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Processing of Ultrasonic Array Signals for
Characterizing Defects.

Part II: Experimental Work
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Abstract—This is Part II of the two-part paper aimed
at integrating the numerical synthesis and experimental in-
vestigation of the ultrasonic wave propagation model for
quantitative nondestructive evaluation. The first part of the
paper focused on synthesizing and predicting measured sig-
nals using the boundary element method and the decon-
volution technique based on the comparison between the
signals obtained from defective and undamaged (reference)
specimens.

In the second part, we present an inversion technique
which allows us to obtain the position and size of the de-
fect. The inversion scheme is processing the frequency do-
main information rather than time-domain time-of-flights
or vibration eigenmodes. This technique is tested experi-
mentally for the case of a side-drilled hole with a non-trivial
location in terms of standard pulse-echo techniques. It is
shown that the scheme is particularly effective when the
information of the defect is masked by other predominant
signal components.

I. Introduction

Ultrasonic wave propagation phenomena have been
traditionally analyzed by some complex and limited

analytical solutions, e.g., Viktorov [1], Miler and Pursey
[2], Pao and Mow [3], or Graff [4]. An inverse problem
can be solved by deriving simplified relationships between
the excitation and response (which can be expressed by a
transfer function), which substitutes the solution of a di-
rect problem (e.g., Wooh et al. [5] or Boström et al. [6], [7]).

Another way to solve an inverse problem is to use the
forward problem to find its solutions by an iterative search
scheme (e.g., Wirdelius [8]). Our approach, which falls in
this category, is to seek the solutions that minimize the
discrepancy between the predicted model and actual mea-
surements.

The boundary element method (BEM) was initially
used by a host of investigators [9]–[11] to numerically de-
tect simulated defects for specimens with simple geome-
tries, using such iterative schemes. Their works were fol-
lowed by a group of investigators in the past decades [12]–
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[14]. In our work, the methods developed by Gallego, Rus,
and Suárez [15]–[17], based on minimizing the error be-
tween the predicted and actual measurements, are adopted
and further developed.

The issue of probability of detection (POD) is an im-
portant question addressed by the statistics science. Liu
et al. [18] discussed the identifiability, which is the rela-
tionship between the number of measurements and the
degrees of freedom to establish a necessity condition for
detection. Tarantola et al. [19] investigated the inversion
problem by formulating the probabilistic functions and in-
troducing the probability density function in their model
to obtain a non-single valued output for the parameters.
They also introduced the concept of a priori parametric
knowledge to explain the robustness of the inversion pro-
cess.

In an inverse problem, we seek a solution for a set of
parameters that minimize the difference between the pre-
dicted and the actual measurements. In dynamics, the pa-
rameters such as mode shape or deformation have been
widely used as the parameters to seek. Some reciprocal
techniques [20] have also been successfully tested to find
the load vector that gives an unchanged response. Our ap-
proach compares the response of a damaged specimen with
that of an undamaged (reference) specimen. In our work,
we use a synthetic array [21], [22] to solve the problems as-
sociated with the multiplication of the cost by numerous
simultaneous transducers as well as cross-talks between the
channels of a phased array.

A discussion of how sensitive this boundary integral
equation inverse problem solution approach is to varia-
tions in material properties, measurement noise and ge-
ometrical variations is provided by Rus et al. [23], [24].
They concluded that robust convergence after quantifying
the effect of errors in geometry, mechanical constants, fre-
quency, and measurements, for a set of parametrizations
of arbitrarily shaped defects, provided a sufficient number
of measurements and frequency range as well as a proper
parametrization.

