Identifying torsion in the tensor product...

Micah Leamer

micahleamer@gmail.com

Notation

- Throughout this talk Γ will denote a numerical semigroup;
- A and B will denote relative ideals of Γ ; and
- The dual of A is denoted by $A^* = \Gamma A = \{z \in \mathbb{Z} | z + A \subseteq \Gamma\}.$

Definition

A splitting of A is a pair of relative ideals P and Q such that $P \cup Q = A$

Definition

$$(P \cap Q) + A^* \neq (P + A^*) \cap (Q + A^*)$$

 $\subseteq \leftarrow$ This inclusion is automatic

Notation

- Throughout this talk Γ will denote a numerical semigroup;
- A and B will denote relative ideals of Γ ; and
- The dual of A is denoted by $A^* = \Gamma A = \{z \in \mathbb{Z} | z + A \subseteq \Gamma\}.$

Definition

A splitting of A is a pair of relative ideals P and Q such that $P \cup Q = A$

Definition

$$(P \cap Q) + A^* \neq (P + A^*) \cap (Q + A^*)$$

 $\subseteq \leftarrow$ This inclusion is automatic

Notation

- Throughout this talk Γ will denote a numerical semigroup;
- A and B will denote relative ideals of Γ ; and
- The dual of A is denoted by $A^* = \Gamma A = \{z \in \mathbb{Z} | z + A \subseteq \Gamma\}.$

Definition

A splitting of A is a pair of relative ideals P and Q such that $P \cup Q = A$

Definition

$$(P \cap Q) + A^* \neq (P + A^*) \cap (Q + A^*)$$

 $\subseteq \leftarrow$ This inclusion is automatic

Notation

- Throughout this talk Γ will denote a numerical semigroup;
- A and B will denote relative ideals of Γ ; and
- The dual of A is denoted by $A^* = \Gamma A = \{z \in \mathbb{Z} | z + A \subseteq \Gamma\}.$

Definition

A splitting of A is a pair of relative ideals P and Q such that $P \cup Q = A$

Definition

$$(P \cap Q) + A^* \neq (P + A^*) \cap (Q + A^*)$$

 $\subseteq \leftarrow$ This inclusion is automatic

Notation

- Throughout this talk Γ will denote a numerical semigroup;
- A and B will denote relative ideals of Γ ; and
- The dual of A is denoted by $A^* = \Gamma A = \{z \in \mathbb{Z} | z + A \subseteq \Gamma\}.$

Definition

A splitting of A is a pair of relative ideals P and Q such that $P \cup Q = A$

Definition

A is said to be Huneke-Wiegand if either it is principal, or there exists a splitting $P \cup Q = A$ such that

$$(P \cap Q) + A^* \neq (P + A^*) \cap (Q + A^*)$$

 \subseteq \leftarrow This inclusion is automatic

Notation

- Throughout this talk Γ will denote a numerical semigroup;
- A and B will denote relative ideals of Γ ; and
- The dual of A is denoted by $A^* = \Gamma A = \{z \in \mathbb{Z} | z + A \subseteq \Gamma\}.$

Definition

A splitting of A is a pair of relative ideals P and Q such that $P \cup Q = A$

Definition

$$(P \cap Q) + A^* \neq (P + A^*) \cap (Q + A^*)$$

 $\subseteq \leftarrow$ This inclusion is automatic

Conjecture

All relative ideals are Huneke-Wiegand.

Recall: A is Huneke-Wiegand provided there exists a splitting $P \cup Q = A$ such that $(P \cap Q) + A^* \neq (P + A^*) \cap (Q + A^*)$

Question

Why would we make this conjecture and where does it come from?

Answer

Conjecture

All relative ideals are Huneke-Wiegand.

Recall: A is Huneke-Wiegand provided there exists a splitting $P \cup Q = A$ such that $(P \cap Q) + A^* \neq (P + A^*) \cap (Q + A^*)$

Question

Why would we make this conjecture and where does it come from?

Answer

Conjecture

All relative ideals are Huneke-Wiegand.

Recall: A is Huneke-Wiegand provided there exists a splitting $P \cup Q = A$ such that $(P \cap Q) + A^* \neq (P + A^*) \cap (Q + A^*)$

Question

Why would we make this conjecture and where does it come from?

Answer

Conjecture

All relative ideals are Huneke-Wiegand.

Recall: A is Huneke-Wiegand provided there exists a splitting $P \cup Q = A$ such that $(P \cap Q) + A^* \neq (P + A^*) \cap (Q + A^*)$

Question

Why would we make this conjecture and where does it come from?

