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Abstract

The purpose of this work is to study a class of inverse problems that arises in solid mechanics areas such as quantitative

non-destructive testing (QNDT) or shape optimization. The technique is based on the boundary integral equations (BIEs) used

in the classical boundary element method (BEM), which are differentiated semi-analytically with respect to variations of the

boundary geometry and used in an iterative search algorithm. The extension of this strategy is presented here for the case of elasticity in

dynamics using the displacement or singular BIE, which allows to apply this strategy to QNDT problems based on vibrations or

ultrasonics.

The central point is the evaluation of the capability of solving numerically a QNDT problem such as the location and characterization

of cavity and inclusion-type defects by measuring the dynamic response at an accessible boundary of the specimen. To test this capability,

comprehensive convergence tests are made for the badness of the initial guess, the amount of supplied measurements, and simulated

errors on measurements, geometry, elastic constants and frequency.
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PACS: 43.40.L; 81.70

Keywords: Sensitivity; Identification inverse problem (IIP); Optimization algorithms; Quantitative non-destructive evaluation (QNDE); Boundary element

method (BEM); Boundary integral equations (BIEs); Parametrization
1. Introduction

A direct problem can be stated as the calculation of the
response (for instance, certain displacements u and trac-
tions q) in a specific body defined by its geometry O,
mechanical properties (k), physical model (operator L) and
boundary conditions (some known values of u and q). In
opposition to this, an inverse problem (IP) is one in which
part of the information above is unknown. If a generic
direct problem is defined as

LðkÞu ¼ q on O (1)

different IPs can be stated depending on the nature
of the unknown (see the classification by Kubo [1]). To
find the missing information, additional data from the
e front matter r 2006 Elsevier Ltd. All rights reserved.
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response have to be provided, besides the boundary
conditions. This additional data uex or qex are obtained
experimentally at some points of the domain or its
boundary G.
This paper is aimed at the solution of the so-called

identification inverse problem (IIP), where the unknown
is a part of the domain. This problem arises in many
branches of science and engineering, but the interest
of the authors is mainly the development of computerized
non-destructive techniques, aimed at the detection of flaws
inside a unreachable part of a mechanical or structural
element.
A general IP can be written alternatively,
(1)
 as the solution of a set of implicit nonlinear equat-
ions called observation equations, that relate some
properly chosen design variables Pg and the experimental
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data, vex,

F ðPgÞ ¼ vex
(2)
 or as an optimization problem, where the residual of the
former set of equations is minimized,

min
Pg

1
2
kF ðPgÞ � vexk2.
In both cases, the most time-efficient solution algorithms
use sensitivity information (gradient), which should be
computed accurately and efficiently.

To perform this computation, besides the obvious but
time-consuming finite differences approach, two analytical
tools are available: direct differentiation method and
adjoint state approach. The first one was used by
Nishimura et al. [2], Meric et al. [3], Aithal and Saigal
[4], Mellings and Aliabadi [5], Lee and Kwak [6] and Rus
and Gallego [7]. It is based on the direct differentiation of
the equations with respect to the geometrical parameters
which define the unknown flaw. Mukherjee et al. [8–10]
develop the direct differentiation formulation for the
indirect boundary contour method for 3D static elasticity,
first for boundary and then for internal points, and obtain
moderately good convergence.

On the other hand Bonnet et al. [11–13] applied the
adjoint state approach to the boundary integral equat-
ions (BIEs) to find the sensitivity to geometry variation
of a cavity in bidimensional elasticity and, later, in
elastodynamics [14,15]. The same approach was used by
Burczynski et al. [16] and compared to the direct
differentiation.

The IP of locating a cavity using elastodynamic
measurements has been solved using the adjoint state
approach for the geometrical sensitivity and the Broyden–
Fletcher–Goldfarb–Shanno (BFGS) nonlinear solution
method for the minimization of the quadratic cost
functional by Guzina et al. [17] for the case of 3D
elastodynamics, attaining convergence for a single elipsoi-
dal cavity.

In this paper, the sensitivity boundary integral equation or
variation boundary integral equation developed by Rus [18]
is used to supply the necessary geometrical gradient for the
search algorithm used for solving a complete IIP. This
method for determining the geometrical sensitivity is
preferred above the adjoint state approach due to the
much lower requirements on discretization density, which
extends considerably the time of convergence. The accu-
racy and rate of convergence of the resulting algorithm is
exhaustively checked. The sensitivity boundary integral

equation provides the sensitivity of displacements and
tractions in an harmonic elastodynamics state due to
changes in the geometry of an internal cavity or inclusion.
This equation is obtained by a series expansion and a
linearization, following a procedure first proposed by
Tanaka et al. [19] for potential problems, and Aithal
et al. [4] for static elasticity. In these papers some important
terms where missing and a first corrected formulation was
presented for potential problems by Gallego et al. [20] in
1998 and by Rus et al. [21] in 2005. The latter paper
addresses the detailed description of the present semi-
analytical method for sensitivity computation as well as a
comparative study between the performance obtained by
the semi-analytical method and by finite differences. The
final equation should be equivalent to that obtained by
Bonnet et al. [11] using material differentiation, but no
attempt has been made yet to prove this.