II. Inverse Procedure

A. Parametrization

In an inverse problem, we seek information such as the
size and orientation of defects based on the known for-
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ward problem. Finding such information could be possible
by first introducing a priori information and setting the
scope by means of proper parametrization. The issues re-
lated to the parametrization could be complicated due to
the complexity of the relationships between many hypo-
thetical arguments. Many inverse problems are ill-posed:
Solutions may not exist, there may exist multiple solu-
tions, or they could be unstable or non-converging. This
is true especially when we are dealing with a full set of
parameters. It is thus common to characterize the system
using a set of parameters (pg) with a reduced number of
variables (g). Choosing the appropriate parameters is a
critical step influencing the convergence, the sensitivity of
the result, and the decoupling of their dependence from
the measurements. The simplest and most robust form is
a two-parameter system in seeking the location of the de-
fects: the depth (p1) and diameter (p2) of the side-drilled
hole defect.

B. Residual

A residual vector R is introduced in order to quantify
the discrepancy between the ideal measurements and the-
oretical predictions. While the prediction is based on a set
of g parameters pg, the ideal measurement data can be
denoted by a corresponding set pr

g, where the superscript
r denotes a real defect.

The main contribution at this point is that the informa-
tion to be used for the definition of the residual is not the
straightforward output signal s(O)(t), but the response of
the model h(TR)(t) or H(TR)(ω) (the convention of capi-
tal letters for frequency domain is adopted). It is analyzed
in the frequency domain. Recall that this magnitude is
defined in (1), where pr

g are the parameters for the real de-
fect, Λ = Λ(ω) is the frequency domain form of the random
noise process λ(t), and Z is the amplitude compensation
variable z = z(TR)(t) in the time domain,

Ĥ(TR)
mn (pr

g, Z) =
1
Z

H(TR)
mn + N (TR)

mn Λ. (1)

The predicted data are computed for a trial value of the
parameters pg, H̃

(TR)
rej (pg), that is defined as

H̃(TR)
mn (pg) = Ĥ(TR)

mn (pr
g, Z) + Dmn(pg, Z) + N (TR)

mn Λ

=
1
Z

H(TR)
mn + Dmn(pg, Z). (2)

It approaches the ideal measurement defined above. In (2),
the difference between the ideal (Ĥ(TR)) and computed
(H̃(TR)) models—numerical and model errors—is added
as part of the noise (N (TR)) in the sequel. Now we define
the residual vector R in terms of the above discrepancy
D as

R(pg, Z) = Rmn(pg, Z) = W [Dmn(pg, Z)]

= W

[
H̃(TR)

mn (pg) − 1
Z

H(TR)
mn

]
.

(3)

A filter W = W (ω) is introduced to weight relevant fre-
quencies and eliminate others. This can be used for fil-
tering the noise (see Rus et al. [24]). It is important to
note that the residual R defined in terms of the differ-
ence between the trial and experimental transfer functions
is equivalent to the discrepancy R′ between the relative
differences of undamaged and defective specimens, except

for a factor (G/
◦
S

(O)

mn), where G = G(ω) is the frequency
domain form of g(t):

R′
mn =

G

◦
S

(O)

mn

Rmn (4)

= W
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◦
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mn

◦
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(O)

mn

⎞
⎟⎠−

⎛
⎜⎜⎝
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(TR)
mn (pg) G

Gmn
−

◦
H̃

(TR)

mn

◦
H̃

(TR)

mn

⎞
⎟⎟⎠

⎤
⎥⎥⎦.

C. Undamaged Specimen for Compensation

Referring back to (2) for the undamaged specimen
(where Dmn vanishes by definition), it is possible to in-
clude the amplitude factor Z inside G. Provided that Z is
the same for the undamaged and the defective tests, the
factor is effectively eliminated for the entire formulation:

◦
H̃

(TR)

mn =
1
Z

◦
H

(TR)

mn =
1
Z

(G′)−1 ◦
Smn, G = ZG′.

