
Hybrid Ensemble Models in Time Series Forecasting

Joerg D. Wichard, Member, IEEE

Abstract— We propose hybrid ensembles for time series
forecasting. A hybrid ensemble combines the forecasts of several
different models in a weighted mean. The best performing
models with respect to a left-out part of the time series are
combined by taking the SMAPE prediction error as a weight
of the single forecasts. We show the application of this approach
in the ICTSF challenge.

I. INTRODUCTION

Time series forecasting is a growing field of interest with

applications in nearly any field of science. In many cases we

have only the measurement of one system variable over a

longer period, but no other quantitative information of what

may influence the system of interest. In these cases we can

only use the time series itself to build predictive models.

In general, we don’t know the system that produced the

time series but we have to make reasonable assumptions

concerning the system’s nature. There are common tools

for time series analysis that can give us valuable hints, like

the autocorrelation function, recurrence plots [1], stationarity

tests or linearity tests [2]. Depending on the outcome of the

analysis, we have to decide how to forecast the time series.

An early approach was introduced by Yule, who described

a linear autoregressive (AR) model based on a single time

series in order to predict the sunspot cycle [3]. Nowadays,

the AR models belong to the classics of linear time series

analysis (see for example [4]).

In general the conventional linear methods for modeling and

forecasting fail if they are applied to time series originating

from nonlinear systems. This seems to be evident because a

nonlinear system should not be treated as a linear stochastic

process [5].

In the framework of deterministic chaos, many methods for

nonlinear time series modeling and prediction have been

suggested. Most of them are based on state space recon-

struction with time-lag variables or alternative methods like

broomhead-king coordinates [6], [7], [8], [9], [10], [11].

To our knowledge, there is no single forecasting method,

that could deal with all kind of time series from scratch,

i.e. taking into account all the specialties of the time series

like (non)-stationarity, (non)-linearity or (non)-periodicity.

Therefore we like to introduce a simple forecasting strategy

that combines several individual (in some sense specialized)

models to a weighted mean of forecasts. The weighting

is based on the SMAPE with respect to a left-out part of

the time series that has the same length as the forecasting

horizon. This leads to an adaptive forecasting schema, that

gives a higher weight to those methods that performed well

on a test set.
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II. FORECASTING STRATEGY AND MODELS

In the first part of this section we give a brief description

of the different forecasting models that we utilized in our

approach. We further illustrate the training of these models

that sometimes have free parameters to be optimized. In

some cases we build ensembles of models for better model

generalization. The second part of this section explains the

combination strategy that combines the outcome of individ-

ual forecasting models into the final forecast. We combine

the models in a weighted average, wherein the model weights

are defined by the inverse forecasting errors on a test set.

The error measure is the Symmetric Mean Absolute Percent

Error (SMAPE) with respect to the last contiguous part of N
samples of the time series. Let {xt} denote the time series

and {yt} denote the forecasts of the model, then the SMAPE

is defined as

SMAPE =
100

N

N∑

t=1

‖xt − yt‖
1
2‖xt + yt‖

. (1)

A . S tate S p ace R econ stru ction an d Iterated P red iction

A common characteristic of several nonlinear models is

the reconstruction of the system’s state space based on the

embedding theorems given by Takens [6], Sauer et al. [8] and

the extension of Stark et al. [11]. From an equally sampled

time series {xt}t=1,...,N we construct the d-dimensional state

space vector

~X(t) = (x(t−λ(d−1)), x(t−λ(d−2)), . . . , xt), (2)

wherein λ denotes the time lag. We consider a one step ahead

prediction model f( ~X) for time series prediction of the form

f : Rd → R

f( ~X(t)) = xt+ 1 =: yt. (3)

We perform an iterated p red iction of the time series wherein

the predicted value yt is used to construct the next state space

vector ~X(t+1) which is used to predict the next time series

sample yt+ 1 and so on.

B . N earest N eig hbor an d N earest T rajectory Mod el

The nearest neighbor models of our approach were de-

veloped to forecast time series originating from nonlinear

(chaotic) systems [7], [9]. Several variations of this method

have been suggested so far. A brief overview could be found

in K antz and Schreiber [12]. In particular, nearest neighbor

models and nearest trajectory models are useful in the case of

time series with a latent periodicity [13]. After embedding the

time series in a reconstruction space with delay coordinates

(see II-A) the model consist of a nonlinear mapping using

a local approximation. A k-Nearest-Neighbor model takes



Fig. 1. Left: A nearest neighbor model takes the mean over n eig hborin g

states as a forecast of the next step of the time series. Right: A nearest tra-
jectory model takes the average over the n eig hborin g trajectories seg men ts

in order to forecast the next time step. B oth models operate in the systems’
time-lag reconstructed state space.

a weighted average of the one step ahead progression over

those reconstructed states ~Xn n that are closest to the query

point ~X(t). This leads to

~X(t+ 1) =
∑

~Xnn∈Nk{ ~X(t)}

~Xn n + 1,

wherein Nk{ ~X(t)} denotes the k-element neighborhood of
~X(t) defined in a given metric and ~Xn n + 1 is the next time

step of the neighboring state ~Xn n . Common choices for the

metric are the L1, L2 and the L∞ metric. The metric and

the number of neighboring points are free parameters that we

selected with cross-validation for each time series separately.