2. Solution of the IP

Given the definition of IP as the characterization of the
output data, which in the IIP are the parameters that define
the location and shape of defects inside a specimen, using
as input data the mechanical model of the specimen as well
as a set of measurements or responses of the faulty
specimen measured at an accessible boundary, the general
scheme in Fig. 1 for the solution of IP can be established
based on the search of the correct parameters that
minimize the discrepancy between computed and measured
responses.
The first point to be addressed is the provision of the

gradient of the cost functional or the residuals, which is
done by a semi-analytical sensitivity of the BIE that
governs the elasticity model of the specimen. The following
point describes the computational solution of the equa-
tions. Next, the parametrization is addressed as the
procedure to characterize the defects, being a critical point
for the definition and robustness of the output of the
problem. The last theoretical point regards the search and
minimization algorithm.
Several tests are carried out. First the partial results of

the sensitivity computation. Then, the convergence of the
search given a complete IIP is verified.

3. Sensitivity BIE

The solution of the ensuing sensitivity boundary integral

equation (or duBIE) will provide the values of the
sensitivities of displacements du and tractions dq on the
boundary with respect to a change of the geometry dx. The
sensitivity of a generic cost or objective functional J
defined as

JðGcÞ ¼

Z
Gq

juðuÞdGþ
Z
Gu

jqðqÞdGþ
Z
Gf

cðxÞdG (2)

which can be computed by applying the chain rule,

dJðGcÞ ¼

Z
Gq

qju

qu
dudGþ

Z
Gu

qjq

qq
dqdGþ

Z
Gf

qc
qx

dxdG

(3)

assuming that the fractions of the boundary Gq, Gu and Gf

are accessible, and therefore fixed.
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Fig. 1. General scheme of the solution of inverse problems by search of parameters to minimize the measurement discrepancy.
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The goal becomes therefore to calculate the variation of
the boundary integral equation uBIE with respect to
changes in the geometry of the boundary G. The
geometrical change is described as an infinitesimal field
dxðxÞ ¼ dxiðxÞ, such that the coordinates of a point x ¼ xi

will change after the perturbation to ~xi ¼ xi þ dxiðxÞ. Note
that x is a generic point on the boundary or/and inside O.
This fact, among others, was overlooked in the cited
previous works.

In a domain O bounded by G, the displacement integral
equation (or uBIE, see [22]) can be written as

ci
kðyÞukðyÞ þ

Z
G
½qi

kðx; yÞukðxÞ � ui
kðx; yÞqkðxÞ�dGðxÞ ¼ 0,

(4)

where ukðxÞ is the kth component of the displacement
vector in the actual state at the observation point x ¼ xj ;
qkðxÞ ¼ sjkðxÞnjðxÞ the traction in the actual state at point
x. sjkðxÞ is the stress tensor and nj the outward normal.
ui

kðx; yÞ is the kth component of the displacement vector at
the observation point x due to a point load applied in
direction i at the collocation point y. The expression for this
fundamental solution for two-dimensional harmonic elas-
todynamics is readily available from the literature (for
example [18]). qi

kðx; yÞ ¼ si
lkðx; yÞnlðxÞ is the traction of the

fundamental solution and ci
k the free term whose value

depends on the position of the collocation point. Thus,
ci

kðyÞ ¼ di
k (Kroenecker delta) if y 2 O; ci

kðyÞ depends on the
geometry of the boundary at y if y 2 G, and is such that
ci

kðyÞ ¼
1
2
di

k when the boundary is smooth (continuous
normal) at y; ci

kðyÞ ¼ 0 otherwise.
The derivation of the proposed sensitivity BIE follows
these steps:
(1)
 The displacement integral equation is established both
for the actual domain, and for the perturbed one, with
the observation point at the interior of the domain (i.e.
y 2 O but yeG).
(2)
 The variables in the last one are expanded as series in
terms of the infinitesimal perturbation.
(3)
 Terms higher than linear are neglected and the integral
for the actual domain is subtracted.
(4)
 The ensuing integral equation is taken to the boundary
by a careful limiting process as done in the standard
boundary integral method.
3.1. Variation of the integral equation

Consider Eq. (4) for a domain point y, i.e., one within the
body O.

uiðyÞ þ

Z
G
½qi

kðx; yÞukðxÞ � ui
kðx; yÞqkðxÞ�dGðxÞ ¼ 0. (5)

The displacements and tractions will change to ~uið ~xÞ and
~qið ~xÞ when the geometry is perturbed to ~O. We now define
the variation or sensitivities of displacements and tractions

dui and dqi from

~uið ~xÞ ¼ uiðxÞ þ duiðxÞ, (6)

~qið ~xÞ ¼ qiðxÞ þ dqiðxÞ. (7)

Note that these variations are material, in the sense that
they include the change due to the modification of the
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Table 1

Continuity requirements for each variable at the collocation point

Variable In uBIE In duBIE

uk C0;a C0;a

qk Bounded Bounded

skl – C0;a

dxl – C1;a

dul – C0;a

dql – C0;a

dskl – –

–, means no conditions to fulfill and C1;a, means the Hölder condition,

with 0pao1. This implies that if uj 2 C1;a, then

ujðxÞ ¼ ujðnÞ þ uj;hðnÞðxh � xhÞ þOðr1þaÞ.
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geometry (O to ~O), as well as that of the change in the point
of computation (x to ~x).