Answer

Notation

- R will denote a commutative Noetherian domain
- M and N will be R-modules

Definition

The torsion submodule of M is

$$T(M) := \{ m \in M | rm = 0 \text{ for some } r \in R \setminus \{0\} \}$$

It is often the case that $T(M \otimes_R N) \neq 0$

Example

$$t^a \otimes t^b - t^c \otimes t^d \in I \otimes_R J$$
 where $a + b = c + d$

Notation

- R will denote a commutative Noetherian domain
- M and N will be R-modules

Definition

The torsion submodule of M is

$$T(M) := \{ m \in M | rm = 0 \text{ for some } r \in R \setminus \{0\} \}$$

It is often the case that $T(M \otimes_R N) \neq 0$

Example

$$t^a \otimes t^b - t^c \otimes t^d \in I \otimes_R J$$
 where $a + b = c + d$

Notation

- R will denote a commutative Noetherian domain
- M and N will be R-modules

Definition

The torsion submodule of M is

$$T(M):=\{m\in M|\ rm=0\ {\rm for\ some}\ r\in R\setminus\{0\}\}$$

It is often the case that $T(M \otimes_R N) \neq 0$

Example

$$t^a \otimes t^b - t^c \otimes t^d \in I \otimes_R J$$
 where $a + b = c + d$

Notation

- R will denote a commutative Noetherian domain
- M and N will be R-modules

Definition

The torsion submodule of M is

$$T(M):=\{m\in M|\ rm=0\ {\rm for\ some}\ r\in R\setminus\{0\}\}$$

It is often the case that $T(M \otimes_R N) \neq 0$

Example

$$t^a \otimes t^b - t^c \otimes t^d \in I \otimes_R J$$
 where $a + b = c + d$

Notation

- R will denote a commutative Noetherian domain
- M and N will be R-modules

Definition

The torsion submodule of M is

$$T(M):=\{m\in M|\ rm=0\ {\rm for\ some}\ r\in R\setminus\{0\}\}$$

It is often the case that $T(M \otimes_R N) \neq 0$

Example

$$t^a \otimes t^b - t^c \otimes t^d \in I \otimes_R J$$
 where $a + b = c + d$

Notation

- R will denote a commutative Noetherian domain
- M and N will be R-modules

Definition

The torsion submodule of M is

$$T(M):=\{m\in M|\ rm=0\ {\rm for\ some}\ r\in R\setminus\{0\}\}$$

It is often the case that $T(M \otimes_R N) \neq 0$

Example

$$t^a \otimes t^b - t^c \otimes t^d \in I \otimes_R J$$
 where $a + b = c + d$

Notation

- R will denote a commutative Noetherian domain
- M and N will be R-modules

Definition

The torsion submodule of M is

$$T(M):=\{m\in M|\ rm=0\ {\rm for\ some}\ r\in R\setminus\{0\}\}$$

It is often the case that $T(M \otimes_R N) \neq 0$

Example

$$t^a \otimes t^b - t^c \otimes t^d \in I \otimes_R J$$
 where $a + b = c + d$

Example

Let
$$R = k[t^3, t^4, t^5]$$

$$I = t^3 R + t^4 R$$
 and $J = t^4 R + t^5 R$

Then $t^3 \otimes t^5 - t^4 \otimes t^4 \in T(M \otimes_R N) \neq 0$

$$t^{5}(t^{3} \otimes t^{5} - t^{4} \otimes t^{4}) = t^{8} \otimes t^{5} - t^{4} \otimes t^{9}$$
$$= t^{4}t^{4} \otimes t^{5} - t^{4} \otimes t^{9}$$
$$= t^{4} \otimes t^{9} - t^{4} \otimes t^{9} = 0$$

Example

Let
$$R = k[t^4, t^5, t^6]$$

$$I = t^4 R + t^6 R$$
 and $J = t^4 R + t^5 R$.

Then
$$T(I \otimes_R J) = 0$$
.

Because
$$t^a \otimes t^b = t^c \otimes t^d \in I \otimes_R J$$
, whenever $a + b = c + d$.

◆ロト ◆回ト ◆注ト ◆注ト 注 りくぐ

Example

Let
$$R = k[t^3, t^4, t^5]$$

 $I = t^3R + t^4R$ and $J = t^4R + t^5R$

$$\iota^{-} - \iota^{-} \otimes \iota^{-} \in I(M \otimes_{R} N) \neq 0$$

$$t^{5}(t^{3} \otimes t^{5} - t^{4} \otimes t^{4}) = t^{8} \otimes t^{5} - t^{4} \otimes t^{9}$$
$$= t^{4}t^{4} \otimes t^{5} - t^{4} \otimes t^{9}$$
$$= t^{4} \otimes t^{9} - t^{4} \otimes t^{9} = t^{4} \otimes t^{9}$$

Example

Let
$$R = k[t^4, t^5, t^6]$$

$$I = t^4 R + t^6 R$$
 and $J = t^4 R + t^5 R$.

Then
$$T(I \otimes_R J) = 0$$
.

Because
$$t^a \otimes t^b = t^c \otimes t^d \in I \otimes_R J$$
, whenever $a + b = c + d$.

Example

Let
$$R = k[t^3, t^4, t^5]$$

 $I = t^3R + t^4R$ and $J = t^4R + t^5R$
Then $t^3 \otimes t^5 - t^4 \otimes t^4 \in T(M \otimes_R N) \neq 0$

$$t^{5}(t^{3} \otimes t^{5} - t^{4} \otimes t^{4}) = t^{8} \otimes t^{5} - t^{4} \otimes t^{9}$$
$$= t^{4}t^{4} \otimes t^{5} - t^{4} \otimes t^{9}$$
$$= t^{4} \otimes t^{9} - t^{4} \otimes t^{9} = 0$$

Example

Let
$$R = k[t^4, t^5, t^6]$$

$$I = t^4 R + t^6 R$$
 and $J = t^4 R + t^5 R$.

Then
$$T(I \otimes_R J) = 0$$
.

Because
$$t^a \otimes t^b = t^c \otimes t^d \in I \otimes_R J$$
, whenever $a + b = c + d$.

