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Processing of Ultrasonic Array Signals for
Characterizing Defects. Part I: Signal Synthesis

Guillermo Rus, Member, IEEE, Shi-Chang Wooh, Member, IEEE, and Rafael Gallego, Member, IEEE

Abstract—This work presents a novel procedure to char-
acterize damage using an array of ultrasonic measurements
in a generalized model-based inversion scheme, which in-
tegrates the complete information recorded from the mea-
surements. In the past, we proposed some idealized non-
destructive evaluation test methods with emphasis on the
numerical results, but it is necessary to develop the tech-
niques in greater detail in order to apply the techniques to
real conditions.

Our detection principle is based on the measurement
and inversion of frequency-domain data combined with a
reduced set of output parameters. The approach is devel-
oped and tested for the case of an aluminum specimen with
a synthetic array of point contact ultrasonic transmitters
and receivers.

The first part of this two-part paper is focused on numer-
ical synthesis of the experimental measurements using the
boundary element method for a general ultrasonic propaga-
tion model. This part also deals with the deconvolution by
comparing the data measured from the damaged and un-
damaged specimens. The deconvolution technique allows us
to calibrate the data by taking into account the uncertain-
ties due to mechanical properties, input signal, and other
coherent noise. The second part of the paper presents the
inversion of the measurements to obtain the parameters
and ultimately to predict the position and size of the real
defect.

I. Introduction

When we seek defects in a body, which is accessible
only from some surfaces, we normally use a form

of energy propagating into the body and analyze the sig-
nal returned from the body to the accessible surface. In
this work, we utilize high frequency acoustic energy, i.e.,
ultrasound, and its response with respect to the structure
inside the test material. We use the response data to derive
the condition of damage and the strength of the material,
which is an ultimate goal of a nondestructive evaluation
(NDE) technique.

Model-based NDE is the most advanced technique to
process the experimental measurements. Our goal is to
synthesize a valid numerical signal that matches the exper-
imental counterpart. The synthesized signal is then used in
the second part to illustrate the inversion strategy based
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on the minimization of the discrepancies between the mea-
sured and the synthesized data.

Model-based studies of ultrasonic transducers can be
found in a host of reference articles. The Nondestruc-
tive Testing Handbook [1] reviews the basic theories of
transducer modeling. Marty et al. [2] show the experi-
mental results for Lamb waves in plates and thickness
variations, in which they model the transducers as point
sources and the receivers set in pulse-echo mode. Wendel
et al. [3] demonstrated the concept of numerical simula-
tion combined with experiments for training the neural
networks. Some pieces of software have been developed in
recent years, all of which use semi-analytical components,
such as CEA-Calmon [4], CNDE-Thompson, or UTDefect-
Bostrom [5].

Some investigators, e.g., Kimoto and Hirose [6], point
out the problems associated with the simple boundary con-
ditions. They proposed a model in which the transmitting
transducers are modeled as a distribution of tractions and
the receivers are represented by a weighted displacement
function. They use the boundary element method to com-
pute the ultrasonic response of the specimen. Such tools
are adopted to model the transmission testing of our setup.
We also included in our study a transfer function of the
transducer-specimen system. The transfer function, well
described by Schmerr [7], is a time-shift invariant (LTI),
which is basically a Green’s function used to average the
values within the transducer surface. Using these tech-
niques, it is possible to reduce the discrepancy between the
experimental and the numerical signals down to the order
of 20% of the maximum signal. Averaging of computations
enhances the results. This gives an idea of the state-of-the-
art limitations in forward models for real nondestructive
technology situations, and the intrinsic complexity of the
problem.

Zhao et al. [8] used the velocity instead of the displace-
ments to model the receiver. They compared their results
with the other numerical methods studying the ultrasonic
response of the specimen. They obtained the attenuation
ratio experimentally for a thin sample.

It should be noted that the concept of one-point cali-
bration may not be sufficient, especially for complex wave
propagation patterns, as reported by Hill et al. [9] in their
finite element model. Rus et al. [10] made an effort to
correctly simulate the transducer considering the revised
boundary conditions. The basis for this and the linearity
of the system are revised in the present paper.