To find the equations that these variations fulfill, the
integral equation is written for the perturbed domain,

~uið~yÞ þ

Z
~G
½qi

kð ~x; ~yÞ ~ukð ~xÞ � ui
kð ~x; ~yÞ ~qkð ~xÞ�d ~Gð ~xÞ ¼ 0. (8)

The kernels in this equation are computed at perturbed
points. It is simple to relate them with the kernels at the
actual points by a Taylor expansion:

ui
kð ~x; ~yÞ ¼ ui

kðx; yÞ þ
qui

k

qxm

dxm þ
qui

k

qym

dym þ h:o:t.

¼ ui
kðx; yÞ þ ui

k;mdrm þ h:o:t. ð9Þ

accounting for the radial nature of the kernels, where the
comma stands for derivation with respect to the coordi-
nates of the observation point x, and drm ¼ dxm � dym, and
where h:o:t: stands for higher order terms.

For the kernel qi
kð ~x; ~yÞ the variation of the normal and of

the length of boundary has to be taken into account as
shown in the Appendix. Since qi

kð ~x; ~yÞ ¼ ~si
jkð ~x; ~yÞ ~njð ~xÞ, a

similar procedure as above yields,

qi
kð ~x; ~yÞ ’ qi

kðx; yÞ þ si
jkðx; yÞdnjðxÞ

þ si
jk;mðx; yÞdrmnjðxÞ þ h:o:t. ð10Þ

Finally, the integral of any function F along the perturbed
domain can be related to the actual domain byZ
~G

F d ~G ¼
Z
G

F ð1þ dSÞdGþ h:o:t. (11)

where dnj and dS are given by the formulas in the
Appendix.

Collecting all the expressions above, substituting in the
integral Eq. (8), subtracting Eq. (5), and neglecting terms
higher than linear, the following integral equation is
obtained:

duiðyÞ þ

Z
G
½qi

kðx; yÞdukðxÞ � ui
kðx; yÞdqkðxÞ�dGðxÞ

¼

Z
G
f½ui

k;mðx; yÞqkðxÞ � si
jk;mðx; yÞnjðxÞukðxÞ�drm

þ ½ui
kðx; yÞqkðxÞ � qi

kðx; yÞukðxÞ�dSðxÞ

� si
jkðx; yÞukðxÞdnjðxÞgdGðxÞ. ð12Þ

This integral equation relates the variation (dx and drm) of
a domain point x with the variation of displacements and
tractions (duk and dqk) at the boundary points, and the
variation of the geometry of the boundary (dnj and dS).

The main advantage is that the field can be manipulated
before defining any parametrization. This allows to define
and implement the main sensitivity calculation with
complete generality with respect to the choice of para-
metrization. In particular, the variation equation will only
depend explicitly on the terms dxi and qdxi=qxm.
3.2. Limit to the boundary

The integral equation obtained in the previous section
would be useful to compute sensitivities at internal points,
but its boundary counterpart will provide the relationship
between the sensitivities of displacements and tractions
along the boundary only and the variation of the geometry.
In order to perform the limit, a point y at the boundary

is considered, and the actual boundary is distorted (see
[22]), which allows the usual decomposition of the
boundary integral of any integrand F,Z
G

F dG!
Z
G�Ge

F dGþ
Z

Se

F dG (13)

and the limit to the boundary of each term in Eq. (12) can
be computed. The first integral converges in all cases, while
the second yields a free or a null term [22]. Since the kernel
is singular, to yield a finite integrand the source in the
integrands have to be expanded to the proper order.
Provided the continuity and derivability conditions in
Table 1 are fulfilled, as proved by Rus [18,21], the variation

boundary integral equation for the displacements (or duBIE)
is finally derived, which has the following expression for a
smooth boundary collocation point:

1

2
duiðyÞ þ

Z
G
½qi

kðx; yÞdukðxÞ � ui
kðx; yÞdqkðxÞ�dGðxÞ

¼

Z
G
f½ui

k;mðx; yÞqkðxÞ � si
jk;mðx; yÞnjðxÞukðxÞ�drm

þ ½ui
kðx; yÞqkðxÞ � qi

kðx; yÞukðxÞ�dSðxÞ

� si
jkðx; yÞukðxÞdnjðxÞgdGðxÞ. ð14Þ
3.3. Numerical evaluation

Standard boundary element techniques are employed to
solve the duBIE. The boundary is divided into a number of
elements, and within each one the geometry, displacements,
tractions and their variations are interpolated quadrati-
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cally, where fn are standard quadratic base functions:

x ¼
X3
n¼1

fnx
n; u ¼

X3
n¼1

fnu
n; q ¼

X3
n¼1

fnq
n,

du ¼
X3
n¼1

fnu
n; dq ¼

X3
n¼1

fnq
n.

