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ABSTRACT

The fundamental mathematical tools used by General Rela-

tivity to explain and to handle gravity are the geometrical struc-

tures. Different theories of gravity try to separate the geometry

into independent compounds to promote the understanding about

physical interpretation of geometric variables. The theory of G-

structures of higher order is possibly the more natural framework

for studying the interrelations involved among the relevant struc-

tures: pseudo-Riemannian metrics, volume forms, conformal met-

rics, linear connections, projective structures, Weyl geometries,

etc. With this formalism, we give a unified description of these ge-

ometrical structures and, finally, we try to clarify the relationships

among them.

1 Motivation

General relativity (GR) is a physical theory, which is
heavily based on differential geometry. The space-time
of general relativity is described by a 4-dimensional mani-
fold with a Lorentzian metric field. The GR theory put the
matter on space-time, being mainly represented by curves
in the manifold or by the overall stress-energy tensor.
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The law of inertia in the space-time is translated into a
projective structure on the manifold, which is provided by
the geodesics of the metric in keeping with the equivalence
principle. Furthermore, the space-time in GR is a dynami-
cal entity because the metric field is subject to the Einstein
field equations, which almost equate Ricci curvature with
stress-energy of matter.

Other main structures are the volume form, that is used
to get action functionals by integration over the manifold,
and the Lorentzian conformal structure, that gives an ac-
count of light speed invariance. All of them can be ex-
plained with the use of the same mathematical tools.

2 Frame bundles

A differentiable manifold M is a set of points with the
property that we can cover with the charts of an atlas. In-
deed, the primordial structure of M is a C∞ n-dimensional
maximal atlas A.

The bundle of r-frames F rM is a quotient set over A.
Every class-point, an r-frame, collect the charts with equal
origin of coordinates which produce identical r-th order
Taylor series expansion of differentiable functions [5, 8].
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An r-frame is an r-jet at 0 of inverses of charts of M; two
charts are in the same r-jet if they have the same partial
derivatives up to r-th order at the origin of coordinates.
Every F rM is naturally equipped with a principal bundle
structure with group, say, Gr

n.
The group of the bundle of 1-frames is GL(n, R) ∼= G1

n.
Its natural representation on R

n gives an associated bun-
dle coinciding with the tangent bundle TM. In the end,
we identify F 1M with the linear frame bundle, LM. Other
representations of G1

n on subspaces of the tensorial alge-
bra over R

n give associated bundles whose sections are
mathematical tensor fields.

The bundle of 2-frames F 2M is somehow more com-
plicated. Every 2-frame is characterized by a torsion-free
transversal n-subspace Hl ⊂ TlF 1M. It happens that the
chart’s first partial derivatives fix l ∈ F 1M and the second
partial derivatives give the ’inclination’ of that n-subspace.
The group G2

n is isomorphic to G1
n ⋊ S2

n, the semidirect prod-
uct with S2

n being the additive group of symmetric bilinear
maps of R

n ×R
n into R

n; and the multiplication rule given
by (a, s)(b, t) := (ab, b−1s(b, b) + t), for a, b ∈ G1

n, s, t ∈ S2
n.

Let g denote the Lie algebra of G ⊂ G1
n, then the first

prolongation of g is defined by g1 := S2
n ∩ L(R

n, g). We
obtain that G ⋊ g1 is a subgroup of G1

n ⋊ S2
n
∼= G2

n.
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3 1st order G-structures

We define an r-th order G-structure of M as a reduction
of F rM to a subgroup G ⊂ Gr

n. First order G-structures
are just called G-structures. Let us see some of them.

Let us define a volume on M as a G-structure, with G =
SL±n := {a ∈ G1

n : |det(a)| = 1}. If M is orientable, a vol-
ume on M has two components: two SL(n, R)-structures
for two equal, except sign, volume n-forms. For a general
M, a volume corresponds to an odd type n-form.

From bundle theory [4], SL±n -structures are the sections
of the associated bundle to F 1M and the left action of G1

n

on G1
n/SL±n . This is the volume bundle, VM. Furthermore,

the sections of VM correspond to equivariant functions f
of F 1M to G1

n/SL±n ≃ Hn := {k In : k > 0} ≃ R
+, verifying

f (la) = |det a|
−1
n f (l), ∀a ∈ G1

n. We have the bijections:

Volumes on M ←→ SecVM ←→ C∞

equi(F
1M, R

+)

Analogous bijective diagram can be obtained for every
reduction of a principal bundle.

The Lie algebra of SL±n is sl(n, R); and its first prolonga-
tion is sl(n, R)1 = {s ∈ S2

n : ∑ k sk
ik = 0}.
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A pseudo-Riemannian metric field is a G-structure, with
G = Oq,n-q :=

{
a ∈ G1

n : atηa = η ≡
(
−Iq 0

0 In-q

)}
. As above,

we obtain bijections between the metrics and the sec-
tions of the associated bundle with typical fiber G1

n/Oq,n-q,
and also with equivariant functions of F 1M in G1

n/Oq,n-q

(see [4]). The first prolongation of the Lie algebra oq,n-q is
oq,n-q 1 = 0; a consequence of this fact is the uniqueness of
Levi-Civita connection.