The main disadvantages to a large surface contact trans-
ducer include signal distortion, cutting-off of certain fre-
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quency components, and the near field effects, which are
referred to as the aperture effects. The benefits of using
point sources and point receivers have been addressed by
Sachse [11]. One of the ways to produce point contact be-
tween the contact transducer and the target surface is to
use a miniature or pencil-tip transducer. Lee et al. [12]
demonstrated a technique to achieve small contact surface
areas in the order of 200 to 400 µm in diameter by di-
rectly cutting a piezoelectric plate using a laser beam. An
easier way to provide point contact is to use a cylindri-
cal cone or a triangular wedge, whose vertex or knife-edge
is in contact with the surface while a normal-sized trans-
ducer is mounted on the flat surface of the wedge. The
use of wedges to collimate waves and to generate point
sources was first introduced by Ying in 1967 [13]. For this
experiment, a triangular wedge of aluminum is introduced,
whose analysis and design is addressed by Rus et al. [10].

The novel contributions in this paper can be summa-
rized as the development of a procedure to synthesize a
model-based signal for a transmission ultrasonic simulated
array of point transmitters and receivers. This is in addi-
tion to the implementation of two calibration techniques,
which allow us to overcome uncertainties in several exact
model parameters, aimed at solving the inverse problem
of defect characterization with a high computational effi-
ciency.

II. NDE System Model

The first step in setting up the model is to define a
system and its components. The generic system, shown in
Fig. 1, consists of the four basic components: the signal
generator, the transducers, the specimen, and the signal
recorder. The transfer functions of these components are
denoted by the respective capital superscripts I (Input),
T (Transmitter), R (Receiver), and O (Output). The as-
sumed hypotheses for the physical model are first estab-
lished for the purpose of describing later the interactions
between the components. Regarding the physical compo-
nents, the following ones are differentiated in the model:

• Specimen. A block of material to be analyzed.
• Transducers. Transmitters, which are in charge of

emitting an elastic wave into the specimen; and re-
ceivers, which record the received signals.

• Oscilloscope. Captures the received signals.
• Waveform generator. Generates electrical signals

for the transmitters.

From the viewpoint of the traveling information, among
the numerous ones, the following steps are of particular
interest:

• s
(I)
m (t): Input Signal. This is the signal emitted from

the wave generator. In general, we use one input for
each transmitter (m = 1..Nm).

• s
(T )
m (t): Transmitted Signal. This is the signal emitted

from the transmitter traveled through the specimen.
We measure one signal for each transmitter (m).

• s
(R)
mn(t): Received Signal. This is the signal that

reaches the receiver. In general, for each receiver (n =
1..Nn) we make different signals for each transmit-
ter (m).

• s
(O)
mn(t): Output Signal. This is the signal recorded by

the oscilloscope. As above, all combinations of trans-
mitters (m) and receivers (n) are taken into account.

The relationships between these signals can be ex-
pressed in the time domain as follows:

s(O)
mn(t) = h(RO)

mn (t) ∗ s(R)
mn(t),

s(R)
mn(t) = h(TR)

mn (t) ∗ s(T )
m (t),

s(T )
m (t) = h(IT )

m (t) ∗ s(I)
m (t),

(1)

where the symbol ∗ means convolution of the two signals,
and h represents transfer functions treated later.

A. Hypothesis for Transducers

• The transmitter is modeled as the prescribed pressure
boundary conditions: qi(x, t). The validity of this as-
sumption was studied by Rus et al. [10] by comparing
the results between the two extreme cases of Neumann
and Dirichlet boundary conditions.

• As commented on in the next section, the electrical
and mechanical coupling at the transducer-specimen
interface is taken into account in the linear transfer
functions h

(IT )
m (t) for the transmitter and h

(RO)
n (t) for

the receiver.
• We assume uniformly weighted pressure qi over the

surface resulting in in-phase and displacements ui with
the same amplitude distribution over the contact sur-
face Γc: qi(x, t) = qif(t) for the transmitter and the
average ui(t) =

∫
Γn

ui(Γ, t)dΓ for the receiver.

