On the Hilbert function of one-dimensional semigroup rings

Michela Di Marca

Joint work with Marco D'Anna and Vincenzo Micale

- Introduction to the problem
 - Hilbert function
 - Monomial curves
 - Questions
- Some definitions and results
 - Correspondences
 - Apéry-sets and numerical invariants of S
- Our results
 - Characterization of the skipping elements
 - The main theorem
 - Applications
 - Future goals

Let (R, \mathfrak{m}) be a Noetherian local ring with $|R \setminus \mathfrak{m}| = \infty$.

$$gr(R) = \bigoplus_{i \geq 0} \mathfrak{m}^i / \mathfrak{m}^{i+1}$$

is the associated graded ring of R.

Definition

The Hilbert function of R is

$$H_R: \mathbb{N} \to \mathbb{N}, \quad H_R(i) = dim_k \mathfrak{m}^i/\mathfrak{m}^{i+1},$$

where $k = R/\mathfrak{m}$.

- Introduction to the problem
 - Hilbert function
 - Monomial curves
 - Questions
- Some definitions and results
 - Correspondences
 - Apéry-sets and numerical invariants of S
- Our results
 - Characterization of the skipping elements
 - The main theorem
 - Applications
 - Future goals

Definition

 $C \subseteq \mathbb{A}_k^n$ is an algebraic curve if

- $\exists I(C) \subseteq k[x_1, \ldots, x_n]$ such that C = V(I(C));
- $\bullet \ dim_k \tfrac{k[x_1,\ldots,x_n]}{l(C)} = 1.$

Suppose there are some numbers $g_1, \ldots, g_n \in \mathbb{N}$ with $gcd(g_1, \ldots, g_n) = 1$, and an homomorphism $\psi : k[x_1, \ldots, x_n] \to k[t]$:

$$x_1 \mapsto t^{g_1}$$

$$\vdots$$

$$x_n \mapsto t^{g_n}.$$

such that $I(C) = \ker \psi$, then C is called monomial curve, denoted by $C = C(g_1, \ldots, g_n)$.

Let $C = C(g_1, \dots, g_n)$ be a monomial curve determined by the homomorphism ψ .

Then

- $S = \langle g_1, \dots, g_n \rangle$ is a numerical semigroup;
- ② By extending ψ to $\hat{\psi}: k[[x_1, \dots, x_n]] \to k[[t]]$, we get

$$Im(\hat{\psi}) = k[[t^S]],$$

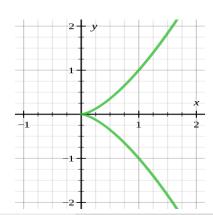
the semigroup ring associated to S;

- **3** $k[[t^S]] \cong \frac{k[[x_1,...,x_n]]}{l(C)^e}$ is the completion of the coordinate ring of C;
- **3** $gr(R) \cong \frac{k[x_1,...,x_n]}{l(C)^*}$ is the coordinate ring of the tangent cone of C at 0.

Example

The cusp curve

$$\psi: k[x_1, x_2] \to k[t] x_1 \mapsto t^2 x_2 \mapsto t^3 S = \langle 2, 3 \rangle, \ I(C) = (x_1^3 - x_2^2) gr(R) \cong \frac{k[x_1, x_2]}{(x_2^2)}$$



- Introduction to the problem
 - Hilbert function
 - Monomial curves
 - Questions
- Some definitions and results
 - Correspondences
 - Apéry-sets and numerical invariants of S
- Our results
 - Characterization of the skipping elements
 - The main theorem
 - Applications
 - Future goals

Question (1)

[Rossi's conjecture] Is the Hilbert function of one-dimensional Gorenstein local rings non-decreasing?

Answer:

In general the problem is open.

Question (2)

Is the answer to the previous question affermative for rings associated to monomial curves?

Partial answers:

- If gr(R) is Cohen-Macaulay, yes (A. Garcìa).
- Yes for some semigroups obtained by gluing (Arslan-Mete-Sahin, Jafari-Zarzuela Armengou).

Question (3)

Is the Hilbert function of rings associated to monomial curves non-decreasing for small embedding dimensions (e.g. edim = 3,4,5)?

Answer:

- edim = 3: Yes, more generally it is true for one-dimensional equicharacteristic rings (J. Elìas).
- edim = 4: Yes if the associated graded ring is Buchsbaum (Cortadellas Benitez-Jafari-Zarzuela Armengou).
 Open in general.
- edim = 5, ..., 9: The problem is totally open, the first counterexample is for edim = 10.

