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SUMMARY

Model-based non-destructive evaluation proceeds measuring the response after an excitation on an
accessible area of the structure. The basis for processing this information has been established in recent
years as an iterative scheme that minimizes the discrepancy between this experimental measurement
and sequence of measurement trials predicted by a numerical model. The unknown damage that
minimizes this discrepancy by means of a cost functional is to be found. The damage location and
size is quantified and sought by means of a well-conditioned parametrization. The design of the
magnitude to measure, its filtering for reducing noise effects and calibration, as well as the design
of the cost functional and parametrization, determines the robustness of the search to combat noise
and other uncertainty factors. These are key open issues to improve the sensitivity and identifiability
during the information processing. Among them, a filter for the cost functional is proposed in this
study for maximal sensitivity to the damage detection of steel plate under the impact loading. This
filter is designed by means of a wavelet decomposition together with a selection of the measuring
points, and the optimization criterion is built on an estimate of the probability of detection, using
genetic algorithms. Numerical examples show that the use of the optimal filter allows to find damage
of a magnitude several times smaller. Copyright � 2006 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Condition assessment technology and non-destructive evaluation (NDE) techniques have
provided various solutions for safety of structures by means of detecting damage or defects
from static or dynamic responses induced by external loading. A variety of techniques in
this category have been developed in the last two decades. Based on analytical approaches,
the existing studies [1–5] have limited capabilities in dealing with complex problems, pri-
marily due to their limitations in handling different loading, boundary conditions and ge-
ometries in the analysis. Thus, many investigators developed a variety of numerical methods
for assessing damage, e.g. damage index methods (DIM), inverse modal perturbation (IMP),
and so on. These methods, despite their improvements over the conventional methods, still
have some limitations, such as those associated with the divergence and instability problems
in the numerical calculations, and the trap of minima, especially for large and complicated
structures.

In recent years, direct search methods, such as neural networks, genetic algorithms (GA) and
simulated annealing methods are developed and promisingly applied to the field of structural
identification. Among them, GA attract our attention because of the fact that the technique
requires significantly small amount of data in dealing with complex problems, while attaining
global convergence as opposed to gradient-based methods. Suh et al. [6] presented a hybrid
neuro-genetic technique that is able to identify the location and extent of damage in a beam
or frame structure using only the frequency information. Mares and Surace [7] demonstrated
the ability of the GA to identify damage in elastic structures. Friswell et al. [8] combined the
genetic and eigensensitivity algorithms for locating damage. Chou and Ghaboussi [9] proposed
a GA-based method to determine the location and extent of damage in truss structures from
the measured static displacements. Krawczuk [10] presented a wave propagation approach to
detect damage in beam structures based on GA and the gradient technique. On the other hand,
Lee and Wooh [11] applied an advanced microgenetic algorithm for detecting damage of plate
structures subjected to dynamic loading.

Despite the broad spectrum of applications for detecting damage, the numerical techniques
may not be attractive from the practical point of view. The methods require a precise mea-
surement of static or impact loading to the structure that needs to be input into the numerical
model. Based on experimental work, precise control and measurement of input loading are
extremely difficult because of errors arising from the physical structure. In particular, Kimoto
and Hirose [12] found difficulties in correlating the numerical simulation of the surface-sensor
system on the boundary of the experimental model, by modelling transducers as a distributed
traction for the transmitter and using a weight function on the displacements for the receiver.
In this approach, a transfer function is also inserted for the transducer–specimen system, as
introduced by Schmerr [13]. These are also referred to as the linear time-shift invariant (LTI)
and are used as Green functions to average within the transducer surface. The difficulty and
disclaim in the sensor behaviour can be illustrated in their result these techniques, where they
obtain discrepancies between the experimental and numerical signals of the order of 20% with
respect to the maximum signal. They also introduced averaging of computations to enhance
the results. Zhao et al. [14] also used the velocity instead of the displacement to model the
receiver. Some efforts were made by Rus et al. [15] regarding which boundary conditions
correctly simulate the effect of the transducer on the specimen model. The basis for these
hypothesis and the linearity of the system are retrieved in the present numerical study.
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The wavelet transform is a technique for the processing of signals of which the spectral
countenance is non-stationary. It is defined in terms of a base function obtained by com-
pression, dilatation and decay operations of the mother wavelet. In the wavelet transform,
the signal spectrum is divided by an overlapping of pass band filters with constant rela-
tive bandwidth. Addison [16] gives an excellent overview of the potential that the novel
wavelet analysis provides to different areas of science in the current days. Within the sub-
ject of mechanical systems, Kim and Kim [17] give a successful wavelet ridge analysis of
the correlation of reflected to incident wave magnitude ratio over the time and frequency
to correlate an experiment with a bending beam model. This application is merged with
numerical methods by Li et al. [18] who use the wavelet finite element method (WFEM)
in modal analysis to find cracks with the aim of solving accurately the crack singular-
ities. On the other hand, wavelets can also be used for noise removal, which is our
objective in this study. Messina [19] compares wavelets for noise removal against differen-
tiator filters, concluding that they provide very similar performance, which is expectable due
to some common mathematical basis. In a similar approach, Yang et al. [20] apply enve-
lope complex wavelet analysis correlation to efficiently discriminate noise from the signals in
an experimental case. On the other hand, a standard wavelet analysis is used in this study
as one of the two filtering tools within a novel framework of optimization of the search
methodology.