• Only the normal components are considered: s
(T )
m (t) =

qi(x, t)ni for the transmitter and s
(R)
mn(t) = ui(t)ni =∫

Γn
ui(Γ, t)dΓni for the receiver.

B. The Electromechanical Response

In many practical applications, a dynamic system re-
sponse can be measured using a commercial transducer
such as a piezoelectric accelerometer or a displacement
sensor which converts mechanical motions into electrical
signals. The behavior of a transducer may be modelled by
a complex electromechanical system by considering all of
the design details of the system. However, a number of
assumptions allow to simplify the model by establishing
linear relationships. Linearity can be assumed as long as
the magnitudes remain within a limited range of operation,
which is our case.

We consider a transducer consisting of the linear com-
ponents shown in Fig. 2, i.e., a piezoelectric plate, the
damping material, and the casing. Such a transducer can
be mechanically characterized by the following properties:
The constant kp is the stiffness of the piezoelectric plate,
kd, is the stiffness of the equivalent spring of the damper,
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Fig. 1. Schematic decomposition of a typical NDE system. Grouping of signal classes and the transfer functions between them.

Fig. 2. Diagram of the physical transducer model considered for the current simplification.

cd is the damping coefficient of the damper, md is the
lumped mass attributed to the damper, and fs is the force
acting on the surfaces between the specimen and the trans-
ducer. The variables us and ud denote the displacements
of the specimen and the damper, respectively. Notice that
these are the displacements of the two surfaces of the piezo-
electric plate in the transducer. The pair {us, fs} defines
the mixed boundary condition at the specimen-transducer
contact area.

The equilibrium equation for this model can be writ-
ten as

mdüd(t) + cdu̇d(t) + kdud(t) + kpud(t) = kpus(t).
(2)

It is noted that the displacement can be decomposed into
the harmonics using the Fourier decomposition:

u(t) =
∫

ω

U(ω)ejωtdω, (3)

where ω is the angular frequency, U(ω) is the Fourier trans-
form of u(t), and j is the unit imaginary number. This
model allows us to rewrite the equilibrium equations in
the form

Ud(ω) = A1(ω)Us(ω), (4)

where

A1(ω) =
kp

−mdω2 + jcdω + kd + kp
, (5)

and Ai(ω), the inverse transforms of αi(t), are the complex
constants in the sequel. The deformation of the piezoelec-
tric plate can be expressed by the difference between the
displacements of its surfaces as

Ud − Us = A2Us, (6)

where

A2(ω) =
mdω

2 − jcdω − kd

−mdω2 + jcdω + kd + kp
. (7)

Without losing the generality, the output signal s
(O)
mn(t)

produced by the piezo-material can be assumed to be lin-
early proportional to the deformation through a constant
A3 as follows:

s(O)
mn(t) = A3(ud − us). (8)

From (6), this can be simply written as

s(O)
mn(t) = A4us, A4 = F−1{A2A3}. (9)

This means that the relationship between the displace-
ments can be numerically modeled without considering
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Fig. 3. Chart of theoretical (above) and real (below) model of the NDE system. ζ stands for sources of noise, which are treated as stochastic
events.

the transducer models (Rus et al., [10]) since the recorded
output signals always follow linear relationships. For this
condition, it is always possible to group the signals into
a single transfer function of Fourier type using a proper
amplitude rescaling and phase shifts. Consequently, it is
not necessary to predict the complete transducer transfer
function theoretically, but it can be estimated experimen-
tally at the calibration stage.

III. Forward Procedure

A. Measurement Data

In order to eliminate the uncertainties caused by
the impact excitation forces or other coherent noises, a
convolution-based procedure is designed by comparing the
responses of a structure in its undamaged and damaged
states. Recall that (1) represents the linear relationships
between the output signal s

(O)
mn(t) recorded by the n-th re-

ceiver and the corresponding input signal s
(I)
m (t) generated

by the m-th transmitter. Based on Fig. 3, these equations
can be rewritten as

s(O)
mn(t) = s(I)

m (t) ∗ h(IT )
m (t) ∗ h(TR)

mn (t) ∗ h(RO)
mn (t)

