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Abstract

This work examines the identification of defects in anisotropic laminated composite structures using the boundary
element method (BEM) from incomplete static response data including noise effects. The main objective in this paper is
to anticipate effects of layup sequences and sensitivity of a measurement system of two-dimensional structures made of
composite materials for detecting defects. It is a key goal to create understanding on the influence of the monitorization
of advanced structures into their design. The identifiability is studied in terms of layup, measurement and loading design
by using boundary element modeling. The concept of identifiability is based on the existing inversion strategy, which
consists of the minimization of a cost functional with the possibility of taking into account the entire measurement-
specimen system, and therefore interpreting quantitatively the measurements. In this article, after verifying that the
boundary element model is in good agreement with numerical results reported by other investigators, the effect of noise
in the measurements on the identifiability is studied with respect to different design parameters of laminated composites
using a wide set of numerical examples.
� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

With the advancement of technology in fiber-reinforced composite materials, the applicability of com-
posites to structural members has been increased significantly due to their merits such as low density, high
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stiffnesses and high strength. Consequently, the need for safe monitorization and predictive non-destructive
evaluation (NDE) and other inverse problems (IP) in such sensitive and expensive structures is constantly
increasing.

Structural analysis of anisotropic composite materials using BEM has been studied previously by a num-
ber of investigators. The first application of the BEM for composite materials is due to Cruse and Swedlow
(1971). Later, the formulation was extended to two-dimensional crack problems by Snyder and Cruse
(1975) and a general three-dimensional problem was presented by Wilson and Cruse (1978). On the other
hand, the first extension to two-dimensional elastodynamic in the time domain was developed by Wang et
al. (1996). Other applications of BEM for adhesively bonded patches can be found in Young and Rooke
(1992). Recently, Lingyun and Daniel (1998) analyzed two-dimensional micro-mechanical behaviors of
composite materials using BEM. A new boundary element formulation for the mechanically fastened com-
posite patch was developed by Widagdo and Aliabadi (2001). Theses works, based on forward approaches,
deal with static or dynamic responses of the structural system from external conditions such as loading.

For the inverse approach, a recent survey investigated by Achenbach (2000) addresses the importance of
coupling the concept of probability of detection (POD) and the measurement model on quantitative NDE.
This is a representation of the probability that a given measurement system will be able to detect a specific
defect in a given material or structure. This area of research has been merely empirical until very recently.
Ogilvy (1993) presented a model that relates the probability of detection and of false indication in a con-
ventional pulse-echo detection of well-oriented planar defects with ultrasonics. Rajesh et al. (1992) studied
the POD by running a probabilistic FEM model for eddy current NDE. In this paper, the concept of iden-
tifiability using the POD is applied to identify defects.

For the present approach to quantitative defect identification, in opposition to standard imaging tech-
niques, the output data is reduced from the classical being the complete bitmap of the image to a reduced
set of parameters that gives an univocal description and characterization of the defect. This procedure,
called parametrization, is based on assimilating the defect to a simple geometrical entity, defined by the re-
duced set of parameters P, which are the unknowns of the inverse problem. This reduction is appropriated
when the noise in imaging is too big, and the compromise of the assumption of a simplified geometry of the
defect is acceptable. The use of this parametrization has been used under different names in conjunction
with boundary oriented numerical methods. The first attempt performed by Bezerra and Saigal (1993), Mel-
lings and Aliabadi (1995) and Yao and Gong (1994) for 2D elastostatic isotropic plates. Burczyński (1993)
made an extensive research on the development of the sensitivity analysis by using the BEM. The compu-
tation of the sensitivity has been studied using direct derivation by Aithal and Saigal (1995), Tanaka and
Masuda (1989), Gallego and Suárez (1999) and Rus and Gallego (2002a,b) using the adjoint variable meth-
od (Burczyński, 1995; Bonnet, 1995; Bonnet, 1999) and other techniques (Kane and Guru Prasad, 1993;
Nishimura, 1997). Other non-gradient based methods such as genetic algorithms or neural networks have
also been used (Stavroulakis and Antes, 1998; Stavroulakis, 2001; Lee and Wooh, in press; Boström and
Wirdelius, 1995; Wirdelius, 1994). Calmon et al. (1998) also used approximate ultrasonic models in the
framework of an optimization algorithm. However, all these works are limited, in that they can analyze
only the structural members made of isotropic materials.