Being critical for the practice of NDE, the issue of the probability of detection (POD)
has only been addressed independently, under the name of identifiability, in statistics and
mathematics, with a wide application in chemistry and physics. However, in the field of
non-destructive testing, only observational comments have been made. Only Liu and Chen
[21] discussed as identifiability the relationship between the number of measurements and
the number of degrees of freedom to establish a necessity condition. Tarantola and
Valette [22] examine the inversion theory under a probabilistic formulation and introduce
probability density functions in the model and the a priori information about the param-
eters to explain the robustness of the inversion and to obtain a non-single-
valued output for the parameters. In this study, an estimate of the POD is designed from
the minimization search approach as a criteria to be optimized for the design of the
formulation.

The forward and inverse procedures are presented for the identification of damage in steel
plates by combining the FEM as the numerical procedure for the simulation of the effect of
the defect on the response to impact loading, and a parametrization of the defect in com-
bination with a calibrating cost functional with an optimized noise filter and GA for the
optimization and search procedures. More realistic simulated noise is added in the numer-
ical simulation of the experiment by introducing a Gaussian force at the excitation pulse
along the time, which exhibits qualitative differences to noise added directly to the com-
puted measurements. However, without an efficient searching scheme, it is very difficult
to solve this kind of inverse problems. In this study, we propose an efficient method to
identify damage in structures by combining GA with a filter for noisy dynamic response.
This filter weights the wavelet coefficients, time windows and measurement points. Then,
the POD is approximated from certain simulated values of the measurements. Finally, the
proposed method determines the best measuring points, wavelets levels and time windows
for locating and evaluating damage on steel plates using the optimized filter and cost
functional.
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2. FORWARD PROCEDURE

2.1. Damage model

In order to measure the dynamic data from damaged plate structure, the FEM is implemented to
simulate the forward procedure. In a finite element formulation for solving a forward problem,
the stiffness matrix of a structural system is expressed in terms of its material properties,
geometry, and boundary conditions. In this paper, the damage is defined as the stiffness reduction
factor �(m) at one or more local areas [7, 11, 23].

The structure is discretized into a set of finite elements categorized into undamaged and
damaged states of different degradation levels. For such a model, the global stiffness matrix of
the mth damaged element can be expressed as

D̃(m) = �(m)D(m) (1)

where D(m) is the stiffness in its original (undamaged) state. Note that the tilde symbol above
a variable is used to denote the damaged state. The stiffness matrix of the damaged element
in the local coordinates can now be written as the volume integral of the form

K̃(m) = �(m)

∫
V

B(e)TD̃(m)B(e) d� (2)

where B(e) is the strain–displacement matrix of the element e, and the superscript T denotes
the transpose operator. Note that B(e) is a property that is independent of damage, thus it is
applicable to all the elements e, whether damaged or undamaged.

The governing equation of motion of the system is written in the form

Mü + Ku = r (3)

where u and ü are the displacement and acceleration vectors, M and K are the mass and
stiffness matrices and r is the time history of the applied load, respectively. To advance the
solution of this equation in time, we use Newmark’s direct integration method [24], in which
the time dimension is represented by a set of discrete points with equal time increment of �t .
The following naming convention is adopted: the value of a function �(t) at time t = n�t is
denoted by the index n as

�(t) = �(n�t) = �[n], n = 0, . . . , N (4)

where N + 1 is the total number of temporal discretization points for the entire duration of
time Td .

