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Abstract: Concepts and techniques from the theory of G-structures

of higher order are applied to the study of certain structures (volume

forms, conformal structures, linear connections and projective structures)

defined on a pseudo-Riemannian manifold. Several relationships between

the structures involved have been investigated. The operations allowed

on G-structures, such as intersection, inclusion, reduction, extension and

prolongation, were used for it.

1 Introduction

A manifold M is a set of points with the property that we
can cover it with an atlas. A differential structure A of M is a
C∞ n-dimensional maximal atlas. The charts in the atlas form
the primordial structure.

The idea of a geometrical structure can be realized by the
concept of G-structure when choosing the allowable meaningful
classes of charts in A. In a pseudo-Riemannian manifold there
are defined unambiguously the following structures: volume n-
form, conformal structure, pseudo-Riemannian metric, sym-
metric linear connection and projective structure.

Volume, conformal and metric structures are G-structures of
first order, but each of them lead to a prolonged second order
structure. Symmetric linear connection and projective structure
are inherently G-structures of second order.
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2 Frame bundles

The r-th order frame bundle FrM is a quotient set of A
(a subset of A properly; see [7]). An r-frame, jr

0ϕ ∈ F
rM , is

an r-jet at 0, where x = ϕ−1 is a chart with 0 as a target. The
first order bundle F 1M is usually identified with the linear frame
bundle LM .

Let LLM be the linear bundle of LM . There is a canonical
inclusion F 2M →֒ LLM , j2

0ϕ 7→ j1
0ϕ̃, where ϕ̃ is the diffeo-

morphism induced by ϕ, between neighborhoods of 0 ∈ Rn+n2

and j1
0ϕ ∈ LM .

Let J 1LM be the bundle of 1-jets of (local) sections of LM
and s be a section of LM . Each j1

ps is characterized by the
transversal n-subspace Hl = s∗(TpM ) ⊂ TlLM . Then, there is
also a canonical inclusion J 1LM →֒ LLM , j1

ps 7→ z, where z
is a basis of TlLM , whose first n vectors span Hl and are applied
by the canonical form of LM to the usual basis of Rn.

By the previous canonical maps, it happens that F 2M is
mapped one to one into the subset of J 1LM , corresponding with
the torsion-free transversal n-subspaces in TLM .

Theorem 1 We have the canonical embeddings:

F 2M →֒ J 1LM →֒ LLM
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3 Structural groups

Each FrM is a principal bundle with respect to the group Gr
n

of r-jets at 0 of diffeomorphisms of Rn, jr
0φ, with φ(0) = 0.

The group G1
n is identified with GL(n,R). There is a canonical

inclusion of G1
n into Gr

n, taking the r-jet at 0 of every linear map
of Rn; furthermore, Gr

n is the semidirect product of G1
n with a

nilpotent normal subgroup (see [10]).
Let’s see the case of G2

n: let S2
n denote the additive group of

symmetric bilinear maps of Rn×Rn into Rn; there is a monomor-
phism ı : S2

n → G2
n defined by ı(s) = j2

0φ, with s = (si
jk) and

φ(ui) := (ui + 1

2
si

jku
juk).

Theorem 2 We obtain the split exact sequence of groups:

0→ S2

n

ı
→ G2

n ⇄
⊃

G1

n→ 1

It makes G2
n isomorphic to the semidirect product G1

n⋊ S2
n,

whose multiplication rule is (a, s)(b, t) := (ab, b−1s(b, b) + t).
The isomorphism is given by j2

0φ 7→ (Dφ|0 , Dφ|−1
0 D2φ|0).

For a linear group G, let g denote the Lie algebra of G. The
first prolongation of g is defined by g1 := S2

n ∩ L(Rn, g). We
obtain that G ⋊ g1 is a subgroup of G1

n ⋊ S2
n, and hence, a

subgroup of G2
n.
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4 1st order G-structures

We define an r-th order G-structure of M as a reduction of
FrM to a subgroup G ⊂ Gr

n, [6]. We exemplify the concept of a
first order G-structure studying a volume on a manifold, which
rarely is treated this way (see [1]).

Let’s define a volume on M as a first order G-structure, with
G = SL±n := {a ∈ G1

n : |det(a)| = 1}. If M is orientable, a
volume on M has two components: two SL(n,R)-structures for
two equal, except sign, volume n-forms. For a general M , a
volume corresponds to an odd type n-form, as in [2, pp. 21-27].

From principal bundle theory [5], SL±n -structures are the sec-
tions of the associated bundle to LM and the left action of G1

n

on G1
n/SL±n . This is the volume bundle, VM . Furthermore, the

sections of VM correspond to G1
n-equivariant functions f of

LM to G1
n/SL±n . The isomorphisms G1

n/SL±n ≃ Hn := {k In :
k > 0} ≃ R+, allow to write f : LM → R+, verifying the

equivariance condition f (la) = | det a|
−1
n f (l), ∀a ∈ G1

n.

Theorem 3 We have the bijections:

Volumes on M ←→ SecVM ←→ C∞equi(LM,R+)

The Lie algebra of SL±n is sl(n,R); its first prolongation is
sl(n,R)1 = {s ∈ S2

n : sk
ik = 0}, it’s a Lie algebra of infinite type.

4

We define a pseudo-Riemannian metric as an Oq,n-q-struc-

ture, with Oq,n-q :=
{

a ∈ G1
n : atηa = η :=

(
−Iq 0
0 In-q

)}
.

As above, we obtain bijections between the metrics and the
sections of the associated bundle with typical fiber G1

n/Oq,n-q, and
also with the equivariant functions of LM in G1

n/Oq,n-q. The first
prolongation of oq,n-q is oq,n-q 1 = 0; a consequence of this fact is
the uniqueness of the Levi-Civita connection.

