# $\omega$ -primality and asymptotic $\omega$ -primality on numerical semigroups. Computation and properties

J.I. García-García M.A. Moreno-Frías A. Vigneron-Tenorio

Departament of Mathematics University of Cádiz. Spain

International meeting on numerical semigroups (IMNS 2014) Cortona (Italy), September 8-12, 2014





J. I. García-García, M. A. Moreno-Frías and A. Vigneron-Tenorio, Computation of the  $\omega$ -primality and asymptotic  $\omega$ -primality with applications to numerical semigroups

To appear Israel J. Math, available via arXiv:1370.5807.

### $\omega$ -primality,



#### A. Geroldinger,

Chains of factorizations in weakly Krull domains.

Colloquium Mathematicum 72 (1997), 53-81.

• Measure how far an element of a monoid is from being prime.



D.F. Anderson and S. T. Chapman, How far is an element from being prime, J. Algebra Appl. 9 (2010), no. 5, 779–789.



D.F. Anderson, S.T. Chapman, N. Kaplan, and D. Torkornoo, An Algorithm to compute ω-primality in a numerical monoid, Semigroup Forum 82 (2011), no. 1, 96–108.



V. Blanco, P. A. García-Sánchez and A. Geroldinger, Semigroup-theoretical characterizations of arithmetical invariants with applications to numerical monoids and Krull monoids, arXiv:1006.4222v1



P.A. GARCÍA SÁNCHEZ, I. OJEDA AND A. SÁNCHEZ-R-NAVARRO, Factorization invariants in half-Factorial Affine Semigroups, J. Algebra Comput. 23 (2013), 111–122.



A. GEROLDINGER AND W. HASSLER,

Local tameness or v-Noetherian monoids.

J. Pure Applied Algebra 212 (2009), 1509–1524.



A. GEROLDINGER AND F. HALTER-KOCH,

Non-unique factorizations. Algebraic, combinatorial and analytic theory.

Pure and Applied Mathematics (Boca Raton) 278, Chapman & Hall/CRC, 2006.



C. O'NEILL AND R. PELAYO, On the linearity of  $\omega$ -primality in numerical monoids. J. Pure and Applied Algebra. 218 (2014) 1620-1627



C. O'NEILL AND R. PELAYO, How do you measure primality.

arXiv:1405.1714v3 [math.AC] 20 Aug 2014.

- ▶ We give an algorithm to compute from a presentation of a finitely generated atomic monoid, the  $\omega$ -primality of any of its elements.
- For finitely generated quasi-Archimedean cancellative monoids, we give an explicit formulation of the asymptotic  $\omega$ -primality of its elements.

### S, numerical semigroup

### **Preliminaries**

- ▶ S, f.g. monoid  $\Longrightarrow S \simeq \mathbb{N}^p/\sigma$ ,  $\sigma$  a congruence on  $\mathbb{N}^p$ .  $a \in S$ ,  $a = [\gamma]_{\sigma}$ ,  $\gamma \in \mathbb{N}^p$ .
- ▶  $a, b \in S$ , a|b, if there exists  $c \in S$  such that a + c = b.
- ▶ The elements  $a, b \in S$  are **associated** if a|b and b|a.
- ▶  $a \in S$  is a **unit**, if there exists  $b \in S$  such that a + b = 0.  $S^{\times} = \{x \in S : x \text{ is a unit}\}.$

- ▶  $x \in S$  is an **atom** if  $x \notin S^{\times}$  and if a|x, then either  $a \in S^{\times}$  or a and x are associated. A(S)
- If the semigroup S \ S<sup>×</sup> is generated by its set of atoms A(S), the monoid S is called an atomic monoid.
  It is known that every non-group finitely generated cancellative monoid is atomic (R,G-S,G-G, 2004).
  Atomic monoid ≡ commutative cancellative semigroup with identity element such that every non-unit may be expressed as a sum of finitely many atoms (irreducible elements).
- ▶ A subset *I* of a monoid *S* is an ideal if  $I + S \subseteq I$ .  $a \in S$ , the set  $a + S = \{a + c \mid c \in S\} = \{s \in S \mid a \text{ divides } s\}$  is an ideal of *S*.