In this paper, the previous concepts are extended from isotropic materials to anisotropic laminated com-
posite materials. The main objective in this paper is to find how the design of the composite material affects
and how sensitive a measurement system is to the presence and evaluation of defects. The latter concept
may be referred as identifiability. In other words, this paper intends to establish criteria on the influence
of the monitorization of defects into the design of composites. The word identifiability of parameters is used
within the finite element method in a completely different sense by Linderholt and Abrahamsson (2003).
They emphasize that the correct way of reducing noise is re-parametrizing in order to avoid parameters that
lack identifiability. They also propose a method based on singular value decomposition (SVD) for simple
parametrizations. In this article, the basic principle of the identifiability is twofold. First, the measured dis-
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turbance due to the presence of a defect should be maximized, and second, its magnitude should stand out
of that of the noise. In particular, the input data for the problem in this paper is given in terms of the geo-
metrical and mechanical characterization of the specimen to be evaluated and in terms of a set of measure-
ments of its response to a mechanical excitation. For the solution of the inverse problem we choose
procedures based on the minimization of the discrepancy between measured and predicted response (Gal-
lego and Suárez, 1999; Rus and Gallego, 2000; Suárez, 1998).
2. Formulation of anisotropic multilayer composites

For completeness, the relevant formulas in the boundary element analysis of two-dimensional laminated
composite bodies are reviewed below (Lee et al., 1997). Fig. 1 shows the structural and material axes of a
two-dimensional anisotropic body. From Fig. 1, the transformed tensor rij of the plane stresses rpq between
the structural and material axes is
rij ¼ liprpqlqj ði; j; p; q ¼ 1; 2; 6Þ; ð1Þ

where matrix lij is the transformation matrix. The relationship between the displacement vector ui and the
linear strain tensor �ij is given through the compatibility equation,
�ij ¼
1

2
ðui;j þ uj;iÞ: ð2Þ
In the generalized Hooke�s law, a two-dimensional anisotropic composite material stiffness Cij and flexibil-
ity aij can be expressed in the following convenient form using the single-subscript notation for stress and
strain components and the double-subscript notation for elastic constants:
ri ¼ Cij�j; �i ¼ aijrj ði; j ¼ 1; 2; 6Þ: ð3Þ

Following the notation of Lekhnitskii (1981), the flexibility matrix [aij] for orthotropic material in the mate-
rial axes in terms of engineering constants can be written as
Fig. 1. Structural and material axes.
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½aij� ¼
1=E1 �m21=E2 0

�m12=E1 1=E2 0

0 0 1=G12

2
64

3
75; ð4Þ
where Ei, mij, and G12 denote elastic moduli, Poisson�s ratios, and shear modulus, respectively. Combining
Eqs. (1)–(3) by using transformation from the material coordinate system, the stress-displacement relation-
ship follows as
~ri ¼ lijrj ¼ lijCij�j ¼ lijCijl
T
ij~�j ¼ Cij~�j; ð5Þ

~�i ¼ �aij~rj; ð6Þ
In order to analyze a multilayered anisotropic material we model the combination of single layers as
follows. We proceed deriving the constitutive equations that relate the force resultants to the strains
of a laminate. Eq. (6) holds for the kth lamina in the problem coordinates. The integration of stresses
through the laminate z-thickness requires laminawise integration. Hence, the force resultants Ni are
given by
Ni ¼
Xn
k¼1