= gmn(t) ∗ h(TR)
mn (t), (10)

where

gmn(t) = s(I)
m (t) ∗ h(IT )

m (t) ∗ h(RO)
mn (t). (11)

This allows us to describe the response of the complete
testing system with a single equation. Taking the inverse
of (11), we obtain the response of the specimen as

h(TR)
mn (t) = g−1

mn(t) ∗ s(O)
mn(t), (12)

which is a property independent of the input signal or in-
trinsic coherent noises coming from the system. The trans-
fer function gmn(t) can now be used as the input excitation
function in our numerical model to obtain the output sig-
nal s

(O)
mn(t) by convolving it with the specimen response

h
(TR)
mn (t). Recall that this is true as long as the model is

linear, i.e., it admits the principle of superposition.

B. Real and Theoretical Models

It becomes necessary to study the difference between
the real and ideal models in order to assert some hypoth-
esis of the model. For the signals shown in Fig. 3, the real
model is described by (10), whereas the ideal model can
be represented by the relationship

ŝ(O)
mn(t) = ŝ(I)

m (t) ∗ ĥ(IT )
m (t) ∗ ĥ(TR)

mn (t) ∗ ĥ(RO)
mn (t),

(13)

where the hats are used to denote the theoretical values.
In our study, we assume that all of the above signal

functions or transfer functions are linear, as proved in the
previous section. All of them can therefore be treated in
the same way as a generic function f(t). This real function
is assumed to be linearly proportional to the sum of the
ideal function f̂(t) and the bandpass-filtered noise

f(t) = z(f̂(t) + n(t) ∗ λ(t)), (14)

where n(t) is the noise function, and z is the “scaling pa-
rameter” or “gain.” The output and input signals depend
on the variation of the applied pressure, which can be com-
pensated by an arbitrary constant z. The bandpass-filter
λ(t) is assumed to have a Gaussian probability distribution
with average of zero and variance of unity. In other words,
this represents a random white noise of unit magnitude.
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Note that this function allows us to neglect the phase and
sign information in our formulation. Thus, the aforemen-
tioned signals and transfer functions can be written in the
form

s(I)
m (t) = z(I)(ŝ(I)

m (t) + n(I)(t) ∗ λ(t)),

h(IT )
mn (t) = z(IT )(ĥ(IT )

mn (t) + n(IT )(t) ∗ λ(t)),

h(TR)
mn (t) = z(TR)(ĥ(TR)

mn (t) + n(TR)(t) ∗ λ(t)),

h(RO)
mn (t) = z(RO)(ĥ(RO)

mn (t) + n(RO)(t) ∗ λ(t)),

s(O)
mn(t) = z(O)(ŝ(O)

mn(t) + n(O)(t) ∗ λ(t)).

(15)

Substituting (15) into (10) and neglecting the higher-order
terms of the noise,

z(O)ŝ(O)
mn + z(O)n(O)λ

= z(RO)ĥ(RO)
mn z(TR)ĥ(TR)

mn z(IT )ĥ(IT )
mn z(I)ŝ(I)

m

+ z(RO)n(RO)z(TR)ĥ(TR)
mn z(IT )ĥ(IT )

mn z(I)ŝ(I)
m λ

+ z(RO)ĥ(RO)
mn z(TR)n(TR)z(IT )ĥ(IT )

mn z(I)ŝ(I)
m λ

+ z(RO)ĥ(RO)
mn z(TR)ĥ(TR)z(IT )n(IT )

mn z(I)ŝ(I)
m λ

+ z(RO)ĥ(RO)
mn z(TR)ĥ(TR)

mn z(IT )ĥ(IT )
mn z(I)n(I)λ

+ H.O.T.