- Introduction to the problem
 - Hilbert function
 - Monomial curves
 - Questions
- Some definitions and results
 - Correspondences
 - Apéry-sets and numerical invariants of S
- Our results
 - Characterization of the skipping elements
 - The main theorem
 - Applications
 - Future goals

$$\begin{array}{ccc} v: k((t)) & \to & \mathbb{Z} \cup \{0\} \\ \sum_{h=i}^{\infty} r_h t^h, r_h \neq 0 & \mapsto & i \end{array}$$

Semigroup rings

$R = k[[t^S]] = k[[t^{g_1}, \dots, t^{g_n}]]$ $\mathfrak{m}=(t^{\overline{g_1}},\ldots,t^{g_n})$ maximal ideal of R $dim_k \mathfrak{m}^i/\mathfrak{m}^{i+1}$ $R' = \bigcup_i (\mathfrak{m}^i :_{Q(R)} \mathfrak{m}^i)$ blow-up of RR Gorenstein

Semigroups

$$egin{array}{lll}
ightarrow & S = \langle g_1, \ldots, g_n
angle \
ightarrow & M = S \setminus \{0\} \ ext{maximal ideal of } S \
ightarrow & iM \
ightarrow & |iM \setminus (i+1)M| \
ightarrow & S' = \cup_i (iM -_{\mathbb{Z}} iM) \ ext{blow-up of } S \
ightarrow & S \ ext{symmetric} \end{array}$$

- Introduction to the problem
 - Hilbert function
 - Monomial curves
 - Questions
- Some definitions and results
 - Correspondences
 - Apéry-sets and numerical invariants of S
- Our results
 - Characterization of the skipping elements
 - The main theorem
 - Applications
 - Future goals

Let $S = \langle g_1, \dots, g_n \rangle$, where $g_1 < \dots < g_n$ are the generators of the minimal system of generators.

Definition

The Apéry-set of S is the set

$$Ap(S) = \{\omega_0, \omega_1, \dots, \omega_{g_1-1}\},\$$

where $\omega_i = min\{s \in S \mid s \equiv i(mod \ g_1)\}.$

Similarly, one can define the Apéry-set for $S' = \langle g_1, g_2 - g_1, \dots, g_n - g_1 \rangle$

$$Ap(S') = \{\omega'_0, \omega'_1, \dots, \omega'_{g_1-1}\},\$$

where $\omega_i' = min\{s' \in S' \mid s' \equiv i(mod \ g_1)\}.$

Definition

$$egin{aligned} & \mathbf{a}_i = \textit{the positive number such that} \ \omega_i = \omega_i' + a_i g_1, \quad i = 0, 1, \dots, g_1 - 1 \ & \mathbf{b}_i = \textit{max}\{I \mid \omega_i \in \textit{IM}\}, \quad i = 0, 1, \dots, g_1 - 1 \end{aligned}$$

In general $a_i \geq b_i$ for every i.

Example

$$R = \mathbb{Q}[[t^8, t^9, t^{12}, t^{13}, t^{19}]]$$

 $S = \langle 8, 9, 12, 13, 19 \rangle = \{0, 8, 9, 12, 13, 16, 17, 18, 19, 20, 21, 22, 24, \rightarrow \}$
 $M \setminus 2M = \{8, 9, 12, 13, 19\}$
 $2M \setminus 3M = \{16, 17, 18, 20, 21, 22\}$
 $3M \setminus 4M = \{24, 25, 26, 27, 28, 29, 30, 31\}$
 $4M \setminus 5M = \{32, 33, 34, 35, 36, 37, 38, 39\}$
reduction number = 4
 $Ap(S) = \{0, 9, 18, 19, 12, 13, 22, 31\}$
 $Ap(S') = \{0, 1, 2, 3, 4, 5, 6, 7\}$
 $a_0 = 0, a_1 = 1, a_2 = 2, a_3 = 2, a_4 = 1, a_5 = 1, a_6 = 2, a_7 = 3$
 $b_0 = 0, b_1 = 1, b_2 = 2, b_3 = 1, b_4 = 1, b_5 = 1, b_6 = 2, b_7 = 3$

Let $R = k[[t^S]]$, where $S = \langle g_1, \dots, g_n \rangle$, $g_1 < g_2 < \dots < g_n$.

Proposition (A. Garcìa)

gr(R) is Cohen-Macaulay if and only if t^{g_1} is a regular element.

Proposition (Barucci-Fröberg)

gr(R) is Cohen-Macaulay if and only if $a_i = b_i$, for every i.

Definition

We call order of an element $s \in S$ the integer i such that $s \in iM \setminus (i+1)M$, denoted by ord(s); we also say that s is on the i-th level.

An element s skips the level when adding g_1 if $ord(s + g_1) > ord(s) + 1$.

 t^{g_1} is a zerodivisor in $R \Leftrightarrow \exists s \in S$ that skips the level when adding g_1 .

Example

$$S = \langle 8, 9, 12, 13, 19 \rangle$$

 $M \setminus 2M = \{8, 9, 12, 13, 19\}$
 $2M \setminus 3M = \{16, 17, 18, 20, 21, 22\}$
 $3M \setminus 4M = \{24, 25, 26, 27, 28, 29, 30, 31\}$
 $4M \setminus 5M = \{32, 33, 34, 35, 36, 37, 38, 39\}$
reduction number = 4

19 skips the order when adding 8; 18, 22, 27, 31 do not come from the previous level.