Example

Let
$$R = k[t^3, t^4, t^5]$$

 $I = t^3R + t^4R$ and $J = t^4R + t^5R$
Then $t^3 \otimes t^5 - t^4 \otimes t^4 \in T(M \otimes_R N) \neq 0$

$$t^{5}(t^{3} \otimes t^{5} - t^{4} \otimes t^{4}) = t^{8} \otimes t^{5} - t^{4} \otimes t^{9}$$

$$= t^{4}t^{4} \otimes t^{5} - t^{4} \otimes t^{9}$$

$$= t^{4} \otimes t^{9} - t^{4} \otimes t^{9} = 0$$

Example

Let
$$R = k[t^4, t^5, t^6]$$

 $I = t^4 R + t^6 R$ and $I = t^4 R + t^5 R$.

Then
$$T(I \otimes_R J) = 0$$
.

Because $t^a \otimes t^b = t^c \otimes t^d \in I \otimes_R J$, whenever a + b = c + d.

Example

Let
$$R = k[t^3, t^4, t^5]$$

 $I = t^3R + t^4R$ and $J = t^4R + t^5R$
Then $t^3 \otimes t^5 - t^4 \otimes t^4 \in T(M \otimes_R N) \neq 0$

$$t^{5}(t^{3} \otimes t^{5} - t^{4} \otimes t^{4}) = t^{8} \otimes t^{5} - t^{4} \otimes t^{9}$$
$$= t^{4} t^{4} \otimes t^{5} - t^{4} \otimes t^{9}$$
$$= t^{4} \otimes t^{9} - t^{4} \otimes t^{9} = t^{4} \otimes t^{9}$$

Example

Let
$$R = k[t^4, t^5, t^6]$$

 $I = t^4 R + t^6 R$ and $J = t^4 R + t^5 R$.

Then
$$T(I \otimes_R J) = 0$$
.

Because $t^a \otimes t^b = t^c \otimes t^d \in I \otimes_R J$, whenever a + b = c + d.

Example

Let
$$R = k[t^3, t^4, t^5]$$

 $I = t^3R + t^4R$ and $J = t^4R + t^5R$
Then $t^3 \otimes t^5 - t^4 \otimes t^4 \in T(M \otimes_R N) \neq 0$

$$t^{5}(t^{3} \otimes t^{5} - t^{4} \otimes t^{4}) = t^{8} \otimes t^{5} - t^{4} \otimes t^{9}$$
$$= t^{4}t^{4} \otimes t^{5} - t^{4} \otimes t^{9}$$
$$= t^{4} \otimes t^{9} - t^{4} \otimes t^{9} = 0$$

Example

Let
$$R = k[t^4, t^5, t^6]$$

 $I = t^4R + t^6R$ and $J = t^4R + t^5R$.

Then
$$T(I \otimes_R J) = 0$$
.

Because $t^a \otimes t^b = t^c \otimes t^d \in I \otimes_R J$, whenever a + b = c + d.

4□ > 4□ > 4□ > 4□ > 4□ > 4□

Example

Let
$$R = k[t^3, t^4, t^5]$$

 $I = t^3 R + t^4 R$ and $J = t^4 R + t^5 R$
Then $t^3 \otimes t^5 - t^4 \otimes t^4 \in T(M \otimes_R N) \neq 0$

$$t^{5}(t^{3} \otimes t^{5} - t^{4} \otimes t^{4}) = t^{8} \otimes t^{5} - t^{4} \otimes t^{9}$$
$$= t^{4}t^{4} \otimes t^{5} - t^{4} \otimes t^{9}$$
$$= t^{4} \otimes t^{9} - t^{4} \otimes t^{9} = 0$$

Example

Let
$$R = k[t^4, t^5, t^6]$$

$$I = t^4 R + t^6 R$$
 and $J = t^4 R + t^5 R$

Then
$$T(I \otimes_R J) = 0$$
.

Because $t^a \otimes t^b = t^c \otimes t^d \in I \otimes_R J$, whenever a + b = c + d

Example

Let
$$R = k[t^3, t^4, t^5]$$

 $I = t^3R + t^4R$ and $J = t^4R + t^5R$
Then $t^3 \otimes t^5 - t^4 \otimes t^4 \in T(M \otimes_R N) \neq 0$

$$t^{5}(t^{3} \otimes t^{5} - t^{4} \otimes t^{4}) = t^{8} \otimes t^{5} - t^{4} \otimes t^{9}$$
$$= t^{4}t^{4} \otimes t^{5} - t^{4} \otimes t^{9}$$
$$= t^{4} \otimes t^{9} - t^{4} \otimes t^{9} = 0$$

Example

Let
$$R = k[t^4, t^5, t^6]$$

 $I = t^4R + t^6R$ and $J = t^4R + t^5R$.

Then $T(I \otimes_R J) = 0$.

Because $t^a \otimes t^b = t^c \otimes t^d \in I \otimes_R J$, whenever a + b = c + d

Example

Let
$$R = k[t^3, t^4, t^5]$$

 $I = t^3R + t^4R$ and $J = t^4R + t^5R$
Then $t^3 \otimes t^5 - t^4 \otimes t^4 \in T(M \otimes_R N) \neq 0$

$$t^{5}(t^{3} \otimes t^{5} - t^{4} \otimes t^{4}) = t^{8} \otimes t^{5} - t^{4} \otimes t^{9}$$
$$= t^{4}t^{4} \otimes t^{5} - t^{4} \otimes t^{9}$$
$$= t^{4} \otimes t^{9} - t^{4} \otimes t^{9} = 0$$

Example

Let
$$R = k[t^4, t^5, t^6]$$

 $I = t^4R + t^6R$ and $J = t^4R + t^5R$.
Then $T(I \otimes_R J) = 0$.