### Definition (Anderson, Chapman, Kaplan, Torkornoo, 11)

Let S be an atomic monoid with set of units  $S^{\times}$  and set of irreducibles  $\mathcal{A}(S)$ . For  $x \in S \setminus S^{\times}$ , we define  $\omega(x) = n$  if n is the smallest positive integer with the property that whenever  $x|a_1+\cdots+a_t$ , where each  $a_i \in \mathcal{A}(S)$ , there is a  $T \subseteq \{1,2,\ldots,t\}$  with  $|T| \leq n$  such that  $x|\sum_{k \in T} a_k$ . If no such n exists, then  $\omega(s) = \infty$ . For  $x \in S^{\times}$ , we define  $\omega(x) = 0$ .

If 
$$\omega(x) = 3$$
 and  $x | (a_1 + a_2 + a_3 + a_4 + a_5) \Rightarrow \exists i_1, i_2, i_3 \subset \{1, \dots, 5\}$  such that  $x | (a_{i_1} + a_{i_2} + a_{i_3})$ .

n is prime  $\iff \omega(n) = 1$ .

### Example

$$S = \langle 3, 5 \rangle$$
,  $15 = 5 + 5 + 5 = 3 + 3 + 3 + 3 + 3 + 3$ , then  $\omega(15) = 5$ .

# Computing the $\omega$ -primality in atomic monoids

 $S \simeq \mathbb{N}^p/\sigma$ ,  $\varphi : \mathbb{N}^p \to \mathbb{N}^p/\sigma$  the projection map.

 $A \subset \mathbb{N}^p/\sigma$ , denote by E(A) the set  $\varphi^{-1}(A)$ .

For every  $a \in S$ , E(a + S) is an ideal of  $\mathbb{N}^p$ .

# Proposition (Blanco, García-Sánchez, Geroldinger, 11)

Let  $S = \mathbb{N}^p/\sigma$  be a finitely generated atomic monoid and  $a \in S$ . Then  $\omega(a)$  is equal to  $\max\{\|\delta\| : \delta \in \operatorname{Minimals}_{\leq} (\operatorname{E}(a+S))\}$ .

[Anderson, Chapman, Kaplan, Torkornoo, 10]: numerical semigroups. [O'Neill, Pelayo, 14]: bullets.

[Rosales, García-Sánchez, García-García, 01]:  $\operatorname{Minimals}_{\leq}(I)$ , I ideal in S

### Algorithm

**Input:** A finite presentation of  $S = \mathbb{N}^p/\sigma$  and  $\gamma$  an element of  $\mathbb{N}^p$  verifying that  $a = [\gamma]_{\sigma}$ .

**Output:**  $\omega(a)$ .

- (1) Compute the set  $\Delta = \text{Minimals}_{\leq} \left( \mathbb{E}([\gamma]_{\sigma} + S) \right)$  using [R,G-S, G-G, 01].
- (2) Set  $\Psi = { \|\mu\| : \mu \in \Delta }$ .
- (3) Return max Ψ.

# Example (R, G-S, G-G, 01)

$$S\cong \mathbb{N}^4/\sigma$$
,

$$\sigma = \langle \{((5,0,0,0),(0,7,0,0)),((0,0,6,0),(0,0,1,0))\} \rangle,$$

S is atomic, but non-cancellative .

$$a = [(3, 3, 6, 5)]_{\sigma} \in S$$
,

$$Minimals \le E(a + S) = \{(8, 0, 1, 5), (0, 10, 1, 5), (3, 3, 1, 5)\}.$$

$$\omega(a) = \max\{\|(8,0,1,5)\|, \|(0,10,1,5)\|, \|(3,3,1,5)\|\} = 16.$$

### Software

OmegaPrimality: Groebner Basis Calculations

J. I. García-García, A. Vigneron-Tenorio. OmegaPrimality, a package for computing the omega primality of finitely generated atomic monoids.

Handle: http://hdl.handle.net/10498/15961 (2014)

numericalsgps GAP: Construction of Apéry set.

