(Abstract: Concepts and techniques from the theory of G-structures
of higher order are applied to the study of certain structures (volume
forms, conformal structures, linear connections and projective structures)
defined on a pseudo-Riemannian manifold. Several relationships between
the structures involved have been investigated. The operations allowed

on G-structures, such as intersection, inclusion, reduction, extension and

prolongation, were used for it.

1 Introduction

A manifold M is a set of points with the property that we
can cover it with an atlas. A differential structure A of M is a
(™ n-dimensional maximal atlas. The charts in the atlas form
the primordial structure.

The idea of a geometrical structure can be realized by the
concept of G-structure when choosing the allowable meaningful
classes of charts in A. In a pseudo-Riemannian manifold there
are defined unambiguously the following structures: volume n-
form, conformal structure, pseudo-Riemannian metric, sym-
metric linear connection and projective structure.

Volume, conformal and metric structures are G-structures of
first order, but each of them lead to a prolonged second order
structure. Symmetric linear connection and projective structure

are 1nherently G-structures of second order.
1

4 1% order G-structures

We define an r-th order G-structure of M as a reduction of
F"M to a subgroup G C G, [6]. We exemplify the concept of a
first order G-structure studying a volume on a manifold, which
rarely is treated this way (see [1]).

Let’s define a volume on M as a first order G-structure, with
G = SL = {a € G.: |det(a)] = 1}. If M is orientable, a
volume on M has two components: two SL(n, R)-structures for
two equal, except sign, volume n-forms. For a general M, a
volume corresponds to an odd type n-form, asin |2, pp. 21-27].

From principal bundle theory |5, SL -structures are the sec-
tions of the associated bundle to LM and the left action of G}
on G! /SL.*. This is the volume bundle, VM. Furthermore, the
sections of VM correspond to G!-equivariant functions f of
LM to G!/SLF. The isomorphisms G!/SL> ~ H, = {k I,

k > 0} ~ R* allow to write f: LM — R*, verifying the
equivariance condition f(la) = |detal7 f(1), Ya € G.

Theorem 3 We have the bijections:
Volumes on M +— SecVM +— C

equi

(LM,R™)

The Lie algebra of SL* is sl(n,R); its first prolongation is

sl(n,R), = {s € S2: s =0}, it’s a Lie algebra of infinite type.
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6 Prolongations

If B is a first order G-structure on M, a connection V on
B is a distribution of transversal n-subspaces, H, C 1T;B C
T,.LM, VI € B. If all the subspaces are torsion-free, they de-
termine a second order G-structure, whose Gl-extension is a
SLC on M. In this case we say that B admits an SLC or that
B is 1-flat and also that V is a SLC on B.

Theorem 5 If B is 1-flat, the set B* of 2-frames, corre-

sponding with torsion-free transversal n-subspaces included
in T'B, i1s a G X g,-structure.

We name B? the holonomic prolongation of B (for a proof,
see |7, p.150-155]). Reciprocally, it is verified that every G x g;-
structure is the prolongation of a first order G-structure.

The following result is an important theorem, arisen from
the Weyl's ‘Raumproblem’, studied by Cartan and others. The
theorem is in 4], with a correction revealed in [9)].

Theorem 6 If a group G & G, with n > 3, satisfies that
any given first order G-structure is 1-flat, then its Lie al-
gebra is one of these: sl(n,R), o0,,,, co,., gl (algebra
of endomorphisms with an invariant 1-dimensional subspace
W) gl . (for every ¢ € R, certain subalgebra of the last
one) or, forn =4, csp(2,R).
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2 Frame bundles

The r-th order frame bundle F"M is a quotient set of A
(a subset of A properly; see [7]). An r-frame, j5p € F'M, is
an r-jet at 0, where x = ¢! is a chart with 0 as a target. The
first order bundle 7'M is usually identified with the linear frame
bundle LM.

Let LLM be the linear bundle of LM . There is a canonical
inclusion F°M — LLM, ji¢ — j;p, where ¢ is the diffeo-
morphism induced by ¢, between neighborhoods of 0 & R+
and 7,0 € LM.

Let J'LM be the bundle of 1-jets of (local) sections of LM
and s be a section of LM. Each j s is characterized by the
transversal n-subspace H, = s,(T,M) C T,LM. Then, there is
also a canonical inclusion J'LM — LLM, j s — z, where z
is a basis of T; LM, whose first n vectors span H; and are applied
by the canonical form of LM to the usual basis of R”.

By the previous canonical maps, it happens that F*M is
mapped one to one into the subset of J' LM, corresponding with
the torsion-free transversal n-subspaces in T'LM .