Because $t^a \otimes t^b = t^c \otimes t^d \in I \otimes_R J$, whenever a + b = c + d

Example

Let
$$R = k[t^3, t^4, t^5]$$

 $I = t^3R + t^4R$ and $J = t^4R + t^5R$
Then $t^3 \otimes t^5 - t^4 \otimes t^4 \in T(M \otimes_R N) \neq 0$

$$t^{5}(t^{3} \otimes t^{5} - t^{4} \otimes t^{4}) = t^{8} \otimes t^{5} - t^{4} \otimes t^{9}$$
$$= t^{4}t^{4} \otimes t^{5} - t^{4} \otimes t^{9}$$
$$= t^{4} \otimes t^{9} - t^{4} \otimes t^{9} = 0$$

Example

Let
$$R = k[t^4, t^5, t^6]$$

 $I = t^4R + t^6R$ and $J = t^4R + t^5R$.

Then
$$T(I \otimes_R J) = 0$$
.

Because
$$t^a \otimes t^b = t^c \otimes t^d \in I \otimes_R J$$
, whenever $a + b = c + d$.

The Huneke-Wiegand Conjecture (HWC)

- HWC is around 30 years old and is well known.
- Proving HWC would imply the Auslander-Reiten Conjecture is true for Gorenstein domains of any dimension.
- The Auslander-Reiten Conjecture is one of the most sought after results in commutative algebra.
- \bullet HWC is known to be true when R is a hyper-surface
- HWC is open when R is complete intersection with $codim(R) \ge 2$
- \bullet HWC is open when M is a 2-generated monomial ideal in a NSGR.

The Huneke-Wiegand Conjecture (HWC)

- HWC is around 30 years old and is well known.
- Proving HWC would imply the Auslander-Reiten Conjecture is true for Gorenstein domains of any dimension.
- The Auslander-Reiten Conjecture is one of the most sought after results in commutative algebra.
- \bullet HWC is known to be true when R is a hyper-surface
- HWC is open when R is complete intersection with $codim(R) \ge 2$
- \bullet HWC is open when M is a 2-generated monomial ideal in a NSGR.

The Huneke-Wiegand Conjecture (HWC)

- HWC is around 30 years old and is well known.
- Proving HWC would imply the Auslander-Reiten Conjecture is true for Gorenstein domains of any dimension.
- The Auslander-Reiten Conjecture is one of the most sought after results in commutative algebra.
- \bullet HWC is known to be true when R is a hyper-surface
- HWC is open when R is complete intersection with $codim(R) \ge 2$
- HWC is open when M is a 2-generated monomial ideal in a NSGR.

The Huneke-Wiegand Conjecture (HWC)

- HWC is around 30 years old and is well known.
- Proving HWC would imply the Auslander-Reiten Conjecture is true for Gorenstein domains of any dimension.
- The Auslander-Reiten Conjecture is one of the most sought after results in commutative algebra.
- \bullet HWC is known to be true when R is a hyper-surface
- HWC is open when R is complete intersection with $codim(R) \ge 2$
- ullet HWC is open when M is a 2-generated monomial ideal in a NSGR.

The Huneke-Wiegand Conjecture (HWC)

- HWC is around 30 years old and is well known.
- Proving HWC would imply the Auslander-Reiten Conjecture is true for Gorenstein domains of any dimension.
- The Auslander-Reiten Conjecture is one of the most sought after results in commutative algebra.
- \bullet HWC is known to be true when R is a hyper-surface
- HWC is open when R is complete intersection with $codim(R) \ge 2$
- ullet HWC is open when M is a 2-generated monomial ideal in a NSGR.

The Huneke-Wiegand Conjecture (HWC)

- HWC is around 30 years old and is well known.
- Proving HWC would imply the Auslander-Reiten Conjecture is true for Gorenstein domains of any dimension.
- The Auslander-Reiten Conjecture is one of the most sought after results in commutative algebra.
- HWC is known to be true when R is a hyper-surface
- HWC is open when R is complete intersection with $codim(R) \ge 2$
- ullet HWC is open when M is a 2-generated monomial ideal in a NSGR.

The Huneke-Wiegand Conjecture (HWC)

- HWC is around 30 years old and is well known.
- Proving HWC would imply the Auslander-Reiten Conjecture is true for Gorenstein domains of any dimension.
- The Auslander-Reiten Conjecture is one of the most sought after results in commutative algebra.
- HWC is known to be true when R is a hyper-surface
- HWC is open when R is complete intersection with $codim(R) \ge 2$
- HWC is open when M is a 2-generated monomial ideal in a NSGR.

The Huneke-Wiegand Conjecture (HWC)

- HWC is around 30 years old and is well known.
- Proving HWC would imply the Auslander-Reiten Conjecture is true for Gorenstein domains of any dimension.
- The Auslander-Reiten Conjecture is one of the most sought after results in commutative algebra.
- HWC is known to be true when R is a hyper-surface
- HWC is open when R is complete intersection with $codim(R) \ge 2$
- HWC is open when M is a 2-generated monomial ideal in a NSGR.

Let I and J be mononomial ideals of $k[\Gamma]$ and A := deg(I), B := deg(J).

Then
$$T(I \otimes_{k[\Gamma]} J) = 0 \iff (P \cap Q) + B = (P + B) \cap (Q + B)$$
 for every splitting $P \cup Q = A$

Let K be the total quotient ring of R.