Z zkþ1

zk

~ri dz ¼
Xn
k¼1

Z zkþ1

zk

Cij~�j ¼ ~Cij~�j; ð7Þ

~�i ¼ �AijNj; ð8Þ
where n is the number of layers.
This model is taken into account into the BEM through the fundamental solution derived from it. For

the two-dimensional analysis of a generally anisotropic medium, the fundamental solutions are given by the
following closed forms. uij and qij are the jth components of the displacement and traction at the observation
point due to a singular load at a distance z towards direction i.
uji ¼ 2Re½Ai1Bj1 ln z1 þ Ai2Bj2 ln z2� ði; j ¼ 1; 2Þ; ð9Þ

qji ¼ 2Re
Ai1Cj1

z1
ðl1n1 � n2Þ þ

Ai2Cj2

z2
ðl2n1 � n2Þ

	 

ði; j ¼ 1; 2Þ; ð10Þ
where lk are the complex roots of the characteristic polynomial,
a11l4 � 2a16l3 þ ða12 þ a66Þl2 � 2a16l þ a22 ¼ 0; ð11Þ
and the complex constants Bkl in Eq. (10) are given as follows:
B1l

B2l

� �
¼ a11l2

l þ a12 � a16ll

a12ll þ a22=ll � a26

� �
; ð12Þ
and C1k = lk, C2k = �1, and Akl are the complex roots of
1 �1 1 �1

l1 �~l1 l2 �~l2

B11 �~B11 B12 �~B12

B21 �~B21 B22 �~B22

0
BBB@

1
CCCA

Ak1

~Ak1

Ak2

~Ak2

0
BBB@

1
CCCA ¼

dk2
2pi
dk1
2pi

0

0

0
BBBB@

1
CCCCA: ð13Þ
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3. Boundary element method

In some class of IP, the use of the BEM provides clear advantages in comparison with the finite element
method and others. First, it does not require a remesh of the domain of the body at each iteration. This
reduces both the computational effort and eliminates small but important perturbations due to changes
of the mesh. Second, the application of these methods to real problems may require many iterations, as well
as high precision in the intermediate solutions, so the use of finite elements would be very expensive.

The integral equation we use for the BEM is one that directly relates ui and qi. In the equilibrium equa-
tion (rij,j + bi = 0), the principle of the inner product or weak formulation is given as
Z

X
ðrij;j þ biÞwi dX ¼ 0; ð14Þ
where wi is a weight function. If we choose the previously obtained fundamental solution uik as the kernel
function, and integrate it by parts twice the first component, we obtain Betti�s reciprocity theorem:
Z

X
ri
jk;juk dX þ

Z
X
biuik dX ¼ �

Z
C

rjknjuik dC þ
Z

C
ri
jknjuk dC: ð15Þ
The reason for choosing a singular fundamental solution is that the identity ri
jk;j þ dðy� xÞei ¼ 0 (where y

is the pole and x is the observation point), converts the first domain integral into a single-point value (the
kernel is zero-valued everywhere except at the pole), giving
�uiðyÞ þ
Z

X
bkuik dX ¼ �

Z
C

rjknjuik dC þ
Z

C
ri
jknjuk dC: ð16Þ
Neglecting body forces in Eq. (16), the integral equation at the boundary is obtained
uiðyÞ ¼
Z

C
ðqkuik � qikukÞdC: ð17Þ
Eq. (17) can be turned into a boundary integral equation if we take the pole xi to the boundary. In this case
the integrals can turn singular. After a careful limiting process, Eq. (17) turns into:
cikðyÞukðyÞ þ
Z
--
C
qikðx; yÞukðxÞ � uikðx; yÞqkðxÞ
� �

dCðxÞ ¼ 0; ð18Þ
where the integrals have the sense of Cauchy Principal Value, which has to be evaluated numerically using
so-called regularization techniques (Domı́nguez, 1993; Rus and Gallego, 2002a,b). Any of the equations
above are valid for a continuum problem. We express the continuum in terms of discrete values by
xk ¼
X

