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Abstract

Space-Time in general relativity is a dynamical entity because it is
subject to the Einstein field equations.

From the point of view of differential geometry, the space-time is
a manifold with a Lorentzian metric. The space-time metric provides
different geometrical structures: conformal, volume, projective . . .

A deep understanding of the geometrical structures has consequen-
ces on the dynamical role played by geometry. We explain these geo-
metrical structures, establishing relationships among them and clari-
fying the meaning of associated geometric magnitudes.

Recently, some of my research [1,2] have been taken into consid-
eration for one of the lines of thought about quantum gravity [3,4].
This poster is a set of my latest reflections and conclusions about the
applications of my work to physics.
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1 Introduction

The space-time of general relativity (GR) is a 4-dimensional manifold M ,
with a C∞ atlas A. The atlas is the differential structure of our space-time.

The (substantive) principle of general covariance of GR establishes the
invariance by diffeomorphisms. This let us to think that a physical event is
not a point, but a geometrical structure on a neighborhood.

The fundamental geometrical structures that we consider defined in the
space-time are:

• Volume (4-form)

• Conformal structure (Lorentzian)

• Metric (Lorentzian)

• Linear connection (symmetric)

• Projective structure

They are defined in terms of the most primitive differential structure,
via the concept of G-structure. Volume, conformal and metric are first
order G-structures. But linear connection and projective are second order
G-structures.

For certain G’s, classified in [8], every first order G-structure lead to a
unique second order structure, named its prolongation. This is the case for
the volume, metric and conformal structures.

2 Frame bundles

The r-th order frame bundle FrM is a quotient space in a subset of A ([12,
p.38]). An r-frame, jrϕ ∈ FrM is an r-jet at 0, where x = ϕ−1 is a chart
with 0 as a target.

The first order frame bundle F1M is usually identified with the linear
frame bundle LM .

Let LLM be the linear bundle of LM . There is a canonical inclusion
F2M →֒ LLM , j2ϕ 7→ j1ϕ̃, where ϕ̃ is the diffeomorphism induced by ϕ,
between neighborhoods of 0 ∈ R

n+n2

and j1ϕ ∈ LM ([10], [12, p.50])).
Let J1LM be the bundle of 1-jets of (local) sections of LM and s be

a section of LM . Each j1
ps is characterized by the transversal n-subspace

Hl = s∗(TpM) ⊂ TlLM .
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Then, there is also a canonical inclusion J1LM →֒ LLM , j1
ps 7→ z, where

z is the basis of TlLM , whose first n vectors span Hl and correspond to the
usual basis of R

n, via the canonical form of LM (see [6]).
By the previous canonical maps, it happens that F2M is mapped one to

one into the subset of J1LM , corresponding with the torsion-free transversal
n-subspaces in TLM .

Theorem 1. We have the canonical embeddings:

F2M →֒ J1LM →֒ LLM

3 Structural groups

Each FrM is a principal bundle respect to the group Gr
n of r-jets at 0 of

diffeomorphisms of R
n, jr

0φ, with φ(0) = 0.
The group G1

n is identified with GL(n,R). Then, there is a canonical
inclusion of G1

n into Gr
n, if we take the r-jet at 0 of every linear map of R

n.
Furthermore, Gr

n is the semidirect product of G1
n with a nilpotent normal

subgroup (see [13] for details).
Let’s see the structure for G2

n. We consider the underlying additive group
of the vector space S2

n of symmetric bilinear maps of Rn×R
n into R

n. There
is a monomorphism ı : S2

n → G2
n defined by ı(s) = j2

0φ with s = (si
jk) and

φ(ui) := (ui + 1
2si

jku
juk).

Theorem 2. We obtain the split exact sequence of groups:

0→ S2
n

ı
→ G2

n ⇄
⊃

G1
n → 1

It makes G2
n isomorphic to the semidirect product G1

n ⋊S2
n, whose multi-

plication rule is (a, s)(b, t) := (ab, b−1s(b, b) + t). The isomorphism is given
by j2

0φ 7→ (Dφ|0 , Dφ|−1

0 D2φ|0).
For a linear group G, let g denote the Lie algebra of G. The first pro-

longation of g is defined by g1 := S2
n ∩L(Rn, g). We obtain that G ⋊ g1 is a

subgroup of G1
n ⋊ S2

n, and hence, a subgroup of G2
n (see more details in [1]).

4 G-structures

We define an r-th order G-structure on M as a reduction of FrM to a
subgroup G ⊂ Gr

n ([10]). The idea of geometrical structure on M concerns
the classification of charts in A, when choosing the meaningful classes guided
by an structural group.
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We exemplify the concept of a G-structure studying a volume on a man-
ifold, which rarely is treated this way (see [3]).

Let’s define volume on M as a first order G-structure V , with G =
SL±

n := {a ∈ GL(n,R) : |det(a)| = 1}. For an orientable M , V has two
components for two SL(n,R)-structures, for two equal, except sign, volume
n-forms. For a general M , volume corresponds to odd type n-form, as in [4,
pp. 21-27].