Using these standard elements, the continuity conditions
required in Table 1 are fulfilled. These results show that the
collocation points for the duBIE can be placed at the
standard locations. Nevertheless, to simplify the computa-
tion, at corners, multiple collocation inside the adjacent
elements are performed in the numerical tests.

4. Parametrization

In an IP, information such as the size and orientation of
defects is sought based on the known forward problem
(also known as direct problem). Finding such information
is possible by first introducing some a priori information
and setting the scope by means of a proper parametriza-
tion. This procedure is usually called regularization.

A simple strategy to characterize the system using a set
of parameters ðPgÞ with a reduced number of variables (g).
Choosing parameters is a critical step influencing the
convergence, the sensitivity of the result and the decoupling
of their dependence from the measurements.

The variation of the geometry during a step in the iterative
inverse solution is represented by a so-called parametrization,
which stands for a representation of the geometrical definition
by a finite set of values. A generic and exact representation
would need an infinite number of parameters. When the
problem is discretized for the sake of solving it numerically,
the geometry is then defined by some nodal coordinates.
Taking as parameters each of those nodal coordinates, would
yield the complete parametrization of this geometry, invol-
ving a finite but large number of data.

Many IPs are ill-posed: solutions may not exist, there
may exist multiple solutions, they could be unstable and
non-converging. The used iterative numerical methods for
highly nonlinear and ill-conditioned equations they deal
with are never guaranteed to converge, but the ‘‘prob-
ability’’ of convergence highly depend on the number of
parameters to search. This ill-conditioning is rooted in the
physical meaning of the problem, so this difficulty cannot
be avoided by purely mathematical manipulations. Instead,
some physical pieces of a priori information have to be
provided, and this is called regularization. A drastic
regularization is provided by a correct choice of parame-
trization, consisting on reducing the number of parameters
by expressing the geometry by a fewer number of data.

4.1. Geometry variation field

The variation of the geometry dx previously defined is
modelled as
dx ¼ Yigðx; dPgÞ, (15)

where Pg represents a finite set of parameters that
characterize the variation of the geometry, and Yig is a
parametrization matrix. A more advanced concept is
adopted, which was first put forward by Gallego and
Suárez [23]. It consists in defining directly the modification
field instead of the geometry, after taking advantage
of the fact that no parameterization of the geometry of
the boundary is needed, but only of its variation. This
means applying a deformation field to some initial
geometry (as complicated as you want) that is capable of
moving it until any possible solution. Now, it is this field
which is defined by a set of parameters (for example a
linear deformation field that in 2D is defined by six
parameters, which has been used by Gallego et al. [7,24]).
This field is only non-zero for the sought part of the
geometry (the flaw or the zone to be optimized). One
reason to support this choice of deformation field is the
congruence of the sense of the derivative of the field, not
only on the boundary but in its vicinity. Another reason is
that a field can be applied to any geometry without a
change of parametrization.
At a certain step k in the iterative optimization

procedure, there are two options in the definition of the
parametrization matrix,

Incremental parametrization: Using the observation
equation approach, in which the only information used
for a step k is the setup in step k � 1, one may apply to the
geometry k � 1 a parameter set that will only last one
iteration, and that will start and be applied to the geometry
k � 1:

xk
i ¼ xk�1

i þ dxk
i ðx

k�1Þ,

dxk
i ¼ Yigðx

k�1ÞdPg.

Global parametrization: If the iterative method is more
complicated one may need more information than just the
last step. Therefore one may not use a one step parameter
as before, but some history. It is possible to store artificially
the necessary information, but there is a conceptually
clearer procedure, which is to use a parameter that evolves
throughout the iterative method. This parameter will be
calculated from the initial geometry 0. This allows the
parameter to be treated independently, as a black box, by
the optimization algorithm

xk
i ¼ x0

i þ Dxk
i ðx

0Þ,

Dxk
i ¼ Yigðx

0ÞPg.

The global parametrization is more convenient for global
optimization algorithms since they require information
about previous steps (during updates or line searches, for
instance), and in the case of a Hessian update method. The
incremental parametrization gives more flexibility since it
only regards the last step in order to construct a new field,
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besides breaking the limitations of the initial configuration.
The latter strategy is adopted here.

There are two main ways to define the variation field. On
one side, it can be defined from the nodal values and
interpolated using the same spatial base functions as the
numerical method, dx ¼

P
dxifi. Alternatively, it can be

evaluated at all the requested points, dx ¼ dxðxÞ. The latter
method has proved a better response, and is used in the
sequel.
4.2. Linear deformation field

There is a great freedom in the choice and invention of
parametrizations. The most usual ones are based on a
definition of the complete geometry by splines of all kinds
and orders (in aeronautical shape optimization, usually
cubic B-splines, NURBS [25] or Bezier-curves [26]). In
identification problems, the geometry is usually defined by
simple geometrical entities, in turn defined by a few
parameters (like ellipses defined by the coordinates of the
center, the axes length and an angle of orientation in
[27,28,5]).