/jx
k
j uk ¼

X
/ju

k
j qk ¼

X
/jq

k
j : ð19Þ
A determined system of equations is constructed writing the boundary integral equation once for every col-
location point and direction. The system is then reorganized so as to include all unknown displacements ui
and tractions qi in vector v, according to the boundary conditions.
Hu ¼ Gq ) Av ¼ b: ð20Þ
4. Identifiability and inverse problem

The concept of identifiability should be defined within the context of the complete solution of an IP. It
represents the probability of a defect to stand out of the noise of the measurements with a minimum
deviation.
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A BEM model is used in an IP solution strategy based on minimization of discrepancy. First, the spec-
imen is loaded with a specific case in order to provoke a clearly measurable deformation. Then, the static
deformed shape is measured at several points and directions, each of them giving a magnitude called meas-
urement. The detection is then based on the minimization of a residual R between the amplitudes at the
receiver transducers vm and the computed predictions of them by this method vc(Pg).
Table
Defini

Param

xcg1
xcg2
a

b

a

R ¼ vm � vcðPgÞ; ð21Þ

where vc(Pg) is a function of the parameters Pg that describe the flaws. The significant idea of the IP solu-
tion is the optimization of a cost functional with respect to the parameters Pg. The cost functional in this
paper is defined in a least squares sense. The residual function can be written as
L ¼ 1

2
RTR: ð22Þ
Instead of minimizing L, we define the cost function W as a value to be maximized
W ¼ � logðLþ �Þ; ð23Þ

The reason for this choice is that it is better suited and gives better results when applied to certain optimi-
zation techniques such as genetic algorithms (Gallego and Rus, 2001).

For the parametrization scheme we make use of a modified field ~xi of the original geometry xi (Rus and
Gallego, 2002a,b), expressing the change of position of each material point. For our particular case, we
have chosen a very simple non-linear parametrization capable of representing flaws assuming any elliptical
shape, size and orientation (Table 1 shows each parameter of the vector Pg):
~xiðPgÞ ¼
p1 þ ðp3 cos p5 � p4 sin p5Þ
p2 þ ðp3 sin p5 þ p4 cos p5Þ

	 

: ð24Þ
To study the identifiability, from the expansion of the residual vector R in terms of the parameters Pg, Eq.
(21) can be rewritten as
R ¼ dR
dPg

ðPg � P r
gÞ þHOT; ð25Þ
where Pr
g means the measured parameters and HOT stands for higher order terms. The residual functional

L in Eq. (22) leads to the expansion by using Eq. (25) as following:
LðPgÞ ¼ LðP r
gÞ þ

dLðP r
gÞ

dPg
ðPg � P r

gÞ þ
1

2

d2LðP r
gÞ

dP 2
g

ðPg � P r
gÞ

2 þHOT 	 1

2

d2LðP r
gÞ

dP 2
g

ðPg � P r
gÞ

2 ð26Þ
in the vicinity of the real defect. By using Eq. (26), the cost functional W in Eq. (23) is then approximated to
W 	 � log
1

2

d2LðP r
gÞ

dP 2
g

ðPg � P r
gÞ

2 þ �

 !
	 � log

ðPg � P r
gÞ

2

2

 !
� log

d2LðP r
gÞ

dP 2
g

 !
ð27Þ
1
tion of the parameter vector Pg

eter Definition

Horizontal coordinate of the centroid of the flaw
Vertical coordinate of the centroid of the flaw
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Vertical size
Angle of rotation (radians)
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Fig. 2. Representation of concepts of parameters and residual functionals for identifiability.
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in which the second term can be related to the level of noise in the following way.
If the residual vector is assumed to contain incomplete data such as a noise terms proceeding from the

measurements or whatever other source, R in Eq. (25) can be redefined to R 0, adding a prime ( 0) that de-
notes the presence of noise, as
R0 ¼ Rþ an; ð28Þ

where n is a gaussian stochastic process with zero mean and unity variance, and a defines the magnitude of
the noise. In this case, the residual functional is also modified to
L0 ¼ Lþ a
ffiffiffiffiffiffiffiffi
2kL

p
þ a

k
2
; ð29Þ
where k is the length of the residual vector. For a given probability, the highest expected value of the resid-
ual functional L at the position of the real defect ðPg ¼ P r

gÞ will be L0 ¼ a k
2
, which can be compared to its

average value (n = 0 or L 0 = L), as shown in Fig. 2, for a required range of values of the identification
parameter Pg ± DPg to find the following:
L0 ¼ L ¼ 1