(16)

The equality condition in this equation should be indepen-
dently carried out for the group of terms for any magnitude
of noise. Equating the terms without noise and using (13),
we obtain

z(TR) =
z(O)

z(RO)z(IT )z(I) . (17)

This unifies the pressure-dependent scaling factor. Equat-
ing the terms with the first-order noise, the following rela-
tionship is obtained, which provides an additive bound to
the effect of noise on the final inverse problem solution:

n(TR)

ĥ
(TR)
mn

=
n(O)

ĥ(O)
+

n(RO)

ĥ
(RO)
mn

+
n(IT )

ĥ
(IT )
n

+
n(I)

ŝ
(I)
m

. (18)

C. Undamaged Specimen for Compensation

We define two categories of calibrations, one in the am-
plitude domain and the other one in the time domain. Both
calibrations are referenced to the undamaged calibration
specimen.

1. Amplitude Compensation: The function
◦
S

(O)

mn is a
measured reference value obtained from an undamaged

specimen, and
◦
H̃

(TR)

mn is the numerically predicted value.
These values for undamaged specimens are denoted by the
symbol ◦. Our goal is to calibrate G for coherent noise, am-
plitude variations, system function, and the input signal.
The function G is defined in (19) as the average of Gmn

(see (12)) for every impactor and receiver (Nm and Nn,
respectively) computed for the undamaged specimen:

G =
1

NmNn

∑
m,n

(
◦
H̃

(TR)

mn

)−1
◦
S

(O)

mn . (19)

The motivation of averaging is to reduce the coherent noise
resulting from the excitation signal by a factor

√
NmNn

by assuming Gaussian distribution of the noise.
2. Compensation for Wavespeed: We can also calibrate

the wave velocity within the specimen. This compensation
is to minimize the internal errors due to any internal incon-
sistency in the experimental and numerical wavespeeds.
Furthermore, it is advantageous that we do not need to
have accurate wavespeed values since they can be self-
adjusted. The equation of motion [14], [15] is rewritten as

(
ks

kp

)2

∇(∇ · u) + ∇ × (∇ × u) + k2
su,tt = 0,

(20)

where ks = (ω/cs) = ω
√

ρ/µ and kp = (ω/cp) =
ω
√

(ρ/λ + 2µ) are the wavenumbers, ω is the angular fre-
quency, ρ is the density, and µ and λ are the Lamé con-
stants.

By assuming that the Poisson’s ratio is known, the
wavespeed ratio remains constant, and we can calibrate
a single one cs as follows:

c′
s = αcs ⇒ k′

s =
1
α

ks

⇒
(

k′
s

k′
p

)2

∇(∇ · u) + ∇ × (∇ × u) + k′2
s u,t′t′ = 0

⇒ d

dt′
= α

d

dt
⇒ t′ =

1
α

t.

(21)

This means that the wave velocity can be adapted by scal-
ing the time by the factor (1/α). Moreover, the use of sig-
nal processing techniques allows us to eliminate the need
for new computations. Implementation of this compensa-
tion scheme simply consists of finding the minimum of a
cost functional, defined as the integral over the time win-
dow (TW , specified in next section) of the residual between
the synthesized and measured output signals s

(O)
mn(t) for the

known case without defect, as defined above:

min
α

J =
∫

TW

(
s(O)

mn(t) − s̃(O)
mn(t)

)2
dt. (22)

D. Boundary Element Method

The boundary element method (BEM) is used because
of its advantages over the finite element or other discrete
methods. First, the BEM does not require re-meshing of
the body domain at each iteration. This not only reduces
the computational time but also eliminates small but im-
portant perturbations due to the changes of meshes. Sec-
ond, by reducing the dimension of the problem by one, fine
meshes required to represent high frequency waveforms be-
come affordable by using the BEM.
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We use the singular formulation of the boundary inte-
gral equation (see Dominguez [16]),

ci
k(x)uk(x)+

∫
Γ

−
[
pi

k(y;x)uk(y)−ui
k(y;x)pk(y)

]
dΓ(y)=0.

(23)

This equation relates the displacements uk and the trac-
tions pk exclusively at the boundaries. The index k stands
for the dimensions of the Cartesian coordinates of space.
If a complex presentation of fundamental harmonic so-
lutions for pi

k and ui
k is used, the solution of this equa-

tion yields fundamental harmonic solutions for a single
frequency ω. In the boundary integral equation, ci

k is a
geometry-dependent constant, and the integral has the
sense of a Cauchy principal value. In implementation, we
use the classical conforming discretization scheme with
quadratic elements, 8-point Gauss integration after reg-
ularization and displaced collocation strategy. The imple-
mentation details were developed by Rus [17]. This equa-
tion is used for both boundary and internal points [16],
[18]. The voids are modeled as stress-free boundaries.