A linear variation field is described by a constant
deformation tensor (two parameters) plus a displacement
of the field (four parameters making a total of six). A
definition of more physical meaning, in the sense that it
comes from a deformation tensor, is the following:

Y6
ig ¼

1 0 x2 x1 x1 x2

0 1 �x1 x2 �x2 x1

" #
,

where x ¼ xreal � xcg (x with respect of the centroid of the
flaw), i is the index for the direction and g is the index for
the parameter, which gives each one a clear sense,

Pg ¼

dx
cg
1

dx
cg
2

do

d�m

d�0

d�12

2
666666666664

3
777777777775

¼

first coordinate of the centroid of the flaw

second coordinate of the centroid of the flaw

angle of rotation

spheric strain

horizontal elongation

distortion

2
666666666664

3
777777777775
.

4.3. Quadratic deformation field

By expanding the order of the linear variation field up to
the second order, we obtain the following base with 12
parameters:

Y12
ig ¼

1 0 x1 0 x2 0 x1x2 0 x2
1 0 x2

2 0

0 1 0 x1 0 x2 0 x1x2 0 x2
1 0 x2

2

" #
.

4.4. Numerical evaluation

After substituting the desired parametrization dxi ¼

YigdPg into the geometrical sensitivity expressions (Eqs.
(23)), the following expressions are derived:

dri ¼ ðYigðxÞ �YigðxÞÞdPg,

dni ¼ titmtl�mkYkg;ldPg,

dS ¼ tktlYlg;kdPg. (16)

Substituting Eqs. (16) into (14), the system of sensitivity
equations can be written as

ci
kdukðnÞ þ

Z
G
½si

jkðx; nÞnjðxÞdukðxÞ � ui
kðx; nÞdqkðxÞ�dGðxÞ

¼gUi
gðnÞdPg,

gUi
gðnÞdPg

¼ �

Z
G
½ðsi

jk;mðx; nÞnjðxÞukðxÞ � ui
k;mðx; nÞqkÞdrmðx; nÞ

þ ðsi
jkðx; nÞnjðxÞukðxÞ � ui

kðx; nÞqkÞdSðxÞ

þ si
jkðx; nÞukðxÞdnjðxÞ�dGðxÞ. ð17Þ

The discretization of the variation BIE (17), yields the
following expression in matricial form:

Hdu�Gdq ¼ DdP; D¼gUi
gðxÞ,

where du and dq are the displacement and stress variation
vectors and dP is the parameter set variation. H and G are
identical to the system matrices in the forward problem. D
is a matrix that groups the rest of the integrals.
The application of the boundary conditions yields the

same coefficients of the system matrix A as the forward
problem, since the prescribed values have zero variation.
These variations are therefore not unknowns, as if they
were prescribed:

Adv ¼ DdP,

where dv groups the non-prescribed terms of du and dq in
the sequel, as done in the BEM. The solutions of the latter
system for each column of D can be performed and
grouped into J, called jacobian, as

dv ¼ JdP ) J ¼ fjigg ¼
dvi

dPg

� �
.

From a computational point of view, this procedure is
cheap since the system matrix A is already computed and
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factorized from the forward problem, so the remaining
operations are the sequentia back and forward substitu-
tions of the columns of D.
5. The solution of the IP

The used solution strategy for the IP, stated as the
computation of the parameters that best adjusts the
response prediction from a numerical model to the real
measurements, and formulated as a minimization problem
of a cost functional J for the parameters Pg that
characterize the defect. For that purpose, a residual vector
R ¼ fRig is defined to represent the discrepancy in the
adjustment.

5.1. Residual

We introduce the residual vector R in order to quantify
the discrepancy between the measurements and theoretical
predictions. While the prediction is based on a set of g

parameters Pg, the ideal measurement data can be denoted
by a corresponding best adjusted set Pr

g where the
superscript r denotes real defects:

RiðPgÞ ¼ viðPgÞ � vex
i , (18)

where vi are the ith response to be measured (either
displacements or tractions depending on the boundary
conditions), first for the computed case viðPgÞ, and second
for the experimental measurements vex

i .

5.2. Cost functional

A cost functional J is defined in terms of the former
residual R in a quadratic sense, which is also a least squares
sense. This definition is meaningful from the statistical
point of view, as well as from theory of linear algebra, since
is minimizes distances in an Euclidean sense. The cost
functional is hence defined as in Eq. (19) for the case of the
discrete frequency domain:

J ¼ 1
2
RTR ¼ 1

2
kRk2, (19)

where T stands for the transpose in vectorial notation and
R means the conjugate of the complex magnitude R.
Secant, Least–
(Gauss–Newto

Optimization algori

Techniques for
           Nonlinear S

Linear and Quadrat
Kalman filter, Proy

Genetic and Evolutionary Algorithms
Neural Networks; fuzzy inference
Random search
Simmulated Annealing

Topological Derivative

Global

Fig. 2. A classificatio
5.3. Selection of minimization algorithm

An approximate classification of the usual methods for
IP solution depending on the scope of the convergence is
shown in Fig. 2.
The natural evolution of the currently available math-

ematical programming methods from the most simple to
the most sophisticated ones is exposed here. A good survey
on them was carried out by Dennis and Schnabel [29], and
others [30,31]. The most promising methods among them
were tested in conjunction with the sensitivity supply and
BEM for static measurements by Rus and Gallego [32,33].
It was shown that the Levenberg–Marquardt method
usually coupled a higher convergence speed in terms of
iterations with higher probability of success. The latter
method has therefore been adopted as the standard in the
sequel.