From principal bundle theory ([9]), SL±

n -structures are the sections of the
bundle associated with LM and the left action of G1

n on G1
n/SL±

n . This is
the volume bundle, VM . Furthermore, the sections of VM correspond to
G1

n-equivariant functions f of LM to G1
n/SL±

n . The equivariance condition
is f(la) = |det a|

−1

n In · f(l), ∀a ∈ G1
n. We have bijections:

Volumes on M ←→ SecVM ←→ C∞

eq (LM,G1
n/SL±

n)

The isomorphisms G1
n/SL±

n ≃ Hn, with Hn := {kIn : k > 0} and Hn ≃
R

+, the multiplicative group of positive numbers, allow to represent a vol-
ume as an (odd) scalar density on M .

5 Second order structures

We can view a symmetric linear connection (SLC) on M as a G1
n-structure

of second order. An SLC is also the image of an injective homomorphism of
LM to F2M ([10]).

From the principal bundle theory, SLC’s on M are sections of the SLC
bundle, DM , associated with F2M and the action of G2

n on G2
n/G1

n ≃
S2

n. Furthermore, each SLC, ∇, corresponds to a G2
n-equivariant func-

tion f∇ : F2M → S2
n, verifying f∇(z(a, s)) = a−1f∇(z)(a, a) + s. We have

the bijections:

SLC’s on M ←→ SecDM ←→ C∞

eq (F2M, S2
n)

Given two SLC’s, ∇ and ∇̂, the difference f∇ − f ∇̂ verifies z(a, s) 7→

a−1(f∇(z)−f ∇̂(z))(a, a). Then, it is projectable to a function f : LM → S2
n

verifying f(la) = a−1f(l)(a, a), which corresponds to a symmetric
(
1

2

)
-tensor

ρ = (ρi
jk) on M .

A projective structure (PS) is a set of SLC’s which have the same family
of pregeodesics. This is the cornerstone to understand the freely falling bodies
in GR ([5]).

We define a PS on M as a second order G1
n ⋊ p-structure, Q, with p :=

{s ∈ S2
n : si

jk = δi
jµk + µjδ

i
k, µ = (µi) ∈ R

n ∗}.
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Now, for two SLC included in the same PS, i.e. ∇, ∇̂ ⊂ Q, the tensor ρ,
expressing their difference, is determined by the contraction C(ρ) = (ρs

si),
which is an 1-form on M .

6 Prolongations

Let B a first order G-structure. A connection in B is a distribution H of
transversal n-subspaces, Hl ⊂ TlB. If the subspaces are free-torsion, these
determine a second order G-structure, whose G1

n-extension ([7, p.206]) is a
SLC on M . Then, we say that B admits an SLC. Let us give two examples:

• An SLC and a parallel volume is an equiaffine structure on M ([11]);
hence, it is a second order SL±

n -structure.

• An SLC compatible with a conformal structure is a Weyl structure;
hence, it is a second order CO(n)-structure ([2]).

Theorem 3. Let B ⊂ LM a G-structure, admitting an SLC. Then, the set
of 2-frames, corresponding with torsion-free transversal n-subspaces which
are included in TB, is a reduction of F2M to G ⋊ g1. It is named the
prolongation of B and denoted by B2. (For a proof, see [12, p.150-155]).

Let us give a well known example: if B is an O(n)-structure, B2 is
isomorphic to B on account of o(n)1 = {0}; this explain the uniqueness of
Levi-Civita connection.

There is an important theorem ([8]) classifying the groups G such that
every G-structure admits an SLC : only the groups of volume, metric and
conformal structures, and a class of groups preserving an 1-dimensional dis-
tribution, have this property.

7 Concluding remarks

We have done a unified description of the geometrical structures that have
been used by GR to define intrinsic properties of the space-time. The uni-
fying criterion we used for it, not only is natural in the sense that geometric
objects are sections of bundles associated with the FrM frame bundles ([13]),
but that the objects themselves are reductions of FrM . We have not consid-
ered a linear connection with torsion because it is a section of an associated
bundle of F2M , but not a reduction.

We have tried to clarify the relationships between the structures in-
volved. Only simple relations, such as intersection, inclusion, reduction and
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extension, have been used for it, on account of the previous prolongation of
G-structures admitting SLC. For instance, it follows readily from the last
section that the classical equiaffine or Weyl structures can be defined as the
intersection of an SLC with the prolongation of a volume or a conformal
structure, respectively.
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[4] G. De Rham, Variétés différentiables, 2nd ed., Paris: Hermann, 1960.

[5] J. Ehlers, F.A.E. Pirani and A. Schild, “The geometry of free fall
and light propagation”. In: L. O’Raifeartaigh (ed.), General Relativity ,
63-84, Oxford: Clarendon, 1972.

[6] P.L. Garcia, “Connections and 1-jet fiber bundles”, Rend. Sem. Mat.
Padova, 47 (1972), 227-242.

[7] W. Greub, S. Halperin, R. Vanstone, Connections, Curvature and
Cohomology (vol. II), New York: Academic Press, 1973.

[8] S. Kobayashi, T. Nagano, “On a fundamental theorem of Weyl-
Cartan on G-structures”, J. Math. Soc. Japan, 17 (1965), 84-101.

6



[9] S. Kobayashi, K. Nomizu, Foundations of Differential Geometry (vol.
I), New York: John Wiley - Interscience, 1963.

[10] S. Kobayashi, Transformation Groups in Differential Geometry , Hei-
delberg: Springer, 1972.

[11] K. Nomizu, T. Sasaki, Affine differential geometry , Cambridge Uni-
versity Press, 1994.
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