M. DELGADO, P. A. GARCÍA-SÁNCHEZ, J. MORAIS, "NumericalSgps": a GAP package for numerical semigroups,

http://www.gap-system.org/Packages/numericalsgps.html

### Comparison (milliseconds)

| (                                                                       |                 |        |        |
|-------------------------------------------------------------------------|-----------------|--------|--------|
| S                                                                       | $\omega(n)$     | OP     | GAP    |
| $\langle 115, 212, 333, 571 \rangle$                                    | $\omega(10000)$ | 22     | 1389   |
| $\langle 115, 212, 333, 571 \rangle$                                    | $\omega(s_i)$   | 496    | 1888   |
| $\langle 10,\dots,19  angle$                                            | $\omega(S)$     | 3779   | 125    |
| \(\lambda\) 101, 111, 121, 131, 141, 151, 161, 171, 181, 191\(\rangle\) | $\omega(S)$     | 135081 | 383949 |

### We conclude:

the larger are the elements or generators, the better performance one gets with OP. But, if there are many generators and *small*, then one should use the Apéry method.

# Asymptotic $\omega$ -primality

# Definition (Anderson-Chapman, 10)

- 1. Let S be an atomic monoid and  $x \in S$ , define:
  - ▶  $\overline{\omega}(x) = \lim_{n \to +\infty} \frac{\omega(nx)}{n}$  the asymptotic  $\omega$ -primality of x.
  - Asymptotic  $\omega$ -primality of S is defined as  $\overline{\omega}(S) = \sup{\{\overline{\omega}(x)|x \text{ is irreducible}\}}.$
- 2.  $S = \langle s_1, \ldots, s_p \rangle$ , then  $\overline{\omega}(S) = \max\{\overline{\omega}(s_i) | i = 1, \ldots, p\}$ .

# Asymptotic $\omega$ -primality in monoids generated by two elements

S cancelative, reduced. minimally generated by two elements  $\Longrightarrow$  atomic.

$$S \cong \mathbb{N}^2/\sigma$$

### Lemma

A non-free monoid S is cancellative, reduced and minimally generated by two elements if and only if  $S \cong \mathbb{N}^2/\sigma$  with  $\sigma = \langle ((\alpha, 0), (0, \beta)) \rangle$  and  $\alpha, \beta > 1$ .

S, numerical semigroup

$$[\gamma]_{\sigma} \in \mathcal{S},$$

#### Lemma

Let  $S = \mathbb{N}^2/\sigma$  with  $\sigma = \langle ((\alpha, 0), (0, \beta)) \rangle$  and  $\alpha, \beta > 1$ . Then for all  $\gamma = (\gamma_1, \gamma_2) \in \mathbb{N}^2$ , we have:

$$\mathrm{E}([\gamma]_{\sigma}) = \{ \gamma + \lambda(\alpha, -\beta) | \lambda \in \mathbb{Z}, -\lfloor \frac{\gamma_1}{\alpha} \rfloor \le \lambda \le \lfloor \frac{\gamma_2}{\beta} \rfloor \},$$

$$\begin{aligned} & \text{Minimals}_{\leq} \left( \text{E}([\gamma]_{\sigma} + S) \right) \\ &= \text{Minimals}_{\leq} \left( \text{E}([\gamma]_{\sigma}) \cup \{ (0, \gamma_2 + (\lfloor \frac{\gamma_1}{\alpha} \rfloor + 1)\beta), (\gamma_1 + (\lfloor \frac{\gamma_2}{\beta} \rfloor + 1)\alpha, 0) \} \right) \end{aligned}$$

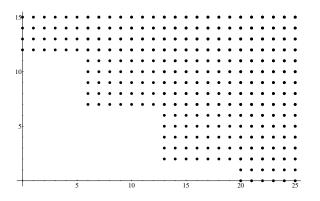
and

$$\omega([\gamma]_{\sigma}) = \max\{\gamma_2 + (\lfloor \frac{\gamma_1}{\alpha} \rfloor + 1)\beta, \gamma_1 + (\lfloor \frac{\gamma_2}{\beta} \rfloor + 1)\alpha\}.$$



### Example

$$S \cong \mathbb{N}^2/\sigma$$
,  $\sigma = \langle ((7,0),(0,5)) \rangle$ ,  $\gamma = (6,7) \in \mathbb{N}^2$ .  
  $\mathrm{E}([(6,7)]_{\sigma} + \mathbb{N}^2/\sigma) = \langle (0,12),(6,7),(13,2),(20,0) \rangle$ .



$$\omega([(6,7)]_{\sigma}) = \max\{0+12,6+7,13+2,20+0\} = 20.$$

### Proposition

Let  $S = \mathbb{N}^2/\sigma$  with  $\sigma = \langle ((\alpha, 0), (0, \beta)) \rangle$  and  $\alpha, \beta > 1$ . Then:

- If  $\alpha \geq \beta$ , then  $\overline{\omega}([(\gamma_1, \gamma_2)]_{\sigma}) = \gamma_1 + \frac{\alpha}{\beta}\gamma_2$ .
- If  $\alpha < \beta$ , then  $\overline{\omega}([(\gamma_1, \gamma_2)]_{\sigma}) = \frac{\beta}{\alpha} \gamma_1 + \gamma_2$ .