Definition

$$\begin{array}{l} D_i = \{ s \in (i-1)M \setminus iM : s + g_1 \in (i+1)M \}, \quad i \geq 2. \\ C_i = \{ s \in iM \setminus (i+1)M : s - g_1 \notin (i-1)M \setminus iM \}, \quad i \geq 1. \end{array}$$

$$H_R$$
 is non-decreasing $\Leftrightarrow |D_i| \leq |C_i|, \quad \forall i \in \{2, \dots, r\}$

Example

19 \in D_2 : 18, 22 \in C_2 , 27, 31 \in C_3 .

- Introduction to the problem
 - Hilbert function
 - Monomial curves
 - Questions
- Some definitions and results
 - Correspondences
 - Apéry-sets and numerical invariants of S
- Our results
 - Characterization of the skipping elements
 - The main theorem
 - Applications
 - Future goals

Let
$$D = \bigcup_{i \geq 2} D_i$$
.

Proposition

For every index i there exists an element $s \in D$ such that $s \equiv i \pmod{g_1}$ if and only if $a_i > b_i$.

Example

```
S = \langle 8, 9, 12, 13, 19 \rangle
M \setminus 2M = \{8, 9, 12, 13, 19\}
2M \setminus 3M = \{16, 17, 18, 20, 21, 22\}
3M \setminus 4M = \{24, 25, 26, 27, 28, 29, 30, 31\}
4M \setminus 5M = \{32, 33, 34, 35, 36, 37, 38, 39\}
reduction number = 4
Ap(S) = \{0, 9, 18, 19, 12, 13, 22, 31\}
Ap(S') = \{0, 1, 2, 3, 4, 5, 6, 7\}
a_0 = 0, a_1 = 1, a_2 = 2, a_3 = 2, a_4 = 1, a_5 = 1, a_6 = 2, a_7 = 3
b_0 = 0, b_1 = 1, b_2 = 2, b_3 = 1, b_4 = 1, b_5 = 1, b_6 = 2, b_7 = 3
```

- Introduction to the problem
 - Hilbert function
 - Monomial curves
 - Questions
- Some definitions and results
 - Correspondences
 - Apéry-sets and numerical invariants of S
- Our results
 - Characterization of the skipping elements
 - The main theorem
 - Applications
 - Future goals

Lemma

For every index $i \geq 2$ there exists a function $\phi: D_i \rightarrow C_i$.

Proof sketch:

- Let $s \in D_i$, so ord(s) = i 1 and $ord(s + g_1) > i$;
- Let $s + g_1 = g_{h_1} + \ldots + g_{h_i} + g_{h_{i+1}} + \ldots$ be the greatest among the maximal representations of $s + g_1$;
- Then $\phi(s) = g_{h_1} + \ldots + g_{h_i}$ is an element of C_i .

Theorem

If $|D_i| \leq i + 1$, then there exists an injective function $\hat{\phi}: D_i \to C_i$.

Hence,

 $|D_i| \le i + 1$ for every $i \ge 2 \Rightarrow H_R$ non-decreasing.

Example (Molinelli-Tamone)

```
S = \langle 13, 19, 24, 44, 49, 54, 55, 59, 60, 66 \rangle

M \setminus 2M = \{13, 19, 24, 44, 49, 54, 55, 59, 60, 66\}

2M \setminus 3M = \{26, 32, 37, 38, 43, 48, 68, 73, 79\}

3M \setminus 4M = \{39, 45, 50, 51, 56, 57, 61, 62, 67, 72, 92\}

\vdots

H_R is decreasing: |M \setminus 2M| = 10 > |2M \setminus 3M| = 9.

D_2 = \{44, 49, 54, 59\};

C_2 = \{38, 43, 48\}.
```

Here $|D_2| = 4$, so the bound of the theorem cannot be improved uniformly.

- Introduction to the problem
 - Hilbert function
 - Monomial curves
 - Questions
- Some definitions and results
 - Correspondences
 - Apéry-sets and numerical invariants of S
- Our results
 - Characterization of the skipping elements
 - The main theorem
 - Applications
 - Future goals

Proposition

If H_R is decreasing, then there exists an index $h \ge 2$ such that $|C_i| \ge i + 1$, for every $i \le h$.

In particular,

- The index h can be chosen as the index where the function decreases;
- One could estabilish that the function is non-decreasing without computing necessarily the cardinalities of all the levels.

Corollary

If H_R is decreasing, then

$$|\{\omega_i \in \textit{Ap}(\textit{S}) : \textit{b}_i = 2\}| > 3$$

We then obtain the following results for small embedding dimensions.

Corollary

If H_R is decreasing at h = 2, then

In general we know that if $g_1 - edim(S) \le 2$ then H_R is non-decreasing.

Corollary

If edim(S) = 4,5 and $g_1 \le 8$, then H_R is non-decreasing.

- Introduction to the problem
 - Hilbert function
 - Monomial curves
 - Questions
- Some definitions and results
 - Correspondences
 - Apéry-sets and numerical invariants of S
- Our results
 - Characterization of the skipping elements
 - The main theorem
 - Applications
 - Future goals

- Relate the numerical conditions on C_i and D_i to the properties for S symmetric.
- Extend the partial answer given for embedding dimension 4.
- **3** Analize the Hilbert function in the case gr(R) Buchsbaum.

Thank you!