The left part of Figure 1 sketches the idea of the nearest

neighbor model.

The nearest trajectory model is an extension of the nearest

neighbor model that was introduced by McNames [13] as the

winning entry in the K .U . L eu v en time series comp etition

[14]. Like the nearest neighbor model it is based on the

assumption that the time series stems from a dynamical

system and the states can be reconstructed with a time

delay embedding. A latent periodicity of the time series is

sometimes a hint, that the nearest trajectory model could lead

to proper forecasting results. The nearest trajectory model

looks for the nearest trajectory segments in the reconstructed

state space instead of the nearest neighbors (see Figure 1).

The prediction is performed with a local linear model of the

closest trajectory points as described in [13]. The number of

neighboring trajectories is a free parameter that we select

with cross-validation for each time series separately. The

number of neighboring trajectories (NNTR) ranges between

one and three, depending on the total length of the time

series and is given in table I. The embedding dimension was

d = 70, the time lag λ = 1 and prediction horizon τ = 1 as

defined in equation 3.

C . N eu ral N etw ork s

We trained multilayer feed-forward neural networks with

the tanh(~x) as nonlinear element. This is the base model

for an iterated prediction as defined in equation 3. The

embedding dimension for the state space reconstruction was

adopted to the different time series and the time delay was

always λ = 1. For initialization, the number of hidden layers

was chosen at random to be one or two and the numbers of

neurons was also random (4-50 in the first layer and 3-20 in

the second layer). The number of neurons and the number of

hidden layers were selected by cross-validation. The training

is based on the Rprop Algorithm [15], which is fast and

robust. As regularization method we use the common weight

decay with the penalty term

P (~w) = λ

N∑

i=1

w2
i

1 + w2
i

,

where ~w denotes the N -dimensional weight vector of the

MLP and the regularization parameter is small λ = 0.005.

Neural Networks can deal with almost all kind of time series

and there are many examples of special network architectures

to fulfill special tasks. H owever, the simple multilayer feed-

forward network of this approach could be considered as a

non-linear extension of an autoregressive model (see section

II-F).

D . T he D ifferen ce Mod el

We build models based on the differences xdif f (t) of the

time series

xdif f (t) = x(t)− x(t− 1), (4)

that serve as input to the three models described above: The

nearest neighbor model, the nearest trajectory model and

the neural network model. These models are trained in a

competitive ensemble approach [16]. The final forecast of

the difference model is the cumulative sum of the predicted

differences, added to the last known time series sample.

Difference or return based models are a common tool in

stock market analysis in order to compare different assets

with respect to their relative changes [17], [18].

E. T he T ren d C y cle Mod el

The analysis of the autocorrelation function indicates, that

several time series show a strong periodicity. We fitted a

linear regression to the time series and added the cycle. The

periodicity of the cycle was taken from the autocorrelation

function of the time series under investigation. If there was

no detectable periodicity, the period was set to ∞ and only

the linear extrapolation was used. For the further process we

define the cycle model ccycle(t) as the mean over all cycles

plus the linear trend. The values of the periods are given in

table I.

F . T he A u toreg ressiv e Mod el

Several time series showed almost no periodicity (see table

I). We considered them as outcome of a random process and

included therefor a common autoregressive (AR) model. The

AR model is a linear prediction that attempts to predict the

output of a system based on the previous outputs [3]. For the

sake of simplicity, the dimension of the AR model was the

same as the dimension d of the nonlinear model as reported

in table I.



III. H YB RID ENSEMB LE MODELS

It is well known, that the generalization abilities of predic-

tive models could be improved by ensemble building (also

known as model averageing or query by commitee). In the

neural network community, this approach was developed and

improved by H ansen and Salamon [19], Sueng et al. [20],

Geman et al. [21], Perrone and Cooper [22] and K rogh

and V edelsby [23]. The ensemble approach is not restricted

to neural networks but works also for several other model

classes [24], [16]. An ensemble is the average output of

several different models fi(x)

f̂(x) =

K∑

i=1

φifi(x), (5)

wherein we assume that the model weights φi sum to one∑K
i=1 φi = 1. The generalization error of an ensemble is in

general lower than the mean of the generalization error of

the single ensemble members [23] and this holds in general,

independent of the model class under investigation. The

generalization error of an ensemble model could be improved

if the single models on which averaging is done d isag ree in

the sense that the model output is uncorrelated [25], [26].