5.3.1. Levenberg–Marquardt and trust region approach

(TRA)

By a multivariable Taylor series expansion of any
function f ðxÞ until the second term, an affine model of
f ðxÞ : Rn

! R can be defined as

mcðxc þ pÞ ¼ f ðxcÞ þ rf ðxcÞ
Tpþ 1

2
pTr2f ðxcÞpþ hTh�ðpÞ,

where rif ¼ qf =qxi is the gradient, r
2
ijf ¼ q2f =qxiqxj is the

Hessian, which will be symmetric if twice continuous
differentiable.
The Levenberg–Marquardt method consists in an

iterative algorithm in which from a starting guess xk the
following sequence is repeated:
(1)
Squ
n, Q

thms

ystem

ic Pr
ectio

n of
ðJT
k Jk � mkIÞsk ¼ �JT

k Rk subject to kxkþ1 � xkk2pdk,

(2)
 xkþ1 ¼ xk þ sk.
This is performed as described above in the Model-Trust
region. This improves the behavior of the algorithm for J

with not full column rank. A line search can be added on
this method, xkþ1 ¼ xk þ lksk.
The Model-Trust Region consists in modifying Hk such

that skpdc, i.e. sk is within the trust radius dc. Primarily,
the step may be chosen by the ‘‘hook’’ step (by
ares)
uasi–Newton,

s of Equations

Local Setup

Minimization of
   cost functional

 Observation
   Equations

ogramming
n filter

Initialization

IP strategies.
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ðHc þ mIÞsðmÞ ¼ �rf ðxcÞ), or, as in our case, by the double
dogleg step, which is the point located at a distance dc of
the line joining the Newton solution (�H�1rf ) with the
Cauchy solution (�rf =kf k). Secondly, the trust region can
be reduced by yet another backtracking of
f ðxþÞpf ðxcÞ þ arf ðxþ � xcÞ.

5.3.2. Normalization

The normalization means a scaling of the problem in the
sense that the units and magnitudes of the different parameters
involved in the problem (for example the size of the flaw with
respect to the total size, or the combination of displacement
and stress measurements) may affect the solution.

Whereas Newton and BFGS methods are unaffected by
scaling, the steepest descent and therefore the trust region
models are affected. Therefore, the values introduced in the
algorithms should previously be modified by a scaling
matrix Dx in the form, x̂ ¼ Dxx.

There is a further effect that one should care. Too
different magnitudes may also affect the conditioning of
the matrices due to the computer precision, not only in the
optimization algorithms, but also in the BEM calculations.
The solution is similar to above.

5.3.3. Stopping

The stopping criteria is a relevant part of the iterative
search algorithm. The properties of different stopping
criteria in numerical optimization algorithms are the
following. Both of the methods are used simultaneously.
�
 Step: jxk � xk�1j=maxfxk; typical xgptolerance. The
drawback of this method is that it may get stuck in
local minima (or flat regions).

�

0.41
39°

real flaw

initial guess

0.80.3

0.
2

0.
22
Residual: fptolerance. The drawback of this method is
that it requires the residual to become close to zero.

5.4. Equivalence between observation equation and

Gauss–Newton method

The so-called sensitivity equation has previously been
used directly for the solution of IP through the BEM by
several authors [19,34,24,20,23,35,36]. The method consists
in writing the integral equation and deriving it with respect
to a generic geometry variation through a linearization and
limit to the boundary. The resulting integral equations
give, after the discretization, the relationships between the
variation of the measured displacements and the geome-
trical parameters (a system of equations called dBIE in the
form AðxÞdv ¼ DðxÞdx) BðxÞdx ¼ dv). These data are
easily related to the residual R and the geometrical
description x, respectively. The dBIE can then be used in
an iterative process starting from an initial guess of the
geometry x0,
(1)
 Compute BðxkÞ.
Fig. 3. Description of initial guess for the cavity and inclusion benchmark
(2)
models.
Solve the non-square over-determined system of equations
BðxkÞdxk ¼ dvk by least squares (BT

kBkdxk ¼ BT
kdvk).
(3)
 Update the geometry xkþ1 ¼ xk þ dxk.
Now, since R ¼ v� vexp ) dR ¼ dv and calling J ¼

qR=qx ¼ qv=qx ¼ dv=dx ¼ B for a sufficiently small itera-
tion or within a linearized model, a cost functional J ¼
1
2
RTR can be defined. Gauss–Newton’s method for this

functional reads
(1)
 JT
k Jksk ¼ �JT

kRk,

(2)
 xkþ1 ¼ xk þ sk,
which is exactly the same as the process described above.
This is yet another justification of the good behavior of
Gauss–Newton’s method and unifies two methods formerly
classified in different families. This link between the two
theories may allow the adaptation of techniques of each
one into the other, opening new research lines like use of
singular value decomposition of linear observation equa-
tions onto minimization algorithms in order to damp
higher singular values as a regularization technique (see
[37, Chapter 7, 38, Chapter 2]), or application of theory of
factor analysis (see [37, Chapter 10]), or application of
truncated least squares techniques to the definition of the
minimization functional (see [38, Chapter 3]), as well as
application of error and probability theories to minimiza-
tion theories, preconditioning, etc.