2.2. Noise effect

In order to consider unexpected errors in the measured displacements or accelerations, the
usual option is to introduce the effects of random noise by adding Gaussian noise directly
to the values computed by the FEM. An alternative approach is proposed here for simulating
the incomplete signal from the structure with the noise effects, which consists of an external
random force excitation applied over the complete time period, and normal to the plate over the
inboard area. This simulates the error arising from the uncertainty of the interaction between
the impactor or transmitter, as well as the ambient noise and other coherent noise sources.
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From the practical point of view, the latter aims to study a situation closer to the real structure,
providing qualitative similarities to the error induced in the physical system.

If the noise effects are considered directly at the measured response on the kth node, a
Gaussian (normal) random number generator is used to generate a series of random numbers
�k[n] with standard deviation � = 1 and zero mean. This series simulates a random process
�(t), and the simulated measurements are given by

�x(p; �n)[n] � �(p)[n] + RMS(�)�[n] (5)

If ambient noise is simulated, the random noise tractions tn are made of a random process
� with random distribution of zero mean and standard deviation � = 1, and defined from a
spectrum ht (t) (in the time domain, or conversely Ht(�) in the frequency domain) of the
noise and the root mean square of the applied tractions t (∗ stands for convolution product, in
the time domain),

tn[n] = RMS(t)ht [n] ∗ �[n] (6)

where RMS stands for the root mean square. This noise on the force can be estimated to
affect the measurements �x through a spectrum h� that depends on the transfer function of
the specimen and the input noise spectrum,

�x(p; �n)[n] � �(p)[n] + RMS(�)h�[n] ∗ �[n] (7)

In the following numerical experiments, only white noise (uniform frequency spectrum
H(�j )) will be used, but in case the process is assigned a non-uniform frequency spec-
trum, that can be estimated during the calibration process, the following relationship can be
extracted:

�n =
√√√√ 1

N2

N−1∑
j=0

|Hj |2 (8)

Redundant measurements are an effective way to reduce the effect of noise. If the noise is
assumed Gaussian with zero mean and standard deviation �n, an effective way to reduce it is
increasing the number of measurements N . Then, since the system is linear we can just take it
into account substituting the measurements with their mean values, and the noise will reduce
with a factor 1/

√
N ,

�̃ = 1

N

∑
k

�k ⇒ 1

N

∑
k

(�k + H ∗ �k) = �̃ + H

N
∗ ∑

k

nk = �̃ + H√
N

∗ � (9)

3. INVERSE PROCEDURE

The inverse procedure presented aims at characterizing damage in a structure and determine
its extent (degree of degradation) and location. The procedure consists of two testing steps:
(1) to disturb a structure with a known excitation function (usually an impact loading described
by a delta function) and (2) to measure its response (transient time history or a waveform
representing the displacements, usually obtained by accelerometers) at one or more locations in
the structure. We assume that the dynamic behaviour of the structure in its intact and damaged
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states is predictable using a well-calibrated model. Then, the measured signal is processed to
solve the inverse problem, i.e. to determine the changes in the structure from its original state.
Since the entire inverse procedure is associated with forward problem solutions in each iteration
step, the rate of convergence depends on the complexity level of the forward formulation.

A GA search tool [11, 25] is used to minimize the discrepancy between the experimental
readings and the numerically predicted trial response, by means of a cost functional designed to
calibrate for coherent uncertainties and noise, and providing maximal robustness and sensitivity.
Thus, we focus on determining best cost functional for detecting damage from responses with
noise. Moreover, we propose and optimal choice of measuring points as well as time windows
and wavelet level filters for better sensitivity to noise effects. The criterion for this is chosen
in a rational way so as to maximize the POD.

3.1. Cost functional

The inverse problem of the defect search is carried out with an iterative strategy based on the
minimization of some discrepancy. The discrepancy is a vector of values or a function that can
be discretized (represented by a vector). Since two vectors cannot be compared directly, a scalar
number (called cost functional) is derived from them, in order to be able to minimize that
discrepancy. The goal of this work is to design that cost functional as well as the discrepancy
in such a way that its minimization can be carried out for the smallest possible defect and
including the largest possible magnitude of noise.

The readings from the sensors do not need to coincide with the measurements to analyse,
which are vectors that will be denoted by � for the theoretical or synthetic case, and �x

for the experimental case. For a good solution, several conditions can be desirable for the
measurements. Unlike the readings, the measurements should be calibrated magnitudes, so that
they gain independency from the ambient conditions during the experiment. They should also
be a dimensional, so as not to prejudice the numerical conditioning of the search algorithms.