Then $Hom_R(I,R) \simeq (R:_K I)$ and $deg((R:_K I)) = \Gamma - deg(I) = A^*$

Corollary

Let I be a monomial ideal in $k[\Gamma]$ and $\deg(I)=A$

Then $T(I \otimes_R Hom(I, R)) \neq 0 \iff$

 \exists a splitting $P \cup Q = A$ such that $(P \cap Q) + A^* \neq (P + A^*) \cap (Q + A^*)$.

Theorem (G-S,L)

Let $R = k[\Gamma]$ be a complete intersection numerical semigroup ring and I a 2-generated monomial ideal of R.

Let I and J be mononomial ideals of $k[\Gamma]$ and A := deg(I), B := deg(J).

Then
$$T(I \otimes_{k[\Gamma]} J) = 0 \iff$$

$$(P \cap Q) + B = (P + B) \cap (Q + B)$$
 for every splitting $P \cup Q = A$

Let K be the total quotient ring of R.

Then $\mathit{Hom}_R(I,R) \simeq (R:_{\mathcal{K}}I)$ and $\deg((R:_{\mathcal{K}}I)) = \Gamma - \deg(I) = A^*$

Corollary

Let I be a monomial ideal in $k[\Gamma]$ and $\deg(I)=A$

Then $T(I \otimes_R Hom(I, R)) \neq 0 \iff$

 \exists a splitting $P \cup Q = A$ such that $(P \cap Q) + A^* \neq (P + A^*) \cap (Q + A^*)$.

Theorem (G-S,L)

Let $R = k[\Gamma]$ be a complete intersection numerical semigroup ring and I a 2-generated monomial ideal of R.

Then $T(I \otimes_R \operatorname{Hom}_R(I, R) \neq 0$.

40.40.45.45. 5 20.0

Let I and J be mononomial ideals of $k[\Gamma]$ and $A := \deg(I)$, $B := \deg(J)$. Then $T(I \otimes_{k[\Gamma]} J) = 0 \iff (P \cap Q) + B = (P + B) \cap (Q + B)$ for every splitting $P \cup Q = A$.

Let K be the total quotient ring of R.

Then $Hom_R(I,R)\simeq (R:_KI)$ and $\deg((R:_KI))=\Gamma-\deg(I)=A^*$

Corollary

Let I be a monomial ideal in $k[\Gamma]$ and $\deg(I)=A$.

Then $T(I \otimes_R Hom(I, R)) \neq 0 \iff$

 \exists a splitting $P \cup Q = A$ such that $(P \cap Q) + A^* \neq (P + A^*) \cap (Q + A^*)$.

Theorem (G-S,L)

Let $R = k[\Gamma]$ be a complete intersection numerical semigroup ring and I a 2-generated monomial ideal of R.

Then $T(I \otimes_R \operatorname{Hom}_R(I, R) \neq 0$.

40.40.45.45. 5 000

Let I and J be mononomial ideals of $k[\Gamma]$ and $A := \deg(I)$, $B := \deg(J)$. Then $T(I \otimes_{k[\Gamma]} J) = 0 \iff$

$$(P \cap Q) + B = (P + B) \cap (Q + B)$$
 for every splitting $P \cup Q = A$.

Let K be the total quotient ring of R.

Then $Hom_R(I,R)\simeq (R:_KI)$ and $\deg((R:_KI))=\Gamma-\deg(I)=A^*$

Corollary

Let I be a monomial ideal in $k[\Gamma]$ and $\deg(I)=A$.

Then $T(I \otimes_R Hom(I, R)) \neq 0 \iff$

 \exists a splitting $P \cup Q = A$ such that $(P \cap Q) + A^* \neq (P + A^*) \cap (Q + A^*)$.

Theorem (G-S,L)

Let $R = k[\Gamma]$ be a complete intersection numerical semigroup ring and I a 2-generated monomial ideal of R.

Let I and J be mononomial ideals of
$$k[\Gamma]$$
 and $A := \deg(I)$, $B := \deg(J)$.
Then $T(I \otimes_{k[\Gamma]} J) = 0 \iff$

$$(P \cap Q) + B = (P + B) \cap (Q + B)$$
 for every splitting $P \cup Q = A$.

Let K be the total quotient ring of R.

Then $Hom_R(I,R) \simeq (R:_K I)$ and $deg((R:_K I)) = \Gamma - deg(I) = A^*$.

Corollary

Let I be a monomial ideal in $k[\Gamma]$ and $\deg(I) = A$.

Then $T(I \otimes_R Hom(I, R)) \neq 0 \iff$

 \exists a splitting $P \cup Q = A$ such that $(P \cap Q) + A^* \neq (P + A^*) \cap (Q + A^*)$.

Theorem (G-S,L)

Let $R = k[\Gamma]$ be a complete intersection numerical semigroup ring and I a 2-generated monomial ideal of R.

Let I and J be mononomial ideals of $k[\Gamma]$ and $A := \deg(I)$, $B := \deg(J)$. Then $T(I \otimes_{k[\Gamma]} J) = 0 \iff$

$$(P \cap Q) + B = (P + B) \cap (Q + B)$$
 for every splitting $P \cup Q = A$.

Let K be the total quotient ring of R.

Then $Hom_R(I,R) \simeq (R:_K I)$ and $deg((R:_K I)) = \Gamma - deg(I) = A^*$.

Corollary

Let I be a monomial ideal in $k[\Gamma]$ and deg(I) = A.

Then $T(I \otimes_R Hom(I, R)) \neq 0 \iff$

 \exists a splitting $P \cup Q = A$ such that $(P \cap Q) + A^* \neq (P + A^*) \cap (Q + A^*)$.