The signals are recorded over a time window of 50 µs us-
ing a broadband transducer of 500 kHz. In order to match
this sampling condition, the frequency-domain signals are
constructed in the sampling range between zero and 4 MHz
at the increment of 20 kHz. When the response function
is constructed in terms of displacements and tractions,
they are Fourier-transformed to obtain the time domain
response.

IV. Implementation

A. Procedure

The theory described so far is implemented for evalu-
ating the defect in a specimen using the recorded output
signal. Below is the procedure for implementation.

1. Preprocessing of experimental signal.

a) Consider only the time window between 2.5 and
47.5 µs, cropped from the original 50-µs recording
period. This avoids mismatch of the ends due to
the periodic nature of the Fourier transform.

b) Join the beginning and end points of the experi-
mental signal by using a linear transition during
the last 2.5 µs. This is to avoid perturbing discon-
tinuities.

c) Displace the signal to zero mean. This eliminates
the static components.

2. Calibration to synthesize a signal.

a) Compute H̃
(TR)
mnj using BEM for the reference spec-

imen. Each term j is obtained from the solu-
tion of a single stationary frequency. The numer-
ical technique, taking into account the boundary
conditions and the relationship between the sig-
nal and the response (s(T )

m (t) = qi(Γm, t)ni and
s
(R)
mn(t) =

∫
Γn

ui(Γ, t)dΓni), has been explained
previously.

b) Resample computed signal h̃
(TR)
mn (t) using a set

of factors αi = (pi/q). A polyphase implemen-
tation has been used in this case, with a resam-
pling up between pi = ×90 and ×110, a resam-
pling down of q = ×100, and an oversampling
of N = ×10. An anti-aliasing (lowpass) FIR fil-
ter is used to compensate for signal delay af-
ter the filter and a Kaiser window with β = 5
[wn = I0(β

√
1 − n2/m2)/I0(β), where I0 is the

zeroth order Bessel function of the first kind].

c) Compute g(t), the average of gmn(t) = s
(O)
mn

−1
(t)∗

h̃
(TR)
mn (t).

d) Generate the synthesized signal s̃
(O)
mn = g(t) ∗

h̃
(TR)
mn (t).

e) Compute the residual R = s
(O)
mn(t) − s̃

(O)
mn(t).

f) Join the first and last points of the residual R
using a linear transition during the last 2.5 µs.

g) Compute the cost functional J = (1/2N)
∑N

i=1
(R)2 and find the value that minimizes αi.

B. Experimental Setup

The previous formulation is used for analyzing the sub-
surface defect in an aluminum specimen, whose mechan-
ical properties are identified before calibration as cp =
6320 m/s, cs = 3130 m/s, ρ = 2700 kg/m3, and zero damp-
ing. We limit ourselves to a 2D problem. For that purpose,
a sufficiently wide specimen is used, together with a strip-
like defect and line transducers. The accuracy of the sim-
plification of the piezoelectric plate from 3D to 2D can
be determined from Johansson et al. [19]. The transducers
are fabricated by inserting a trapezoidal aluminum wedge
between the piezoelectric plate and the specimen, which
produces contact on the line. The design of this wedge is
well described by Rus et al. [10].

Fig. 4 shows the geometry of the specimen used in the
experiments. The dimensions of the specimen are suffi-
ciently large so that any signal reflected from the bound-
aries appears outside of the range of interest. A pair of 500-
kHz central frequency wideband transducers from Pana-
metrics are used in transmission mode. Table I tabulates
the setup configuration of the measurement system used
in the experiments shown in Fig. 5.