A measurement
◦
� in the undamaged state of the specimen is defined in order to calibrate the

acquired information for some coherent noise and amplitudes. The measurement to analyse is
therefore defined from Equation (10) or (13) as

� = �− ◦
�

RMS(
◦
�)

(10)

where the RMS values are defined for a discrete function f in time domain f (ti) or frequency
domain F(�j ) at N sampling points as

RMS(f ) =
√

1

N

N−1∑
i=0

f (ti)2 =
√√√√ 1

N2

N−1∑
j=0

|F(�j )|2 (11)

A residual � is defined from the misfit or discrepancy �x − � between the measurements.
A filter w is included, which will be later defined for optimizing the residual,

� = w(�x − �) (12)

There are many options for designing a cost functional. The necessary conditions are that
a full coincidence of prediction and measurement (zero discrepancy) should coincide with the
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absolute minimum of the cost functional, and that of uniqueness of this minimum. The L-2
norm, in a standard metric Euclidean space of these residual vectors, is usually a good choice
of cost functionals, since it fulfils naturally the former conditions and is numerically smooth
and well conditioned. This quadratic or least-squares-type definition is meaningful in a prob-
abilistic sense, as well as in an algebraic sense as a measure of a distance between bad and
good results. The cost functional f or fitness function is chosen after a residual vector � of
size Ni as

f = 1

2
|�|2 = 1

2

1

Ni

Ni∑
i=1

�2
i (13)

It is useful to define an alternative version of the cost functional denoted as f l , with the
property of improving the sensitivity while approaching the optimum, just by introducing a
logarithm and a small value � to ensure its existence. This definition particularly enhances
the convergence speed when the minimization is tackled by with GA or other random search
algorithms (see Reference [26]),

f l = log(f + �) (14)

The parametrization can be defined within the subject of inverse problems as a description
or characterization of the sought information (i.e. damage characterization) with a reduced set
of variables. The issue of parametrization is complicated due to the relationship with many
considerations of the inverse problem. Many inverse problems are ill-posed: solutions may not
exist, they could be unstable and non-converging, or there may exist multiple solutions. This is
true especially when we are dealing with a large number of parameters. From the conceptual
point of view, it can be seen as the most powerful means of regularization of inverse problems,
since it provides a priori information in the form of strong hypothesis in the possible forms
of the sought defects. The choice of parameters has crucial implications in the convergence,
the sensitivity of the result and the decoupling of their dependence to the measurements.

To follow these considerations, a reduced set of parameters is designed by allowing a reduced
set of individual damages (allowing multiple defects, but limiting the number), each of them
described in a simplified way by their position and extent. The two coordinates for the position
are decoupled by using the x and y position of the damaged area and its extent 1 − �, where
� is the stiffness reduction factor. The parameters are denoted by a vector p of length Np.
The parameter that best describes the real defect is denoted by p̃,

p = {x1, y1, 1 − �1, x2, y2, 1 − �2, . . .} (15)

At this point, the inverse problem of defect evaluation can be stated as a minimization
problem, that can be constrained, as finding p such that,

min
p

f (p) or min
p

f l(p) (16)

3.2. Probability of detection

Three variables will be considered in the problem of maximizing the POD, the level of noise,
denoted by �n (regardless of whether it is simulated on the forces, measurements, or any other
way), the size of the defects, denoted by p and the cost functional that collects the effects of
those in a scalar f (p, �n), through the definitions above.
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In this procedure, we start assuming the case of only one possible position for the defect.
Two cost functionals for two independent cases is defined. First, if a damaged specimen with a
infinitesimal defect p̃ = p is tested, and it is assumed that the measurements contain no noise
(�n = 0), and two cost functionals f (p, �n) are evaluated, one for the correct parameter p̃ and
another without defect p = 0, a measure for the rate of variation of the range of values of f

with respect to some magnitude of the defect can be defined as f,p,

f,p = d2f

dp2
= lim

p→0
2

f (p, 0) − f (0, 0)

p2
(17)

For a larger defect p, that cost functional without noise effects will be called f d , and can be
approximated by the former, taking into account that f (0, 0) = 0,

f p = f (p, 0) = 0 + 1
2 f,pp2 + hot (18)

The reason that the first derivative is not considered is the quadratic nature of the cost functional.
Second, if a undamaged specimen (p̃ = 0) is tested with noise �n, the evaluation of one each
functionals with and without noise provide an approximation for its rate of variation with the
amount of noise, f,n, in a similar formulation,

f,n = d2f

dn2
= lim

�n→0
2

f (0, �n) − f (0, 0)

�2
n

, f n = f (0, �n) = 0 + 1
2 f,n�

2
n + hot (19)