Theorem (G-S,L)

Let $R = k[\Gamma]$ be a complete intersection numerical semigroup ring and I a 2-generated monomial ideal of R.

Let I and J be mononomial ideals of $k[\Gamma]$ and $A := \deg(I)$, $B := \deg(J)$. Then $T(I \otimes_{k[\Gamma]} J) = 0 \iff$

$$(P \cap Q) + B = (P + B) \cap (Q + B)$$
 for every splitting $P \cup Q = A$.

Let K be the total quotient ring of R.

Then $Hom_R(I,R) \simeq (R:_K I)$ and $deg((R:_K I)) = \Gamma - deg(I) = A^*$.

Corollary

Let I be a monomial ideal in $k[\Gamma]$ and deg(I) = A.

Then $T(I \otimes_R Hom(I, R)) \neq 0 \iff$

 \exists a splitting $P \cup Q = A$ such that $(P \cap Q) + A^* \neq (P + A^*) \cap (Q + A^*)$.

Theorem (G-S,L)

Let $R = k[\Gamma]$ be a complete intersection numerical semigroup ring and I a 2-generated monomial ideal of R.

Let I and J be mononomial ideals of $k[\Gamma]$ and $A := \deg(I)$, $B := \deg(J)$. Then $T(I \otimes_{k[\Gamma]} J) = 0 \iff$

$$(P \cap Q) + B = (P + B) \cap (Q + B)$$
 for every splitting $P \cup Q = A$.

Let K be the total quotient ring of R.

Then $Hom_R(I,R) \simeq (R:_K I)$ and $deg((R:_K I)) = \Gamma - deg(I) = A^*$.

Corollary

Let I be a monomial ideal in $k[\Gamma]$ and deg(I) = A.

Then $T(I \otimes_R Hom(I, R)) \neq 0 \iff$

 \exists a splitting $P \cup Q = A$ such that $(P \cap Q) + A^* \neq (P + A^*) \cap (Q + A^*)$.

Theorem (G-S,L)

Let $R = k[\Gamma]$ be a complete intersection numerical semigroup ring and I a 2-generated monomial ideal of R.

Let I and J be mononomial ideals of $k[\Gamma]$ and A := deg(I), B := deg(J).

Then
$$T(I \otimes_{k[\Gamma]} J) = 0 \iff (P \cap Q) + B = (P + B) \cap (Q + B)$$
 for every splitting $P \cup Q = A$.

Let K be the total quotient ring of R.

Then $Hom_R(I,R) \simeq (R:_K I)$ and $deg((R:_K I)) = \Gamma - deg(I) = A^*$.

Corollary

Let I be a monomial ideal in $k[\Gamma]$ and deg(I) = A.

Then $T(I \otimes_R Hom(I, R)) \neq 0 \iff$

 \exists a splitting $P \cup Q = A$ such that $(P \cap Q) + A^* \neq (P + A^*) \cap (Q + A^*)$.

Theorem (G-S,L)

Let $R = k[\Gamma]$ be a complete intersection numerical semigroup ring and I a 2-generated monomial ideal of R.

Let I and J be mononomial ideals of $k[\Gamma]$ and A := deg(I), B := deg(J).

Then
$$T(I \otimes_{k[\Gamma]} J) = 0 \iff$$

$$(P \cap Q) + B = (P + B) \cap (Q + B)$$
 for every splitting $P \cup Q = A$.

Let K be the total quotient ring of R.

Then $Hom_R(I,R) \simeq (R:_K I)$ and $deg((R:_K I)) = \Gamma - deg(I) = A^*$.

Corollary

Let I be a monomial ideal in $k[\Gamma]$ and deg(I) = A.

Then $T(I \otimes_R Hom(I, R)) \neq 0 \iff$

 \exists a splitting $P \cup Q = A$ such that $(P \cap Q) + A^* \neq (P + A^*) \cap (Q + A^*)$.

Theorem (G-S,L)

Let $R = k[\Gamma]$ be a complete intersection numerical semigroup ring and I a 2-generated monomial ideal of R.

Remark

If $A=(a_1,a_2)$ is two generated. Then there is only one non-trivial splitting $P=a_1+\Gamma$ and $Q=a_2+\Gamma$.

Hence A is Huneke-Wiegand \iff $(a_1) \cap (a_2) + A^* \neq (a_1 + A^*) \cap (a_2 + A^*)$ Subtracting $a_1 + a_2$ from both sides we get $A^* + A^* \neq (A + A)^*$. A^* corresponds to pairs in Γ differing by $s = a_2 - a_1$. $(A + A)^*$ corresponds to triples in Γ differing by s.

Lemma

- $\lambda(T(I \otimes_R \operatorname{Hom}_R(I,R)));$
- $|(A + A)^* \setminus (A^* + A^*)|;$
- The number of sets of the form $\{x, x+s, x+2s\} \subset \Gamma$ that do not factor as a sum of sets $\{y, y+s\} + \{z, z+s\}$ also in Γ .

Remark

If $A=(a_1,a_2)$ is two generated. Then there is only one non-trivial splitting $P=a_1+\Gamma$ and $Q=a_2+\Gamma$. Hence A is Huneke-Wiegand \iff $(a_1)\cap(a_2)+A^*\neq(a_1+A^*)\cap(a_2+A^*)$ Subtracting a_1+a_2 from both sides we get $A^*+A^*\neq(A+A)^*$. A^* corresponds to pairs in Γ differing by $s=a_2-a_1$. $(A+A)^*$

Lemma

- $\lambda(T(I \otimes_R \operatorname{Hom}_R(I,R)));$
- $|(A + A)^* \setminus (A^* + A^*)|;$
- The number of sets of the form $\{x, x+s, x+2s\} \subset \Gamma$ that do not factor as a sum of sets $\{y, y+s\} + \{z, z+s\}$ also in Γ .