6. Search convergence tests

A set of benchmark problems is used for the complete
solution of an IIP using a least squares minimization
algorithm: the Levenberg–Marquardt method with line
search and gradient supply. The starting configuration
or initial guess is the corresponding to Fig. 3 as well
as the sought or real configuration. The initial cavities
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and inclusions are defined as a centered circle of
radius 0:8, and the final ones are ellipses of center
ð�0:3; 0:2Þ and semi-axes 0:41 and 0:22, at an angle of
39� with the horizontal (like the ones used for the
sensitivity tests). The geometry, mechanical properties
and numerical treatment is identical to the previous
section, excepting the particular refinements tested in each
of the following cases.
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Fig. 4. Convergence versus distance from real flaw. Cavity model. Legend: th

different number of parameters, labelled as the subset of the full parameter ve
The identification is made increasing gradually the
number of parameters. This is done in four restarts of the
optimization algorithm, using the parameters listed in the
legend of each problem. The maximum number of
iterations per restart is limited to 20, and the maximum
increment in the value of each parameter is restricted to 0:2
in order to limit possible divergences. The stopping criteria
is DP ¼ 0:001.
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Three plots are made for each benchmark problem: one
corresponding to the search with static data; one
corresponding to the values at the normalized frequ-
ency o ¼ 1:0, and a third graphic with simultaneous data
measured at a set of frequencies o ¼ f0:0; 0:5; 1:0; 1:5; 2:0g,
which implies that the input data is five times richer.
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Fig. 5. Convergence versus distance
6.1. Scope of convergence of the search

In order to check the scope of convergence for each
model and at each set of frequencies, the number of
iterations needed for convergence is plotted versus the
relative distance of the initial guess to the real flaw. The
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case of lack of convergence is also represented by a blank in
the plot. Figs. 4–6 show the number of iterations needed
for the convergence when placing the initial guess at a
proportional value between those of the real value and the
initial guess. In the case of absence of convergence, the
corresponding point is blank. It should be noted that the
convergence is not necessarily to the real result, which
would give a false identification. The partial results at each
restart are plotted. The different lines correspond to a
choice of parameter vector containing a different number
of parameters, labelled as the subset of the full parameter
vector defined in Section 4.2.
From these figures, the necessary iterations increase more

or less gradually with the distance and consequent difficulty
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of the search. A faster and more stable convergence is shown
in the case of inclusions. Complicated parametrizations show
some problems at the last parameters.

It is also observed that, as expected, the success in a
particular restart is critical for the success of the following
one. This justifies the used dosage strategy of parameters.
6.2. Convergence with more measurements

The number of data supplied for an IP is an important
factor. The problems are now solved acquiring an
increasing number of measurements, from a minimum of
8 (all the nodal values on the half right vertical side), and
increasing anti-clock-wise along the external boundary
until 64 (Fig. 7).

The graphics are all made for frequency o ¼ 1:0, and for
each benchmark problem. The starting guess is placed at an
equivalent distance of 0:2. An increasing number of
parameters is also shown at every graphic. The number
of measurements does not seem to imply important effects
in the process of convergence. It should be noted that,
unless special regularization techniques are used, the
number of measurement data should be equal or higher
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Fig. 7. Convergence with different number of measurements and
than the number of parameters in order to allow for the
convergence to a realistic solution.
6.3. Simulated errors

In order to simulate real cases, some errors are
introduced in all parts of the model: measurements,
geometry (alteration of the coordinates of each node),
elastic modulus, other elastic constants, and frequency. The
errors are defined by a normal distribution of zero mean
and variance defined by the percentage of error. Figs. 8–10
show the final value of the geometrical invariants error
(area, center of gravity, and the 2D moments of inertia)
when a particular error amplitude is simulated on the
measurements, geometry, elastic modulus, and other
material constants or frequency. The amplitude of
variance of the gauss-distributed error is set as 0, 0:005,
0:02, 0:05, 0:10, i.e., up to 10% of the maximum
measurement value. The lack of convergence is represented
by a blank plot.
These examples show that the fitness of the final

estimation is very fast distorted already at small errors,
but looking at the values of the error, the estimation may
01 102
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parameters. Above: cavity model. Below: inclusion model.
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Fig. 8. Convergence with simulated errors. Cavity model.
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still be reasonable, taking into account the ill-posedness
inherent to identification IPs.