The ratio between those derivatives gives the linearized (first order) approximation of the
relationship between the amount of noise and the size of the defect, which is a function of
the position of the defect, and the ratio p/�n becomes independent of the form of the cost
function f ,

f p

f n
� f,p

f,n

(
p

�n

)2

(20)

The POD is now defined as the probability that the alteration of the cost functional by the
defect is bigger than the effect of the noise on that cost functional, POD = P(f n � f p). If
the noise is assumed to be a stochastic process with a normal distribution, since f is a
sum of NmNt squares of normal processes (Nm is the number of measurements and Nt is
the number of timesteps when time is discretized), it holds a f n → 	
2 distribution with the
number of degrees of freedom D = NmNt and 	 a multiplicative constant. The 
2 distribution
can be approximated, if D>10, by a gaussian distribution N(�, �) with mean � = D −2/3 and
� = √

2D.
If f n is evaluated a single time, it will tend to give the mean value �′ of its random process

f n → 	N(�, �) = N(�̃, �̃). This allows to approximate the value of 	, and hence,

	 = f n

D − 2/3
⇒ �̃ = 	� = f n, �̃ = 	� = f n

√
2D

D − 2/3
(21)

Provided that the probability is P(z � x) = 	 = F(x) and F(x) = ∫ x

−∞ f (y) dy is the normal
cumulative distribution function with zero mean and standard deviation � = 1, whose inverse is
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x = G(	) = G(F(x)), the POD is,

POD = P(f n � f p) = F

[
f p − �̃

�̃

]
� F

[
D − 2/3√

2D

(
f,p

f,n

(
p

�n

)2

− 1

)]
(22)

p

�n

�
√√√√f,n

f,p

(
1 + G[POD]

√
2D

D − 2/3

)
(23)

The maximization of the POD is therefore equivalent to the minimization of p/�n, and in
the case of several possible defect positions, a minimax criterion (pessimistic) is introduced to
ensure that no defects are left undetected,

max POD ⇔ min

(
max

position

p

�n

)
(24)

A similar conclusion to that obtained in Equation (9) can be drawn for the ratio f,n/f,p

when the number of measurements is multiplied by a factor N , which can be proved to reduce
by a factor 1/

√
N .

3.3. Optimization of filters

In this study, the optimization of the filters for reducing noise effect is carried out with the
criterion of maximizing the POD.

The weight filter w is a user-selectable filter. The filter can be defined for giving more
weight on certain important frequencies, time windows or measuring points, while reducing or
eliminating the others. The benefit of this is that certain selections provide more sensitivity to
the defect and less sensitivity to the noise, while others provide the opposite, which would
damage the overall quality of the information available from the readings.

A discrete wavelet decomposition is introduced in order to separate the detail levels in the
signal and the time dimension. If the wavelet transform of a function WT(f ) provides a set of
detail coefficients c(ti , l), i = 1, . . . , Nt , l = 1, . . . , Nl , that allow to recover the original signal
by their inverse transform f (ti) = IWT(c(ti , l)) together with some approximation coefficients.
A rbio6.8 wavelet is used throughout, since it empirically seems to provide a better sen-
sitivity. The reason is probably the high time-resolution that it provides, as well as a mother
wave with a shape compatible to that of the recorded signal. The detail coefficients can be
used for defining the weighting filter w = {wm, wi, wl} by the composition of three filters wm

to select the measurement, wi to select the time window (that is defined for few points and
then oversampled), and wl to select the detail level, as

w(fm(ti)) = IWT(wmwiwlcm(ti, l)) (25)

Figure 1 illustrates a flow chart for optimal filter w computed by the finite element analysis
and GA applied in this study. Using w computed by optimization of the filter. The location
and extent of damage is finally determined by running GA at a second stage, as shown in
Figure 2.

Copyright � 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2006; 68:707–727



716 G. RUS ET AL.

Problem setup
Define

Measuring points
Define
Model

Define
Parametrization

Inverse Problem

f,n
Forward problem
Cost functional

Forward problem
Cost functional

p=0

f,p
σn=0

σn= ε

p = �·combinations

POD
p

GA w

wOptimum filter

Stop

Trial

σn

Figure 1. A flow chart for determining optimal filter wf /w� using the GA.
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Figure 2. A flow chart for determining location and extent of damage using wf /w�.