Remark

If $A=(a_1,a_2)$ is two generated. Then there is only one non-trivial splitting $P=a_1+\Gamma$ and $Q=a_2+\Gamma$. Hence A is Huneke-Wiegand \iff $(a_1)\cap (a_2)+A^*\neq (a_1+A^*)\cap (a_2+A^*)$ Subtracting a_1+a_2 from both sides we get $A^*+A^*\neq (A+A)^*$. A^* corresponds to pairs in Γ differing by $s=a_2-a_1$. $(A+A)^*$

Lemma

- $\lambda(T(I \otimes_R \operatorname{Hom}_R(I,R)));$
- $|(A + A)^* \setminus (A^* + A^*)|;$
- The number of sets of the form $\{x, x+s, x+2s\} \subset \Gamma$ that do not factor as a sum of sets $\{y, y+s\} + \{z, z+s\}$ also in Γ .

Remark

If $A=(a_1,a_2)$ is two generated. Then there is only one non-trivial splitting $P=a_1+\Gamma$ and $Q=a_2+\Gamma$. Hence A is Huneke-Wiegand \iff $(a_1)\cap(a_2)+A^*\neq(a_1+A^*)\cap(a_2+A^*)$ Subtracting a_1+a_2 from both sides we get $A^*+A^*\neq(A+A)^*$. A^* corresponds to pairs in Γ differing by $s=a_2-a_1$. $(A+A)^*$ corresponds to triples in Γ differing by s.

Lemma

- $\lambda(T(I \otimes_R \operatorname{Hom}_R(I,R)));$
- $|(A + A)^* \setminus (A^* + A^*)|;$
- The number of sets of the form $\{x, x+s, x+2s\} \subset \Gamma$ that do not factor as a sum of sets $\{y, y+s\} + \{z, z+s\}$ also in Γ .

Remark

If $A=(a_1,a_2)$ is two generated. Then there is only one non-trivial splitting $P=a_1+\Gamma$ and $Q=a_2+\Gamma$. Hence A is Huneke-Wiegand \iff $(a_1)\cap(a_2)+A^*\neq(a_1+A^*)\cap(a_2+A^*)$ Subtracting a_1+a_2 from both sides we get $A^*+A^*\neq(A+A)^*$. A^* corresponds to pairs in Γ differing by $s=a_2-a_1$. $(A+A)^*$ corresponds to triples in Γ differing by s.

Lemma

- $\lambda(T(I \otimes_R \operatorname{Hom}_R(I,R)));$
- $|(A + A)^* \setminus (A^* + A^*)|;$
- The number of sets of the form $\{x, x+s, x+2s\} \subset \Gamma$ that do not factor as a sum of sets $\{y, y+s\} + \{z, z+s\}$ also in Γ .

Remark

If $A=(a_1,a_2)$ is two generated. Then there is only one non-trivial splitting $P=a_1+\Gamma$ and $Q=a_2+\Gamma$. Hence A is Huneke-Wiegand \iff $(a_1)\cap (a_2)+A^*\neq (a_1+A^*)\cap (a_2+A^*)$ Subtracting a_1+a_2 from both sides we get $A^*+A^*\neq (A+A)^*$. A^* corresponds to pairs in Γ differing by $s=a_2-a_1$. $(A+A)^*$ corresponds to triples in Γ differing by s.

Lemma

- $\lambda(T(I \otimes_R \operatorname{Hom}_R(I,R)));$
- $|(A + A)^* \setminus (A^* + A^*)|;$
- The number of sets of the form $\{x, x+s, x+2s\} \subset \Gamma$ that do not factor as a sum of sets $\{y, y+s\} + \{z, z+s\}$ also in Γ .

Remark

If $A=(a_1,a_2)$ is two generated. Then there is only one non-trivial splitting $P=a_1+\Gamma$ and $Q=a_2+\Gamma$. Hence A is Huneke-Wiegand \iff $(a_1)\cap(a_2)+A^*\neq(a_1+A^*)\cap(a_2+A^*)$ Subtracting a_1+a_2 from both sides we get $A^*+A^*\neq(A+A)^*$. A^* corresponds to pairs in Γ differing by $s=a_2-a_1$. $(A+A)^*$ corresponds to triples in Γ differing by s.

Lemma

- $\lambda(T(I \otimes_R \operatorname{Hom}_R(I,R)));$
- $|(A + A)^* \setminus (A^* + A^*)|;$
- The number of sets of the form $\{x, x+s, x+2s\} \subset \Gamma$ that do not factor as a sum of sets $\{y, y+s\} + \{z, z+s\}$ also in Γ .

Remark

If $A=(a_1,a_2)$ is two generated. Then there is only one non-trivial splitting $P=a_1+\Gamma$ and $Q=a_2+\Gamma$. Hence A is Huneke-Wiegand \iff $(a_1)\cap(a_2)+A^*\neq(a_1+A^*)\cap(a_2+A^*)$ Subtracting a_1+a_2 from both sides we get $A^*+A^*\neq(A+A)^*$. A^* corresponds to pairs in Γ differing by $s=a_2-a_1$. $(A+A)^*$ corresponds to triples in Γ differing by s.