A pseudo-Riemannian conformal structure is a G-
structure, with G = COq,n-q := Oq,n-q ·Hn (direct product).
This definition is equivalent to consider a class of met-
rics related by a positive factor. In the Lorentzian case
(q = 1), conformal structure is characterized by the field of
null cones. The first prolongation of the Lie algebra coq,n-q is
coq,n-q 1 = {s ∈ S2

n : si
jk = δi

jµk + δi
kµj− ηilηjkµl, µi ∈ R}≃ R

n ∗.
Volumes on M and conformal structures are extensions

of pseudo-Riemannian metrics because of the inclusion of
Oq,n-q in SL±n and COq,n-q. Reciprocally:

Theorem 1 A pseudo-Riemannian metric field on M is
given by a pseudo-Riemannian conformal structure and a
volume on M.

This statement is proved in [7] by the facts that G1
n =

SL±n ·COq,n-q. and Oq,n-q = SL±n ∩COq,n-q; these imply that vol-
ume and conformal bundles intersect in Oq,n-q-structures.
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4 2nd order G-structures

A linear connection on M involves a distribution of
transversal n-subspaces, one in each l ∈ F 1M, which is
invariant by the action of G1

n. Thereby it follows that a sym-
metric linear connection (SLC) on M can be seen as the
image of an injective homomorphism of F 1M to F 2M [5];
hence an SLC is a second order G1

n-structure.
From bundle theory again, every SLC, ∇, is a section

of the associated bundle to F 2M and the action of G2
n on

G2
n/G1

n ≃ S2
n, and corresponds to an equivariant function

f ∇ : F 2M→ S2
n, verifying f ∇(z(a, s)) = a−1 f ∇(z)(a, a) + s.

A projective structure on M is a set of SLCs which has
the same geodesics up to reparametrizations. It can be
defined as a G1

n ⋊ p-structure, with p := {s ∈ S2
n : si

jk =
δi

jµk + µjδ
i
k , µi ∈ R} ≃ R

n ∗.
Given two SLCs, ∇, ∇̂, we have ( f ∇ − f ∇̂)(z(a, s)) =

a−1( f ∇(z)− f ∇̂(z))(a, a); then this difference is projectable
to a function ρ : F 1M → S2

n verifying ρ(la) = a−1ρ(l)(a, a),
hence ρ = (ρi

jk) is a tensor field. Thereby, the difference
of two SLCs, reducible from the same projective structure,
is determined by the contraction C(ρ) = (ρk

ki), which is an
1-form on M.
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Let P be a G-structure on M; a symmetric connection
on P (if there exists, [6]) is a distribution on P of torsion-
free transversal n-subspaces, Hl ⊂ TlP ⊂ TlF 1M, for each
l ∈ P; this distribution gives an injective homomorphism of
P to F 2M, whose image is a second order G-structure;
and also by extension an SLC on M.

Noteworthy examples of this are:
• The Levi-Civita connection of a pseudo-Riemannian

metric is given by a second order Oq,n-q-structure.

• An equiaffine structure on M is a SLC with a parallel vol-
ume; then, it is given as a second order SL±n -structure.

• A Weyl structure is a conformal structure with a com-
patible SLC; then, it is given as a second order COq,n-q-
structure (see [1]).
If a G-structure P admits an SLC, it has as many SLCs

as torsion-free transversal n-subspaces are in TlP, for ev-
ery l ∈ P. We have the following:

Theorem 2 If P admits an SLC, the set P2 of 2-frames,
corresponding with torsion-free transversal n-subspaces
included in TP, is a second order G ⋊ g1-structure. The
symmetric connections on P are in correspondence with
the injective homomorphisms of P to P2.

The P2 bundle will henceforth be called the (first) pro-
longation of P (see [8]).
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When a G-structure admits an SLC, it determines and
is determined by its prolongation. Therefore, considering
the second order, we can analyze the intersection of geo-
metrical structures, like with the first order in Theorem 1.
Theorem 3 A projective structure and a volume on M give
an SLC belonging to the former and making the volume
parallel.

Hence, a volume select a class of affine parametriza-
tions for the geodesics of a projective structure (see [7]).
Contrarily, a projective structure and a prolonged confor-
mal structure only intersect if they verify a compatibility
condition (see [2]); in this case, getting a Weyl structure.

5 Concluding remarks

The geometrical structures described herein can be
considered components of the space-time geometry. In-
deed, the causal set theory separates the volume and
conformal structure (for a review, see [3]); and Stachel
proposes in [9] an approach, similar to the metric-affine
variational principle, using conformal and projective struc-
tures. From the above results, I suggest considering the
volume as a set of independent dynamical variables.
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