2

d2LðPr
gÞ

dP 2
g

DP 2
g ¼ a

N
2
) log

d2LðP r
gÞ

dP 2
g

 !
¼ log

aN

DP 2
g

 !
: ð30Þ
Two key aspects have been concluded here to quantitatively improve the identifiability.
First, the larger the noise for the required range of identifiability ratio, the higher the term

� log
d2LðPr

gÞ
dP2

g

� �h i
needs to be. In other words, higher values of W in the vicinity of the defect means higher

identifiability, in an additive sense. The second one is that the wider the peak with the defect, the easier it is
to find it for a search algorithm especially for zero-order methods, genetic algorithms, and gradient based
ones. These conclusions are the key to interpret the cost functional graphics shown in the following sec-
tions, and extract conclusions about the identifiability.
5. Numerical results

The methodology described above to find the position and size of defects is implemented an tested
numerically to assess its functionality. Furthermore, the limitations of this methodology are sought by
a parametric study of the noise effects for various load cases, angle and layer layup, and value of the
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parameters. The concept of identifiability is demonstrated in the results in relationship with the level of
noise.

5.1. Methodology and validation of results

In this paper, two models which are combinations of two specimen shapes under two different load cases
each are used as shown in Fig. 3. They consist of rectangular plates of layered composite materials under
aligned loads, which makes them 2D problems. Since the defects have close to null stiffness properties, they
are correctly modeled as elliptical holes of a variable angle, size and position, which are to be determined.

The material is a layered composite with a variable number of layers and a specific sequence of cross or
angle ply. The properties of composite materials in this study are listed in Table 2. Due to the use of several
parameters, the procedure will be to keep one parameter fixed while moving the rest. 40 quadratic boundary
elements integrated using 8-point gauss quadrature each are used. The unknowns and collocation points are
placed according to the scheme of conforming elements (Domı́nguez, 1993). In addition, an adimensional-
ization scheme for all the magnitudes toward unity values has been used. It works introducing a new system
of magnitudes and establishing the necessary correspondence with the input system (Rus, 2001). The moti-
vation is to overcome numerical instabilities of the inversion procedure introduced by Rus and Gallego
(2002a,b).

The boundary element formulation described earlier is now implemented to compare the results in the
isotropic case with unity Young modulus and 0.3 Poisson ratio computed by Rus and Gallego (2002a,b).
The problem is depicted as well as the points from which the comparison data have been taken are repre-
sented in Fig. 4 and Table 3. The values in Table 3 are appropriately coincident (errors within 3.5% for the
chosen 40-elements discretization), giving enough confidence on the boundary element code. However, the
correct convergence will be checked as the number of elements is increased. A convergence check of the
(a) (b)

Fig. 3. Description of the models: (a) loadcase 1 and (b) loadcase 2.

Table 2
Properties of the materials used in this study

Materials E1 (N/m2) E2 (N/m2) G12 (N/m2) m12

Graphite-epoxy (AS/3501) 137.90 · 109 8.9635 · 109 7.1019 · 109 0.30
Glass-epoxy 53.781 · 109 17.927 · 109 8.9635 · 109 0.25



Fig. 4. Definition of points for comparison, loadcase 2.