4. NUMERICAL EXAMPLES

4.1. Numerical model

A steel plate of dimensions 1 × 1 m and thickness 1 cm is tested. The boundary conditions are
clamped on two opposed sides as shown in Figure 3. An impact force is applied at the marked
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Figure 3. Numerical model of the steel plate.

point, and measurements are made at the 15 points distributed over a regular 3 × 5 mesh. The
impact load has a magnitude of 10 MPa and a duration of 2 ms, whereas the measurement
recording period is 100 ms.

Some assumptions are made for the simulation of the impactor and the receiver. The signals
generated by the impactor are described by prescribing the pressure boundary conditions qi(x, t).
The validity of this assumption was studied by Rus et al. [15] by comparing the results between
the two extreme cases of Neumann and Dirichlet boundary conditions. This stress is assumed to
be distributed uniformly over the area of contact. Thus, the impact pressure can be prescribed
by multiplying the constant pressure qi and its phase or time delay (t),

qi(x, t) = qi(t) (26)

The output signal from the receiver is assumed to be the time average of displacements (or
accelerations) of the points on �n, the area of contact between the specimen and the receiving
transducer. Shear stresses cannot be sustained on the specimen–impactor or the specimen–
receiver boundaries, which means that only normal components are taken.

ui(t) =
∫

�n

ui(�, t) d� (27)

In order to determine optimal mesh size and time step for GA, the estimated errors are
computed for different finite element mesh refinements and time steps as shown in Figure 4.
It can be observed that the combination of a time step of 0.4 ms and a mesh discretization in
16 × 16 elements gives an error sufficiently below 5%.

Figure 5 shows the deformed shapes for different time steps of plates with undamaged and
damaged areas. From the figure we can observe the different deformed shapes between two
plates with undamaged and damaged areas. Notice the time delays by comparing with the
waveforms shown in Figure 6. This represents the time required for the shock wave to travel
the distance between the loading and measuring points. It can be also observed that the wave
of plate without damaged area arrives at an earlier time, and the difference becomes more
dramatic as time increases. This is predictable because the stiffness of undamaged plate in the
axial direction is higher than that of damaged plate, and consequently the wave propagation
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Figure 4. Evolution of estimated relative error (%) for different time
steps and divided mesh numbers of plate.

speed increases in that direction. An increased wavespeed results in shorter arrival times and
smaller wavelengths.

A sample of the corresponding signal samples for each of the two noise models is presented
in Figure 7. It can be noted that the nature of the noisy signal is very different, since the
specimen subject to boundary condition force noise acts as a low pass filter, eliminating the
high frequency components, but the noisy data is in average more deviated from the original,
as occurs in real experiments. This effect cannot be removed easily by filtering the signal,
but requires of the proposed calibration scheme as well as of the cost functional minimization
strategy to be overcome.

4.2. Optimal damage detection

4.2.1. Optimal filtering. As mentioned earlier, the proposed filter for reducing the noise effect
and improving the sensitivity is composed by three superposed filters: one for the time window,
which is defined by cubic interpolation from five points with values 1 or 0; another for
five levels of the rbio6.8 wavelet decomposition, also with 1/0 values; and another for
selecting a fixed number of measurement points out of the 15 possible ones described in the
geometry. Figure 8 shows several examples of the effect of selecting different combinations
of measurement points on the ratio p/�n, which gives a relative measure of the size of the
defect that can be detected, and therefore an indication of the POD. An example of the wavelet
decomposition is given in Figure 9.

Now, a standard GA is implemented for the search of the defect and the optimal filter.
This is done first by considering only the wavelet-level selection and time windowing, then by
considering only the selection of the measurement, and finally by considering all together. In
GA, both real coded and bitstring coding algorithms have been used, leading the latter to better
results. The characteristic parameters are a crossover fraction of 0.6 and a migration fraction
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Figure 5. Deformed shapes at different time steps of plates with undamaged and damaged areas.

0 0.02 0.04 0.06 0.08 0.1
1.5

1

0.5

0

0.5

1

1.5

Time, t (ms)

D
is

pl
ac

em
en

ts
, ψ

 (
m

m
)

Undamaged
Damaged

−

−

−

Figure 6. Dynamic displacements of two steel plates with undamaged and damaged areas.

Copyright � 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2006; 68:707–727



720 G. RUS ET AL.

0 20 40 60 80 100
−5

0

5

S
ig

na
l, 

ψ
 (

m
m

)

Measurement at ( 0.25, 0.00)

Exp Syn ExpDefect SynDefect

0 20 40 60 80 100
−5

0

5

S
ig

na
l, 

ψ
 (

m
m

)

Time, t (ms)

Figure 7. Sample signals for each noise model. Signal with and without noise for undam-
aged and damaged specimen. (Above) Noise as boundary condition force. (Below) Noise

as recorded displacement perturbation.

of 0.4. The number of generations is 100, and the number of individuals in the population
is 30. For the optimization of the POD, the term fd/fn is approximated by finite differences
using �n = 0.0001 and �p = 0.02.