(5)

D. Cost Functional

A cost functional J is defined in terms of the residual
R in quadratic sense, which is basically a least square.
This definition is meaningful from the statistical point of
view, as well as from a space theory, since it minimizes
the distances in an euclidean sense. The cost functional is
hence defined as in (7) for the case of the discrete frequency
domain:

J =
1
2
RTR =

1
2
‖R‖2

J(pg, z) =
1
2

+∞∑
j=−∞

Rmn(pg, z, ωj)Rmn(pg, z, ωj), (6)

where T stands for the transpose in vectorial notation and
R means the conjugate of the complex magnitude R. In
the following, the proof of equivalence between time- and
frequency-domain definitions of the cost functional J is
made. Moreover, this proof provides a consistent defini-
tion of J in which two signals f(t) and g(t) (t = 0−T ) are
compared. The functional is weighted by a generic func-
tion w(t):
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2TJ =
∫ T

0
[w(t) ∗ (f(t) − g(t))]2 dt

=
∫ T

0

⎡
⎣ +∞∑

j=−∞
Wj(Fj − Gj)e

2πijt
T

⎤
⎦

2

dt

=
∫ T

0

+∞∑
j,k=−∞

Wj(Fj − Gj)Wk(Fk − Gk)e
2πi(j+k)t

T dt

=
+∞∑

j=−∞
Wj(Fj − Gj)W−j(F−j − G−j)

=
+∞∑

j=−∞
Wj(Fj − Gj)W j(F j − Gj)

=
+∞∑

j=−∞

∣∣Wj

∣∣2∣∣(Fj − Gj)
∣∣2 = 2TJ,

(7)

where

F j =
∫ 1

0
f(t)e

2πijt
T dt =

∫ 1

0
f(t)e

−2πijt
T dt = F−j .

(8)

The extension to the case of a synthetic array of im-
pactors m or receivers n, which can be weighted by vmn

in which R′
mn(t) = f(t) − g(t), applied to the previously

defined residual R, and converted to the discrete time and
frequency domains yields

2TJ =
∑
m,n

v2
mnJmn

=
T

N

∑
m,n

∫ T

0
[w(t) ∗ vmnR′

mn(t)]2 dt

=
T

N2

∑
m,n,j

∣∣vmnW (ωj)
∣∣2∣∣R′

mn(t)
∣∣2.

(9)

E. Fitness Function

An optimization algorithm is used to find the values
of the set of parameters included in vector pg that min-
imize the discrepancy between the numerically predicted
response and the measurement. From (10) a fitness func-
tion f is defined to be maximized:

f(pg) = − log(J(pg) + ε), (10)

where J(pg) is the cost functional and ε is a small constant
introduced to avoid numerical errors, and whose main con-
dition is to be larger than the round-off errors of compu-
tational arithmetics introduced in J .

This fitness function was chosen to give better results
when applied to certain optimization techniques such as
genetic algorithms (see Rus et al. [25]).

Fig. 1. Flow chart of the inverse problem solution from experimental
data.

III. Implementation

A. Flow Chart

The theory described above is implemented for evaluat-
ing a defect in a specimen using the recorded output signal
as described in the flow chart in Fig. 1.

1. Preprocessing: process experimental signal (de-
scribed in Part I).

2. Calibration: synthesize a signal (described in Part I).
3. Inversion: An iterative maximization algorithm for

the fitness function f carries out the following opera-
tions at each iteration, in which pg is varied according
to the chosen maximization algorithm. The proposed
test is limited to a uniformly spaced search for each
parameter.

a) Compute H̃
(TR)
mn for a defect defined by param-

eters pg, using the BEM. Each term j is ob-
tained from the solution of a single frequency.
The numerical technique, the boundary condi-
tions, and the relationship between the signal and
the response (s(T )

m (t) = qi(Γm, t)ni and s
(R)
mn(t) =∫

Γn
ui(Γ, t)dΓni) were explained previously.
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Fig. 2. Residual between experimental and synthesized signal at all
eight receivers from all eight transmitters. Case with no defect.

b) Resample h̃
(TR)
mn (t) according to the calibrated

value of α.
c) Generate experimental transfer function h

(TR)
mn (t) =

g−1(t) ∗ s
(O)
mn .

d) Compute the residual R = h
(TR)
mn (t) − h̃

(TR)
mn (t).

e) Join the first and last points of the residual R by
a linear transition during the last 2.5 µs.

f) Multiply by the weight function w(t).
g) Compute the cost functional J = 1

2N

∑N
i=1 (R)2,

and the fitness function f .