Theorem 1 We have the canonical embeddings:

F*M — J' LM — LLM

We define a pseudo-Riemannian metric as an O, -struc-

ture, with O,,_, = {a e G ana=n:= (_O]q ]S_q ) }

As above, we obtain bijections between the metrics and the
sections of the associated bundle with typical fiber G} /O,,..,, and
also with the equivariant functions of LM in G!/O,,.,. The first
prolongation of o,,., 1s 0,,., 1 = 0; a consequence of this fact is
the uniqueness of the Levi-Civita connection.

A pseudo-Riemannian conformal structure is a CO,,, -
structure, with CO,,,, .= O,,., - H, (direct product).

The first prolongation of its Lie algebra is co,,, 1 = {s €
Syt Sy = Oy + Oppy — n'mpa, o= () € R p= R The
named second prolongation ¢o,,., » 15 equal to 0; this implies the
uniqueness of the normal Cartan connection but we do not deal
with this here (see |7]).

It is well known that conformal structures and volumes on M
are the extension (see [3, p. 202|) of pseudo-Riemannian metrics
with the groups SL.> and CO,,,.,, respectively.

Also it is noteworthy the following result:

Theorem 4 A pseudo-Riemannian metric on M 1is the in-
tersection of a pseudo-Riemannian conformal structure and
a volume on M.

This is proved in [8] as a consequence of the fact that G =

SL* - CO, ..

7 Concluding remarks

A given second order G-structure, for G C G, determines
by projection a G-structure B C LM and by extension a G-
structure of second order, i. e., a SLC admitted by B.

Typical examples of this are:

e A pseudo-Riemannian metric and its Levi-Civita connection

are given by a second order O,,_-structure.

e An equiaffine structure on M is a SLC with a parallel volume;
hence, it is a second order SL*-structure.

o A Weyl structure is a conformal structure with a SLC com-

patible; hence, it is a second order CO,,,_,-structure.

As we have seen, an 1-flat G-structure determines and is deter-
mined by a G X g;-structure. Therefore, considering the second

order we can analyze the intersections of geometrical structures
like in the Th.4 with the first order.

e Always intersect a DPS on M with the prolongation of a vol-
ume on M and the intersection gives a SLC doing the volume
parallel. But not all SLC are obtained in this form.

e Not always intersect a DPS on M with the prolongation of a
conformal structure. In case of they intersect, the intersection
is the Levi-Civita connection of a metric of the conformal class.
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3 Structural groups

Fach F" M is a principal bundle with respect to the group G7
of r-jets at 0 of diffeomorphisms of R", ji¢, with ¢(0) = 0.
The group G is identified with GL(n,R). There is a canonical
inclusion of G! into G’ taking the r-jet at 0 of every linear map
of R"; furthermore, G’ is the semidirect product of G with a
nilpotent normal subgroup (see [10]).

Let’s see the case of G2: let S? denote the additive group of
symmetric bilinear maps of R” x R" into R"; there is a monomor-
phism 2: 5} — G defined by 1(s) = jj¢, with s = (s),) and
o(u') = (u' + 35, u'u’).

Theorem 2 We obtain the split exact sequence of groups:

OHS%LG?%:Giﬁl

[t makes G> isomorphic to the semidirect product G} x S,
whose multiplication rule is (a, s)(b,t) := (ab,b 's(b,b) + t).
The isomorphism is given by ji¢ — (Dol,, Do|, ' D*¢|y).

For a linear group G, let g denote the Lie algebra of G. The
first prolongation of g is defined by g, := S2 N L(R", g). We
obtain that G x g, is a subgroup of G' x S  and hence, a
subgroup of G?.

5 27 grder G-structures

We can define a symmetric linear connection (SLC) on M
as a G!-structure of second order. An SLC also can be seen as
the image of an injective homomorphism of LM to F*M |6].

From the principal bundle theory, SLCs on M are sections

of the associated bundle, DM, to F*M and the action of G> on
G?/G! ~ S2. Furthermore, each SLC, V, corresponds to a G?-
equivariant function f¥: F*M — 52, verifying fV(z(a,s)) =
a ' fY(z)(a,a) +s. We have the bijections:

SLCson M +— SecDM +— Cé);m(LMasi)

Given two SLCs, V and @, the difference Vv — f6 verifies
z(a,s) — a '(fY(z) — f¥(2))(a,a). Then, it is projectable to
a function f: LM — S? verifying f(la) = a~'f(l)(a, a), which

corresponds to a symmetric (;) -tensor p = (p,) on M.

A differential projective structure (DPS) is a set of SLC’s
which have the same family of pregeodesics. We also can define
a DPSon M as a G, x p-structure, Q, with p := {s € 5}: 5, =
05 v + 0y, o= () € R* = R™ R

Now, for two SLC included in the same DPS.ie. V,V C O,
the tensor p, expressing their difference, is determined by the
contraction C(p) = (p}.), which is an 1-form on M.
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We have tried to clarify the relationships between the struc-
tures involved. Only simple relations, such as intersection, inclu-
sion, reduction and extension, have been used for it, on account
of the previous prolongation of 1-flat of G-structures.
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