Inclusion problems show a more stable convergence and
a higher ratio of success. It is not easy to rank the
importance of the error in each part of the model, due to a
low correlation between different examples.
6.4. Example: detection of a subsurface inclusion

A single problem simulating a soil made of two layers is
presented. An flat inclusion in the lower layer is sought by
measuring the displacement of a set of five nodes, on the
area shown in Fig. 11. The excitation to the body is a
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Fig. 9. Convergence with simulated errors. Inclusion model.

G. Rus, R. Gallego / Engineering Analysis with Boundary Elements 31 (2007) 343–360356
parabolic load beside the measurement zone. The mechan-
ical properties of the materials in the different layers and
the inclusion are given. In addition, the density is 1:0 and
the damping ratio 10% throughout, for frequency o ¼ 1:0.
The model is made of 13 quadratic boundary elements
altogether, as specified in Fig. 11.
This may simulate the search of an oil deposit, a
drainpipe or an inclusion in piece of cast iron, for instance.
Fig. 11 shows the successive geometries during the
iterative procedure. The real inclusion is plotted in
discontinuous red line, and the final guess is plotted in
continuous blue line. The problem mesh is refined to 26
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elements altogether. The right graphic shows the geome-
trical error in terms of the square sum of the difference of
the geometrical invariants between estimated and real
flaws. forty-three iterations are needed to reach a good
estimation, and a fast convergence is shown at the
beginning. The iterative procedure has been divided in
two steps: one allowing only the displacement and
radial growth of the circular guess (which converges
after 13 iterations), and a second step allowing the
flattening too.
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Fig. 11. Model geometry, iterations and geometrical convergence.

Fig. 12. Model geometry, iterations and geometrical error. Use of

waveform analysis.

G. Rus, R. Gallego / Engineering Analysis with Boundary Elements 31 (2007) 343–360358
As a result, the difference in geometrical invariants is
represented versus the number of evaluations. The
geometrical invariants are just the sum of squares of the
difference of first order invariants, which are the coordi-
nates of center of gravity of the inclusion, and the second
order invariants, which are the moment of inertia of its
geometry.

The same problem is repeated using an unique measure-
ment: the vertical component of the displacement at the
point shown in Fig. 12. The data obtained is a sampling of
the permanent waveform, which is transformed into its
harmonic amplitudes and their phase shift. The first six
harmonics are used for the detection, leaving the rest of the
definitions as above. Fig. 12 shows the iteration procedure
and the geometrical error, as before. The convergence is
achieved in 13þ 11 iterations, being a somewhat worse
solution the cost of a cheap experimental setup with only
one transducer.

7. Conclusions

A procedure to obtain the gradient or sensitivity of
singular boundary integral equations is developed. The
sensitivity is obtained analytically before discretization and
before parametrization. The latter is moreover defined with
respect to a generic differential variation field of the
geometry. The conditions required by all the kernels,
discretization and parametrization are studied, assuring the
applicability. Besides, all the necessary tools for the
numerical implementation have been developed and tested.
The numerical values converge perfectly in statics and

steady state dynamics, for models with both simple and
complex geometries. The convergence of the gradient
values while improving the discretization is steady in every
example, at similar rates to the solution of the direct
problems. This fact together with a visually identical value
in comparison with the gradient estimation by finite
differences guarantees that the correct values are being
obtained.
The finite difference method seems to fail in the low

frequency dynamic problems, since a large finite distance
amplifies nonlinear effects, whereas small values unstabilize
rapidly due to low frequency-related numerical inaccura-
cies in the direct problem. This inaccuracy together with
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the much higher computational cost of finite differences
recommends the use of direct differenciation.

The functionality of the sensitivity is confirmed by the
application to the solution of complete IPs using the
Levenberg–Marquardt search algorithm. The test of
convergence has been made including all the possible
errors: measurement, model, geometry and frequency,
attaining reasonably good results. The scope of conver-
gence has been systematically studied by exploring the
range of distances from which the correct solution is
reached, in order to show the capabilities and reliability of
the method.

Finally, a technique for identification based on the study
of the steady state waveform is presented. It simply consists
on the harmonic decomposition of the response to a non-
sinusoidal harmonic excitation. This permits cheaper
measurements at fewer or only one point, and allows for
much less computing cost that transient analysis as well as
more precision in the measurements. Nonetheless, steady
state dynamics is readily extensible to linear transient
dynamics by a simple Fourier Transform.
Appendix. Geometrical variation of the boundary differential

and the normal vector

For the derivation of the complete duBIE, it is useful to
consider the variation of some geometrical quantities that
arise in the following sections. To do that, the perturbed
domain and any magnitude computed in it is notated with
an upper tilde. The variation of the normal and the
boundary differential are defined by the equations:

~n ¼ nþ dnþ h:o:t:; (20)

d ~G ¼ ð1þ dSÞdGþ h:o:t. (21)

Taking basic geometrical considerations, it can be proved
(see [18]) that the variation terms have the following
expressions:

dn ¼ �ijdxj;ktitkt, (22)

dS ¼ dxi;j titj, (23)

where �ij is the permutation tensor and ti ¼ dxi=dG is the
tangent vector to the boundary.
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