Table 3
Comparison of displacements/tractions (whichever is free as boundary conditions) computed with an isotropic BEM code from Rus
and Gallego (2002a,b) (a) and the present anisotropic BEM formulation (b)

Point (a) (b) Error

x y x y x y

A 0.5000 0.3096 0.5000 0.2745 0.00 3.51
B 0.6958 0.1785 0.6954 0.1464 0.04 3.21
C 0.0546 0.0000 0.0490 0.0000 0.56 0.00
D 0.3075 �0.0415 0.2776 �0.0365 2.99 0.50
E 0.5000 �0.3096 0.5000 �0.2757 0.00 3.39
F 0.3043 �0.1785 0.3051 �0.1468 0.08 3.17
G 0.9981 0.0000 0.9946 0.0001 0.35 0.01

Relative errors (%) with respect to the load p = 1.
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numerical results of the measurements is performed, in order to establish the necessary compromise be-
tween computing time and precision. Fig. 5 shows how the values converge correctly as the number of ele-
ments and therefore the computing time grow.

5.2. Noise effects

The identifiability through analyzing the cost functional W versus the parameter from incomplete data
with unexpected random noises is first examined. If the cost functional approach any noticeable peak point,
it is very easy to identify the defect. However, excessive noises could make deleterious contributions to the
detection of the defect. The noise in the measurements is varied by using a Gaussian distribution with zero
mean. The cost functional should give a maximum when it is close to the real position, which we set to:
xcg1 ¼ 0:10; xcg2 ¼ 0:20, a = 0.30, b = 0.20, and a = 0.40. The measurement data are the vertical component
of the displacements at the uniformly spaced ten nodes in which the upper side of the square plate has been
discretized by the BEM.

Fig. 6 shows the values of the cost function versus the rotation angle of the flaw for two composite mate-
rials, for increasing experimental noise. From Fig. 6 it may be noted that the glass-epoxy case gives some-
what better sensitivity, which we see from the fact that the cost function has a larger range of values and
also that with 2–5% noise there is still possible to find a close value for the glass-epoxy model whereas it is
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Fig. 5. Numerical convergence at measuring point A.
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not possible in graphite-epoxy. A search algorithm is more likely to find that maximum simply because the
maximum is noticeably higher than the neighbour values, and in this case the maximum is much closer to
the real value, and more distinguishable. A very interesting observation in graphite-epoxy is that the fitness
function shows a secondary maximum which means that there is a different angle that gives almost the same
response as the original one, which may lead to a false guess of the absolute maximum for 2% noise. It is
remarkable that in the glass-epoxy, a shallower second maximum tends to appear at a different position,
varying from angle �0.3 radians to �1.1 in graphite-epoxy. It is important to take into account that the
ellipse is not too flat, which makes the angle less identifiable (i.e. the overall geometry varies less when
the defect rotates). Figs. 7 and 8 show the evolution of the identification cost function when the flaw is
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Fig. 8. Detection of horizontal coordiate ðxcg1 Þ for different noise effects (square model, load case 2, graphite-epoxy): (a) [45/0] and (b)
[45].
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moved horizontally in composites with four different symmetric angle-ply layups. It may be observed that
the 1 and 2 layer setups are less sensitive to the noise.

A general observation about the non-convex nature of the inverse problem needs to be made. It can be
observed already from the first figure that the convexity of the cost functional (in the sense of the positive
semi-definiteness of its Hessian) is broken, as can be seen in the inflexion points and even multiple local
extrema that grow with the level of noise and degree of material anisotropy.

5.3. Cross-ply

Fig. 9 shows the cost functional against the horizontal flaw size in cross-ply composites with different
fiber angles. In combination with the load case, the results obtained without noises could be noticeably dif-
ferent depending on the given fiber angles. The models with fiber angles 30� and 45� are easy to examine in
load case 1, whereas the 90�-model is very difficult. It is easy to understand that the lower levels of the cost
function make it less capable to stand out above the noises. It may also be observed that load case 2 is less
sensitive to the configuration of the fiber angles loadcase 1. Therefore, it is easier to identify because the cost
function values are higher.

Fig. 10 studies the horizontal flaw size in cross-ply composites with different fiber angles. The used model
is from now on the rectangular one (height=0.6L), where the real parameter values are xcg1 ¼ 0:20; xcg2 ¼
0:10, a = 0.10, b = 0.05, and a = 0.40, respectively. Fig. 10 presents the importance of the choice of the load-
case to find some parameters. Whereas load case 1 gives curves with low identifiability because of low cost
function and especially a narrow peak, load case 2 is quite easy, especially for angles of 60, 45 and 90.