### Corollary

Let  $S = \mathbb{N}^2/\sigma$  with  $\sigma = \langle ((\alpha, 0), (0, \beta)) \rangle$  and  $\alpha, \beta > 1$ . Then:

- If  $\alpha \geq \beta$ , then  $\overline{\omega}([e_1]_{\sigma}) = 1$  and  $\overline{\omega}(S) = \overline{\omega}([e_2]_{\sigma}) = \frac{\alpha}{\beta}$ .
- If  $\alpha < \beta$ , then  $\overline{\omega}([e_2]_{\sigma}) = 1$  and  $\overline{\omega}(S) = \overline{\omega}([e_1]_{\sigma}) = \frac{\beta}{\alpha}$ .

# Asymptotic $\overline{\omega}$ -primality in Archimedean semigroups

### Definition

- ▶ An element  $x \neq 0$  of a monoid S is **archimedean** if for all  $y \in S \setminus \{0\}$  there exists a positive integer k such that  $y \mid kx$ .
- ► *S* is **quasi-archimedean** if the zero element is not archimedean and the rest of elements in *S* are archimedean.

### S, numerical semigroups are quasi-archimedean

S monoid is finitely generated, cancellative and quasi-archimedean  $\Longrightarrow$  for all  $x,y\in S\setminus\{0\}$ , there exist positive integers p and q such that px=qy.

 $S=\langle s_1,\ldots,s_p\rangle$  quasi-archimedean cancellative monoid. There exists  $k_1\geq\cdots\geq k_p\in\mathbb{N}\setminus\{0\}$  s.t.  $k_1[e_1]_\sigma=\cdots=k_p[e_p]_\sigma$ . In this way some elements of S can be expressed using only the generator  $[e_1]_\sigma$ .



### **Theorem**

Let  $S = \mathbb{N}^p/\sigma = \langle s_1, \ldots, s_p \rangle$  be a cancellative monoid with  $\sigma$  a congruence, let  $k_1 \geq \cdots \geq k_p \in \mathbb{N}$  be such that  $k_1 s_1 = \cdots = k_p s_p$  and let  $\gamma \in \mathbb{N}^p$ . Then every element  $x = (x_1, \ldots, x_p) \in \mathbb{N}^p \setminus \{0\}$  fulfilling that

$$\sum_{i=1}^{p} \frac{k_1 \cdots k_p}{k_i} x_i \geq (p-1)k_1 \cdots k_p + \sum_{i=1}^{p} \frac{k_1 \cdots k_p}{k_i} \gamma_i$$

belongs to  $E([\gamma]_{\sigma} + S)$ .

### **Theorem**

Let  $S = \mathbb{N}^p/\sigma$  be a quasi-archimedean cancellative reduced monoid. There exists a rearrange  $\{t_1,\ldots,t_p\}$  of the set  $\{1,\ldots,p\}$  such that  $\overline{\omega}(a) = \gamma_{t_1} + \sum_{i=2}^p \frac{k_{t_1}\gamma_{t_i}}{k_{t_i}}$ ,  $a = [(\gamma_1,\ldots,\gamma_p)]_{\sigma} \in S$ .



### Corollary

Let  $S = \mathbb{N}^p/\sigma$  be a quasi-archimedean cancellative reduced monoid. There exist  $k_1, \ldots, k_p \in \mathbb{N}$  such that  $\overline{\omega}([e_i]_\sigma) = \frac{\max\{k_1, \ldots, k_p\}}{k_i}$  for all  $i = 1, \ldots, p$ .

### Corollary

Let S be a numerical monoid minimally generated by  $\langle s_1 < s_2 < \cdots < s_p \rangle$ . For every  $s \in S$ , we have that  $\overline{\omega}(s) = \frac{s}{s_1}$ .



# Thanks for your attention!!