^p$ with $b \le a$ (with the usual partial ordering on \mathbb{N}^p) such that $\sum_{i=1}^p b_i n_i - n \in S$ and $|b| \le m$.

ω -primality, the definition

The ω -primality function assigns to each element $n \in S$ the value $\omega(n) = m$ if m is the smallest positive integer with the property that whenever $\sum_{i=1}^p a_i n_i - n \in S$ for |a| > m, there exists $b = (b_1, \ldots, b_p) \in \mathbb{N}^p$ with $b \le a$ (with the usual partial ordering on \mathbb{N}^p) such that $\sum_{i=1}^p b_i n_i - n \in S$ and $|b| \le m$.

We set

$$\omega(S) = \sup\{\omega(S, n_i) \mid i \in \{1, \dots, p\}\}.$$

ω -primality

By definition, an element $b \in S$ is a prime element if and only if $\omega(S, b) = 1$, and S is factorial if and only if $\omega(S) = 1$.

Numerical semigroups other than $\mathbb N$ have no prime elements.

ω -primality

By definition, an element $b \in S$ is a prime element if and only if $\omega(S, b) = 1$, and S is factorial if and only if $\omega(S) = 1$.

Numerical semigroups other than $\mathbb N$ have no prime elements.

$$c(S) \le \omega(S) \le t(S)$$

We are interested in comparing the ω -primality with the catenary degree in embedding dimension three numerical semigroups.

Comparing the ω -primality with the catenary degree

Theorem

Let $S = \langle n_1, n_2, n_3 \rangle$ with $n_1 < n_2 < n_3$ be a numerical semigroup with embedding dimension three.

- (a) If # Betti(S) = 3, then $c(S) = \omega(S) = t(S)$.
- (b) If $c_1 n_1 = c_2 n_2 \neq c_3 n_3$, then $c(S) < \omega(S)$.
- (c) If $c_1 n_1 = c_3 n_3 \neq c_2 n_2$, then $c(S) < \omega(S)$.
- (d) If $c_1 n_1 \neq c_2 n_2 = c_3 n_3$ and $c_2 n_2 \mid c_1 n_1$, then $c(S) = \omega(S) = t(S)$.
- (e) If $c_1 n_1 = c_2 n_2 = c_3 n_3$, then $c(S) = \omega(S) = t(S)$.

Comparing ω -primality with the catenary degree

In the case $c_1n_1 \neq c_2n_2 = c_3n_3$ and $c_2n_2 \nmid c_1n_1$, with some examples we show that we cannot say more than we state in the theorem above.

Comparing ω -primality with the catenary degree

In the case $c_1n_1 \neq c_2n_2 = c_3n_3$ and $c_2n_2 \nmid c_1n_1$, with some examples we show that we cannot say more than we state in the theorem above.

Example

• $S = \langle 19, 350, 490 \rangle$ in which $c_1 n_1 \neq c_2 n_2 = c_3 n_3$ and $c_2 n_2 \nmid c_1 n_1$. We have $c(S) = \omega(S) = 70$.

Comparing ω -primality with the catenary degree

In the case $c_1n_1 \neq c_2n_2 = c_3n_3$ and $c_2n_2 \nmid c_1n_1$, with some examples we show that we cannot say more than we state in the theorem above.

Example

- $S = \langle 19, 350, 490 \rangle$ in which $c_1 n_1 \neq c_2 n_2 = c_3 n_3$ and $c_2 n_2 \nmid c_1 n_1$. We have $c(S) = \omega(S) = 70$.
- $S = \langle 62, 63, 147 \rangle$ in which $c_1 n_1 \neq c_2 n_2 = c_3 n_3$ and $c_2 n_2 \nmid c_1 n_1$. We have $c(S) = 21 < \omega(S) = 23$.

Questions

• When $\omega(S) = \mathsf{t}(S)$ in embedding dimension three numerical semigroup with two Betti elements?

Questions

- When $\omega(S) = \mathsf{t}(S)$ in embedding dimension three numerical semigroup with two Betti elements?
- When c(S) = t(S) for embedding dimension four numerical semigroup?

Thank you