5.4. Angle-ply

Fig. 11 studies the horizontal flaw size in symmetric angle-ply composites using different number of lay-
ers. As shown in the figures, [30/60]s and [30/60/30] give the best identifiability, but not far ahead of the rest,
excepting the [30/0]s. The differences of the values in different fiber angles are slightly smaller in the case of
three layers, although all very much at the same range of values. We may conclude from these results that
the use of different layer sequences make little differences for the identification of the size.
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Fig. 12 shows a similar case as above but for a different combination of angles. From the figure, [60/45]
and [60/45/60] present the best identifiability as opposed to [60/0] and [60/0/60]. It may be also noted that
the position of a secondary maximum (G�1.0 ��1.5 radians) appears at different positions for different
angles, which is closely related to the anisotropic nature of the composite materials.

5.5. Combination of parameters

In Fig. 13, we provide the perspectives for the variation of the cost functional with two parameters at
the same time. It is noted that there are some correlations between the parameters (see that the horizontal
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section of the mountain-shaped surface is not circular, but very oblong) which makes it more difficult to
find the exact position of the defect in that zone. It can be understood conversely that it is particularly easy
to distinguish the location perpendicularly to that direction.
6. Summary and Conclusion

An inverse technique is developed to identify various properties of anisotropic composites by using con-
cept of POD. For the numerical simulation of the problem, the boundary element technique has been used
for the first time to assess the identifiability of defects in those composites and foresee the applicability of
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the family of identification methods based on the minimization of measurement discrepancy. The boundary
element method is an attractive approach, not only because it is computationally efficient and accurate but
also because we can avoid the domain meshing that is mandatory in FEM. The technique is then imple-
mented for anisotropic composites of various layup sequences to compare the results obtained from differ-
ent noises and load cases. The results obtained from the boundary element formulation for isotropic
structure are compared with the results available in the open literature and a good agreement is observed.
In the numerical results, we observe that the use of different number of layers make little difference for
detecting the sizes or positions regardless of fiber angles, but the difference becomes significant for the load-
ing conditions and noise effects. It is also checked that the non-convex nature of the inverse problem is al-
ways present and magnified for stronger noise and material anisotropy.

The most relevant results to quantify the level of noise that limits the identifiability of defects in relation-
ship with angle and fiber layup, loading conditions and defect position are shown in this work. Although no
simple formula for the identifiability is found, the general theoretical conclusions have been tested quanti-
tatively. The conclusions described in this paper are not restricted to the use of the boundary element meth-
od, but to any inversion strategy based on finding the defect characterizing parameters that minimize a cost
functional in terms of discrepancy between computed and measured responses.
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September, In: Suárez, B., Oñate, E., Bugeda, G. (Eds.), ECCOMAS2000.
Rus, G., Gallego, R., 2002a. Gradiente analı́tico para la identificación no destructiva de defectos mediante el método de los elementos

de contorno. madrid, In: Abascal, R., Domı´ nguez, J., Bugeda, G. (Eds.), CIMNE.
Rus, G., Gallego, R., 2002b. Optimization algorithms for identification inverse problems with the boundary element method.

Engineering Analysis with Boundary Elements 26 (4), 315–327.
Snyder, M.D., Cruse, T.A., 1975. Boundary-integral equation analysis of cracked anisotropic plates. International Journal of Fracture

11 (2), 315–328.
Stavroulakis, G.E., 2001. Inverse and Crack Identification Problems in Engineering. Kluwer Academic Publishers.
Stavroulakis, G.E., Antes, H., 1998. Crack detection in elastostatics and elastodynamics. A BEM modelling—neural network

approach. In: Tanaka, M., Dulikravich, G., (Eds.), Inverse Problems in Engineering Mechanics.
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