Computational methods always add a source of errors,
which should be reduced by mesh refinement to a negligible
magnitude, as compared to other experimental errors, at
the cost of an increased computing time. Fig. 6 shows a
sensitive detail of the superposed signals computed by two
different boundary element meshes, which serve as a bound
of the numerical error. The finer mesh of 60 elements is
adopted, providing a maximum size of 2 mm in order to
obtain an accuracy of the order of 1% by a refinement test.
The figure also shows a picture of the ultrasonic pulse at
a particular instant, and how it interacts with the defect.
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Fig. 4. Geometry of the model.

V. Experimental Results

Fig. 7 shows the response h
(TR)
n (t) obtained by the BEM

for the undamaged and the defective specimen. Fig. 8
shows the comparison between the experimental signal and
the signal synthesized by the previous computation for the
undamaged specimen as well as for the damaged one. The
difference due to direct subtraction appears to be small in
the first case, but considerable for the defective specimen.
Notice that the signals for the reference and defective spec-
imens are similar looking because the main part of the sig-
nal consists of surface wave, which carries no information
about the defect, whereas the P- and S-wave reflections
from the defect are small and not distinguishable by the
raw eye. It will be shown in the next part that the pro-
posed inversion technique is robust enough to overcome
this drawback.

The technique is valid not only for side-drilled holes,
but also for straight or curved cracks with any orientation,

TABLE I
Configuration of the Experimental Setup.

Wave generator

Waveform generator model HP 33120A
Repetition rate 50 Hz
Burst cycle 1
Pulse height 500 mV
Frequency 500 kHz
Burst shape Spike pulse

RF power amplifier model ENI 2100L
Amplification +50 dB
Frequency range 10 kHz − 12 MHz

Oscilloscope

Oscilloscope model Agilent 54624A
Amplitude division 100 mv/div
Time division 5 µs/div
Sampling rate 25 ns
Time trigger delay −29 µs
Trigger level 25 mV
Averaging 64×

Fig. 5. Experimental setup.
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Fig. 6. An example of computation with increasingly refined bound-
ary element discretization (zoomed over a sensitive area). Note the
details of the interaction of the P and S waves with the defect and
the surface waves.

or for inclusions (which are more complicated to validate
experimentally), using the current boundary element code,
and can be extended to other formulations of continuum
or discrete damages. Finally, Fig. 9 shows the optimization
for α and the wavespeed self-compensation used in the
previously synthesized signals.

VI. Conclusions

A model-based defect-detection method for analyzing
the signals using an array of ultrasonic sensors is devel-
oped. In the first part, the model is implemented and two
calibration techniques are introduced to predict the model
for the actual specimen. These techniques are actually used
in the second part for solving the inverse problem and find-
ing the parameters that describe the defect.

This work is understood as an initial study aimed at
testing a new concept in NDE, a model-based inverse prob-
lem solution. Being still far from practical application, the
coming steps in its development are extending the types
and parametrization of damage, the efficient boundary el-
ement computations, and further study of the noise effects
on the probability of detection.

The strengths of the proposed method are as follows:
(a) The calibration technique can be processed in both the
time and the amplitude domains without all of the param-
eters being known, due to the abundance of measurements

Fig. 7. Computed response of the specimen system, prior to convo-
lution. Response at all 9 receivers from one of the 9 transmitters
(note that only 8 receivers and transmitters were used to simulate
the array, and the 9th one was recorded only for safety and preven-
tive reasons, but never used in any calculation). Top: case with no
defect. Bottom: case with defect.

available for the computation. The parameters that do not
need to be known include the exact wavespeed, the actual
pressure applied to the transducers, their response transfer
function, and the input signal. (b) The method is applica-
ble to ultrasound range but is basically applicable to any
mechanical wave motion. (c) The BEM is used as a conve-
nient tool for solving the forward problem to model wave
propagation in the specimen. Besides the computational
speed, the most important characteristic is avoiding the
domain mesh, which eliminates numerical perturbations
that affect the search procedures. The BEM is accurate
and suited for modeling infinite geometries and compli-
cated geometries, as compared to other methods.
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Fig. 8. Comparison of experimental and synthesized signal. Case of
a single transmitter and receiver. Top: case with no defect. Bottom:
case with defect.

Fig. 9. Wave speed calibration. Minimization of the cost functional
for wave celerity compensation.
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