There are several ways to introduce uncorrelated output of

the individual ensemble members. A general approach is

to train various models on selected subsets of the training

data [23], [27] or to use different parameter settings for

initialization. The models for the ensemble are selected in

a cross-validation scheme (see [28] for a detailed discussion

of the method). The ensembles for the difference model, the

neural networks, the nearest neighbor model and the nearest

trajectory model were rather small with K = 15 members.

They were simply averaged according to equation 5 with

equal weights φi = 1/K.

IV . DATA ANALYSIS, PREPROCESSING AND PARAMETERS

This initial step in forecasting is usually a fundamental

analysis and visual inspection of the data, in order to get an

idea what the data looks like and to estimate the required

model parameters. The fundamental analysis includes to:

• Plot the time series

• Find and remove missing values and eliminate non-

numerical values like Inf and NaN

• Caculate mean, variance, autocorrelation function (acf),

spectral density (see [12] for definitions) and difference

values (defined in equation 4)

• Perform a non-linearity test (see [2] for details)

The outcome of this analysis influenced the choice of the

modelling parameters as reported in table I. In the case of

periodic time series, we identify the intrinsic frequency of

the cycle model by the first non-trivial maximum of the acf.

The dimension d for the state space reconstruction was a

multiple of the intrinsic frequency or set to be the length of

the forecasting horizon. The time lag was set to λ = 1 for

all time series. The number of nearest neighbors ranges from

1 to 3 and was adapted to the length of the time series.

Fig. 2. The figure shows the 4th time series of the challenge, the returns
and the autocorrelation function. The acf indicates an intrinsic frequency of
7 samples.

V . COMB INING FORECASTS

We combined the output of different models in order to

improve the quality and stability of the forecast. The final

forecasts that entered the ICTSF challenge were generated

as follows:

• The last N samples of the time series were kept out

from model training and were used as test set, wherein

N was the prediction horizon

• The forecasts of the nearest trajectory model, the dif-

ference model, the neural network ensemble, the trend

cycle and the auto regressive model were compared with

the test set and the forecasting error Ej was computed

following equation 1

• The model weights ωj = 1/Ej were chosen inversely

proportional to the forecasting error with the constraint∑
j ωj = 1

• In the final step, we trained each model on the full data

set (adding the former test set to the training data) and

built the combined forecast by taking the sample-wise

mean over all individual models

ŷt =
5∑

j=1

ωjy
j
t . (6)

The weights of the individual models are reported in Table

I. The weighted average increases the robustness of the

approach and gives the more appropriate models an increased

vote to the final forecast.

V I. MAIN RESULTS

We described a framework for forecasting time series with

hybrid ensembles. We used several forecasting methods that

were trained separately on a training set and combined with



Fig. 3. The figure on top shows the outcome of the individual models
(nearest trajectory model, difference model, neural network, trend cycle
and auto regressive model) for the left-out part of the time series (number
4 in the challenge). The SMAPE of these models defines the weight for
the combined forecast. The final outcome of this approach that entered the
ICTSF challenge is shown on the bottom (solid red line).

TAB LE I

TH E MODEL PARAMETERS FOR TH E TIME SERIES 1-8.

TS 1 2 3 4 5 6 7 8

Length 893 133 27 276 1031 609 73 133

H orizon 150 15 7 25 200 50 20 15

Lag λ 1 1 1 1 1 1 1 1

Dim d 21 15 7 25 145 21 20 15

Period 7 ∞ ∞ 7 24 7 ∞ ∞

NNTR 3 1 1 2 3 3 1 1

ωtraj 0.15 0.1 0.1 0.2 0.26 0.18 0.19 0.13

ωn et 0.15 0.1 0.39 0.17 0.28 0.16 0.19 0.05

ωdif f 0.16 0.22 0.12 0.22 0.13 0.29 0.27 0.35

ωcy cle 0.36 0.49 0.21 0.22 0.19 0.23 0.21 0.40

ωar 0.18 0.1 0.2 0.19 0.14 0.14 0.14 0.07

respect to their performance on a test set. The parameters for

different time series are given in table I. We investigated the

autocorrelation function of the time series in order to detect

the intrinsic periodicity and the the embedding dimension

d. The final hybrid ensemble model consists of several

individual models: A nearest neighbor/trajectory ensemble

model, a feed foreward neural network ensemble, a trend

cycle model, an autoregressive model and an ensemble model

based on the differences of the time series.
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