A pseudo-Riemannian conformal structure is a COq,n-q-
structure, with COq,n-q := Oq,n-q · Hn (direct product).

The first prolongation of its Lie algebra is coq,n-q 1 = {s ∈
S2

n : si
jk = δi

jµk + δi
kµj − ηilηjkµl, µ = (µi) ∈ R

n ∗}≃ Rn ∗. The
named second prolongation coq,n-q 2 is equal to 0; this implies the
uniqueness of the normal Cartan connection but we do not deal
with this here (see [7]).

It is well known that conformal structures and volumes on M
are the extension (see [3, p. 202]) of pseudo-Riemannian metrics
with the groups SL±n and COq,n-q, respectively.

Also it is noteworthy the following result:

Theorem 4 A pseudo-Riemannian metric on M is the in-
tersection of a pseudo-Riemannian conformal structure and
a volume on M .

This is proved in [8] as a consequence of the fact that G1
n =

SL±n · COq,n-q.
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5 2nd order G-structures

We can define a symmetric linear connection (SLC) on M
as a G1

n-structure of second order. An SLC also can be seen as
the image of an injective homomorphism of LM to F 2M [6].

From the principal bundle theory, SLCs on M are sections
of the associated bundle, DM , to F 2M and the action of G2

n on
G2

n/G1
n ≃ S2

n. Furthermore, each SLC, ∇, corresponds to a G2
n-

equivariant function f∇ : F 2M → S2
n, verifying f∇(z(a, s)) =

a−1f∇(z)(a, a) + s. We have the bijections:

SLC’s on M ←→ SecDM ←→ C∞equi(LM, S2

n)

Given two SLCs, ∇ and ∇̂, the difference f∇ − f ∇̂ verifies
z(a, s) 7→ a−1(f∇(z) − f ∇̂(z))(a, a). Then, it is projectable to
a function f : LM → S2

n verifying f (la) = a−1f (l)(a, a), which
corresponds to a symmetric

(
1

2

)
-tensor ρ = (ρi

jk) on M .
A differential projective structure (DPS) is a set of SLC’s

which have the same family of pregeodesics. We also can define
a DPS on M as a G1

n⋊p-structure, Q, with p := {s ∈ S2
n : si

jk =
δi

jµk + µjδ
i
k, µ = (µi) ∈ R

n ∗}≃ Rn ∗.

Now, for two SLC included in the same DPS, i.e. ∇, ∇̂ ⊂ Q,
the tensor ρ, expressing their difference, is determined by the
contraction C(ρ) = (ρk

ki), which is an 1-form on M .
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6 Prolongations

If B is a first order G-structure on M , a connection ∇ on
B is a distribution of transversal n-subspaces, Hl ⊂ TlB ⊂
TlLM, ∀l ∈ B. If all the subspaces are torsion-free, they de-
termine a second order G-structure, whose G1

n-extension is a
SLC on M . In this case we say that B admits an SLC or that
B is 1-flat and also that ∇ is a SLC on B.

Theorem 5 If B is 1-flat, the set B2 of 2-frames, corre-
sponding with torsion-free transversal n-subspaces included
in TB, is a G⋊ g1-structure.

We name B2 the holonomic prolongation of B (for a proof,
see [7, p.150-155]). Reciprocally, it is verified that every G⋊ g1-
structure is the prolongation of a first order G-structure.

The following result is an important theorem, arisen from
the Weyl’s ‘Raumproblem’, studied by Cartan and others. The
theorem is in [4], with a correction revealed in [9].

Theorem 6 If a group G  G1
n, with n ≥ 3, satisfies that

any given first order G-structure is 1-flat, then its Lie al-
gebra is one of these: sl(n,R), oq,n-q, coq,n-q, gln,W (algebra
of endomorphisms with an invariant 1-dimensional subspace
W ) gln,W,c (for every c ∈ R, certain subalgebra of the last
one) or, for n = 4, csp(2,R).
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7 Concluding remarks

A given second order G-structure, for G ⊂ G1
n, determines

by projection a G-structure B ⊂ LM and by extension a G1
n-

structure of second order, i. e., a SLC admitted by B.
Typical examples of this are:

•A pseudo-Riemannian metric and its Levi-Civita connection
are given by a second order Oq,n-q-structure.

•An equiaffine structure on M is a SLC with a parallel volume;
hence, it is a second order SL±n -structure.

•A Weyl structure is a conformal structure with a SLC com-
patible; hence, it is a second order COq,n-q-structure.

As we have seen, an 1-flat G-structure determines and is deter-
mined by a G⋊ g1-structure. Therefore, considering the second
order we can analyze the intersections of geometrical structures
like in the Th.4 with the first order.

•Always intersect a DPS on M with the prolongation of a vol-
ume on M ; and the intersection gives a SLC doing the volume
parallel. But not all SLC are obtained in this form.

•Not always intersect a DPS on M with the prolongation of a
conformal structure. In case of they intersect, the intersection
is the Levi-Civita connection of a metric of the conformal class.
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We have tried to clarify the relationships between the struc-
tures involved. Only simple relations, such as intersection, inclu-
sion, reduction and extension, have been used for it, on account
of the previous prolongation of 1-flat of G-structures.
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[7] I. Sánchez-Rodŕıguez, Conexiones en el fibrado de referencias de segundo orden.

Conexiones conformes , Doctoral Thesis, Complutense University of Madrid, Madrid,

1994. Available online: http://www.ugr.es/local/ignacios/
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