The wavelet level and time window optimization is performed in Figure 10. Binary coding
is used in this case, where 5 bits are used for the five wavelet levels, and 5 bits for the five
reference points in time. The results show that the last 40% of the time tends to be removed
in all cases, since it provides more noise. In some cases the window around 20 ms is also
removed. Wavelet level 5 is always removed, also because it concentrates most of the noise
effect, and is less sensitive to the position of the defect, and sometimes also levels 2 and 4.

Figure 11 shows a similar optimization for selecting the optimum position of the measure-
ment points. A binary coding is also used, with the minimum necessary number of bits to
count all the possible combinations of sensor collocations. Figure 12 combines the two former
optimizations simultaneously, giving a slightly different result that in the independent case.
A binary coding is used with the sum of the former number of bits. Some minor variations
are observed in the wavelet and time window, but bigger changes are found in the measure-
ments selection, especially when more measurements are considered. This reflects that there are
several combinations of sensor collocations that provide a similar improvement of the POD.

It is interesting to note that from all the examples shown so far, there do not seem to
be simple rules for the optimum collocation of sensors, but the improvement in the damage
that can be detected is important. This suggests that a numerical optimization of the sensor
collocation, using the principles proposed here, pays back.

4.2.2. Final damage search. Figure 13 studies the effect of the number of measurements as
well as the effect of the optimization of the weight filter on the search of single defect. The
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figure represents a map with the value of the cost functional when a trial defect is tested on
each of the 4 × 4 possible damaged areas, using the correct value of it. A noise of �n = 0.5
(50%) and of force type is included in all cases. In the search procedure, a binary coding has
been also adopted, with a gene defined with 10 bits for one defects and 20 for two, in which
2 bits define the horizontal position, 2 bits the vertical, and 6 bits the damage factor, which
allows a range of 64 different values. The use of the optimum filter improves the contrast
between the cost functional on the correct and incorrect trial points, which is indirectly a
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Figure 13. Searching of single damage. (Left) Without weight filter. (Right) With optimum filter.
(Above) Case of 1 measurement. (Middle) Case of 2 measurements. (Below) Case of 4 measurements.

reason for improving the POD. It is observed that the overall value of the cost functional also
decreases and is smoother, which also contributes to the numerical convergence of the search,
and reduces the risk for falling in false local minima. Figure 14 shows the evolution of the
fitness of the search as the generations progress.

Finally, in the case of optimal filtering, the GA fully recover the location and extent of the
defect despite the noise of 50%, whereas without filter, it is found with a relative error of 3%.
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4.3. POD for different filters

The POD is estimated from a simulation of the noisy signal to estimate the mean noise effect
fn and the effect of all the 4 × 4 possible defects fp processed from Equation (22). The
results are shown in Figure 15 for the case of no weight filter, wavelet filter, position filter
and optimum filter to show the improvement. An increase factor between 3 and 5 is observed
in the size of the minimum damage that can be detected if the optimum filter is applied. This
improvement is even significant if a partial filter is applied.

5. CONCLUSION

This paper presents an effort to integrate all the information recorded in the measurements
from impact testing in a generalized inversion scheme. The goal of this study is to avoid
overlooking rich data that may be crucial to combat the noise that hide difficult defects. The
key principles of the search algorithm are, first, an advanced FEM model to predict the dynamic
behaviour of plate under the impact loading; second, the definition of the cost functional to
be minimized using GA; and third, a reduced set of output data (parametrization), used as a
strong regularization technique to overcome noise problems.

This data is intended to be used in the most efficient form. For that purpose, it is processed
via wavelet decomposition and every component is weighted to select the most efficient ones,
from the point of view of maximizing the POD. The POD is approximated from several
singular evaluations of the cost functional, and is therefore dependent on the weight filter. This
dependency allows to maximize the POD.

Numerical parametric examples shows that the optimal filter proposed in the study allows
to find damage of a magnitude several times smaller. A suitable parametrization is essential to
give to robustness to the search and the solution, and the proposed methods allow to easily find
small damage at noise levels above 50%. The proper choice of measurement points provides a
similar improvement in the search sensitivity. Since there do not seem to be simple rules for
this choice, a numerical optimization of this choice is proved in this paper to be advantageous.