Lemma

- $\lambda(T(I \otimes_R \operatorname{Hom}_R(I,R)));$
- $|(A + A)^* \setminus (A^* + A^*)|;$
- The number of sets of the form $\{x, x+s, x+2s\} \subset \Gamma$ that do not factor as a sum of sets $\{y, y+s\} + \{z, z+s\}$ also in Γ .

Remark

If $A=(a_1,a_2)$ is two generated. Then there is only one non-trivial splitting $P=a_1+\Gamma$ and $Q=a_2+\Gamma$. Hence A is Huneke-Wiegand \iff $(a_1)\cap(a_2)+A^*\neq(a_1+A^*)\cap(a_2+A^*)$ Subtracting a_1+a_2 from both sides we get $A^*+A^*\neq(A+A)^*$. A^* corresponds to pairs in Γ differing by $s=a_2-a_1$. $(A+A)^*$ corresponds to triples in Γ differing by s.

Lemma

- $\lambda(T(I \otimes_R \operatorname{Hom}_R(I,R)));$
- $|(A + A)^* \setminus (A^* + A^*)|;$
- The number of sets of the form $\{x, x+s, x+2s\} \subset \Gamma$ that do not factor as a sum of sets $\{y, y+s\} + \{z, z+s\}$ also in Γ .

Remark

If $A=(a_1,a_2)$ is two generated. Then there is only one non-trivial splitting $P=a_1+\Gamma$ and $Q=a_2+\Gamma$. Hence A is Huneke-Wiegand \iff $(a_1)\cap(a_2)+A^*\neq(a_1+A^*)\cap(a_2+A^*)$ Subtracting a_1+a_2 from both sides we get $A^*+A^*\neq(A+A)^*$. A^* corresponds to pairs in Γ differing by $s=a_2-a_1$. $(A+A)^*$ corresponds to triples in Γ differing by s.

Lemma

- $\lambda(T(I \otimes_R \operatorname{Hom}_R(I,R)));$
- $|(A + A)^* \setminus (A^* + A^*)|;$
- The number of sets of the form $\{x, x + s, x + 2s\} \subset \Gamma$ that do not factor as a sum of sets $\{y, y + s\} + \{z, z + s\}$ also in Γ .

Definition

- The HWC for 2-generated monomial ideals over $k[\Gamma]$ is equivalent to the property that S^s_Γ has an atom $\{x, x+s, x+2s\}$ of length 2 for all $s \in \mathbb{N} \setminus \Gamma$
- P. G-S. and I show that this second property is closed under gluings $\Gamma = a_1\Gamma_1 + a_2\Gamma_2$.
- Since then another group wrote a paper studying factorization invariants of these monoids and dubbing them Leamer Monoids.
- They conjecture that $\Delta(S_{\Gamma}^s)$ is always of the form $\{1, 2, ..., n\}$ for some $n \in \mathbb{N}$.

Definition

- The HWC for 2-generated monomial ideals over $k[\Gamma]$ is equivalent to the property that S^s_Γ has an atom $\{x, x+s, x+2s\}$ of length 2 for all $s \in \mathbb{N} \setminus \Gamma$
- P. G-S. and I show that this second property is closed under gluings $\Gamma = a_1\Gamma_1 + a_2\Gamma_2$.
- Since then another group wrote a paper studying factorization invariants of these monoids and dubbing them Leamer Monoids.
- They conjecture that $\Delta(S_{\Gamma}^s)$ is always of the form $\{1, 2, ..., n\}$ for some $n \in \mathbb{N}$.

Definition

- The HWC for 2-generated monomial ideals over $k[\Gamma]$ is equivalent to the property that S^s_Γ has an atom $\{x, x+s, x+2s\}$ of length 2 for all $s \in \mathbb{N} \setminus \Gamma$
- P. G-S. and I show that this second property is closed under gluings $\Gamma = a_1\Gamma_1 + a_2\Gamma_2$.
- Since then another group wrote a paper studying factorization invariants of these monoids and dubbing them Leamer Monoids.
- They conjecture that $\Delta(S_{\Gamma}^s)$ is always of the form $\{1, 2, ..., n\}$ for some $n \in \mathbb{N}$.

Definition

- The HWC for 2-generated monomial ideals over $k[\Gamma]$ is equivalent to the property that S^s_Γ has an atom $\{x, x+s, x+2s\}$ of length 2 for all $s \in \mathbb{N} \setminus \Gamma$
- P. G-S. and I show that this second property is closed under gluings $\Gamma = a_1\Gamma_1 + a_2\Gamma_2$.
- Since then another group wrote a paper studying factorization invariants of these monoids and dubbing them Leamer Monoids.
- They conjecture that $\Delta(S^s_{\Gamma})$ is always of the form $\{1, 2, ..., n\}$ for some $n \in \mathbb{N}$.

Definition

- The HWC for 2-generated monomial ideals over $k[\Gamma]$ is equivalent to the property that S^s_Γ has an atom $\{x, x+s, x+2s\}$ of length 2 for all $s \in \mathbb{N} \setminus \Gamma$
- P. G-S. and I show that this second property is closed under gluings $\Gamma = a_1\Gamma_1 + a_2\Gamma_2$.
- Since then another group wrote a paper studying factorization invariants of these monoids and dubbing them Leamer Monoids.
- They conjecture that $\Delta(S^s_{\Gamma})$ is always of the form $\{1, 2, ..., n\}$ for some $n \in \mathbb{N}$.

Identifying torsion in the tensor product...

Micah Leamer

Thank You!

micahleamer@gmail.com