B. Methodology

The formulas developed in Part I are used to analyze the
signals obtained from an aluminum specimen with a sub-
surface defect. Due to the high cost for three-dimensional
BEM, we consider only a two-dimensional problem (Rus
[26]), in which the problem is simplified by the plane strain
assumption. In order to improve the directivity and fre-
quency responses of the transmitting and receiving trans-
ducers, we used specially designed contact transducers
[27], which also improve the repeatability of experiments.

The key factor for a well-behaving inverse problem is
to control the pressure acting on the transducers so that

Fig. 3. Residual between experimental and synthesized signal at all
eight receivers from all eight transmitters. Case with defect.

the variations of pressure from transducer to transducer
are minimal. For this purpose, we have fabricated a spe-
cial fixture using gravitational pressure, producing consis-
tent forces for each pulse event. In addition, a spike pulse
function is used as input in order to produce broadband
frequency content that provides rich information.

IV. Experimental Results

The top half of Fig. 8 in Part I shows the signals ob-
tained from an experiment and the synthesized signal.
These experiments are repeated for both the reference
sample and the specimen with the defect in the bottom
half of the same figure. Note that the signals are similar
because the main contribution consists of a surface wave,
which is not affected by the presence of the defect. It can
be argued that the proposed inversion technique is robust
enough to identify the defect from the underlying differ-
ence.

Figs. 2 and 3 show the residual R in the time domain
for all of the receivers and transmitters, and for the cases
with and without defect.

We are dealing with two defect parameters: the defect
diameter and its depth below the specimen surface. Fig. 4
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Fig. 4. Variation of the cost functional with respect to the first defect
parameter: diameter. Two versions of the definition of J .

shows the cost functional J , defined in terms of either s
(O)
mn

or h
(TR)
mn , as a function of the diameter and the depth.

In both cases, the cost functional shows its minimum
value when the defect parameters reach their real values,
i.e., when the normalized diameter (Dpredicted/Dreal) ap-
proaches unity and when the normalized depth (dpredicted−
dreal/dreal) reaches zero.

It can be observed that the variation due to the diam-
eter variation is less sensitive. This is due to the fact that
the range of J values (max-to-min ratio of approximately
1.2 to 1) is smaller than that for the depth, Fig. 5, which is
approximately 2.5 to 1. From this observation, we can say
that source errors affect the predicted values. As a con-
sequence, the predicted value of the diameter is distorted
by 25% as opposed to the correct prediction of the depth.
This distortion is probably explained by the inaccuracy in

Fig. 5. Variation of the cost functional with respect to the second
defect parameter: depth. Two versions of the definition of J .

the synthetic signal compared to the real one, in addition
to the masking of the wave reflected from the defect below
the predominant surface wave.

It is easy to observe that the variation of depth makes
more contribution to the signals than that of diameter.
When comparing the two functionals (based on h

(TR)
mn and

s
(O)
mn), the function of the former indicates better sensitiv-

ity, as the depth parameter ratio is 2.5:1 whereas that of
the latter is 1.2 to 1.

V. Conclusions

The second part of the proposed model-based method
analyzes the signals obtained from an array of ultrasonic
transmitters and receivers. Our inversion procedure is an
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iterative method that minimizes the difference between the
measured and the synthesized signals. In the first part, the
model is implemented and two calibration methods are
developed.

The inversion procedure makes the following contri-
butions: (a) The inversion procedure can effectively deal
with the predominance of surface waves that can possibly
interfere with the echoes reflected off the actual defect.
(b) The procedure deals with noise problems by normal-
ization and parameterization of the signals without losing
the signal fidelity. (c) The robustness property provided by
the parametrization technique is gained at the compromise
of allowing only simple geometries of the defect.

It is straightforward to modify the parametrization to
account for more complex geometries as well as multiple
defects. In particular, the case of straight or curved cracks
with any orientation is implemented in the used boundary
element code, as well as the case of inclusions. Other types
of defects can be implemented by modifying this code, and
using the same inverse procedure.
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