ACKNOWLEDGEMENTS

This work was supported by the Korea Research Foundation Grant KRF-2005-M01-000-10230-0.

REFERENCES

1. Yang JCS, Tsai T, Pavlin V, Chen J, Tsai WH. Structural damage detection by the system identification
technique. Shock and Vibration 1985; 55:57–68.

2. Rizos PF, Aspragathos N, Dimarogonas AD. Identification of crack location and magnitude in a cantilever
beam from the vibration modes. Journal of Sound and Vibration 1990; 138:381–388.

3. Ruotolo R, Shifrin EI. Natural frequencies of a beam with arbitrary number of cracks. Journal of Sound
and Vibration 1999; 223(3):409–423.

4. Morassi A, Rollo M. Identification of two cracks in a simply supported beam from minimal frequency
measurements. Journal of Sound and Vibration 2001; 7:729–739.

5. Boström A, Wirdelius H. Ultrasonic probe modeling and nondestructive crack detection. Journal of the
Acoustical Society of America 1995; 97:2836–2848.

6. Suh MW, Shim MB, Kim MY. Crack identification using hybrid neuro-genetic technique. Journal of Sound
and Vibration 2000; 238(4):617–635.

Copyright � 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2006; 68:707–727



OPTIMIZED DAMAGE DETECTION OF STEEL PLATES FROM NOISY IMPACT TEST 727

7. Mares C, Surace C. An application of genetic algorithms to identify damage in elastic structures. Journal
of Sound and Vibration 1996; 195:195–215.

8. Friswell MI, Pennyb JET, Garvey SD. A combined genetic and eigensensitivity algorithm for the location
of damage in structures. Computers and Structures 1998; 69:547–556.

9. Chou JH, Ghaboussi J. Genetic algorithms in structural damage detection. Computers and Structures 2001;
79:1335–1353.

10. Krawczuk M. Application of spectral beam finite element with a crack and iterative search technique for
damage detection. Finite Elements in Analysis and Design 2002; 38:537–548.

11. Lee SY, Wooh SC. Waveform-based identification of structural damage using the combined fem and
microgenetic algorithms. Journal of Structural Engineering (ASCE) 2005; 131(9):1464–1472.

12. Kimoto K, Hirose S. A numerical modelling of contact sh-wave transducers. In Review of Progress in
Quantitative Nondestructive Evaluation, Thompson DO, Chimenti DE (eds), vol. 20. 2000.

13. Schmerr LW. Fundamentals of Ultrasonic Nondestructive Evaluation. Plenum Press: New York, 1998.
14. Zhao J, Gaydecki PA, Burdekin FM. A numerical model of ultrasonic scattering by a defect in an immersion

test. Ultrasonics 1995; 33(4):271–276.
15. Rus G, Wooh SC, Gallego R. Analysis and design of wedge transducers using the boundary element method.

Journal of Acoustic Society of America 2004; 115:2919–2927.
16. Addison P. The little wave with the big future. Physics World 2004; 35–39.
17. Kim IK, Kim YY. Damage size estimation by the continuous wavelet ridge analysis of dispersive bending

waves in a beam. Journal of Sound and Vibration 2005.
18. Li B, Chen XF, Ma JX, He ZJ. Detection of crack location and size in structures using wavelet finite

element methods. Journal of Sound and Vibration 2004.
19. Messina A. Detecting damage in beams through digital differentiator filters and continuous wavelet transforms.

Journal of Sound and Vibration 2004; 272:385–412.
20. Yang WX, Hull JB, Seymour MD. A contribution to the applicability of complex wavelet analysis of

ultrasonic signals. NDT&E International 2004; 37:497–504.
21. Liu PL, Chen CC. Parametric identification of truss structures by using transient response. Journal of Sound

and Vibration 1996; 191(2):273–287.
22. Tarantola A, Valette B. Inverse problems = quest for information. Journal of Geophysics 1982; 50:159–170.
23. Au FTK, Cheng YS, Tham LG, Bai ZZ. Structural damage detection based on a micro-genetic algorithm

using incomplete and noisy modal test data. Journal of Sound and Vibration 2003; 259(5):1081–1094.
24. Bathe KJ. The Finite Element Procedures in Engineering Analysis. Prentice-Hall: Englewood Cliffs, NJ,

1996.
25. Goldberg D. Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley Publishers:

Reading, MA, 1989.
26. Gallego R, Rus G. Identification of cracks and cavities using the topological sensitivity boundary integral

equation. Computational Mechanics 2004; 33:154–163.

Copyright � 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2006; 68:707–727


