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Abstract

Model-based nondestructive testing (NDT) requires fast and accurate solutions of the response of the mechanical model including the
defect as well as the sensitivity of this response to the variation of the parameters describing the defect. For modelling crack-type defects
under dynamic conditions, like vibration analysis or ultrasonics, the boundary element method (BEM) is especially well suited, in par-
ticular due to the hypersingular formulation.

The present work presents the stress sensitivity boundary integral equation, dqBIE, and its use for the solution of the inverse problem
when coupled to gradient-based minimization algorithms. The capability of solving numerically a NDT problem such as the location and
characterization of cracks by measuring the dynamic response at an accessible boundary of the specimen is evaluated. For that, the accu-
racy and convergence of the sensitivity from the dqBIE is verified. Then, comprehensive convergence tests are made for the initial guess,
the amount of supplied measurements, and simulated errors on measurements, geometry, elastic constants and frequency.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

A direct problem can be stated as the calculation of the
response (for instance, certain displacements u and trac-
tions q) in a specific body defined by its geometry X,
mechanical properties (k), physical model (operator L)
and boundary conditions (some known values of u and
q). In opposition to this, an inverse problem (IP) is one in
which part of the information above is unknown. If a gen-
eric direct problem is defined as

LðkÞu ¼ q on X ð1Þ

different IPs can be stated depending on the nature of the
unknown (see the classification by Kubo [1]). To find the
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missing information, additional data from the response
has to be provided, besides the boundary conditions. This
additional data uex or qex is obtained experimentally at
some points of the domain or its boundary C.

This paper is aimed at the solution of the so called iden-

tification inverse problem (IIP), which is an IP in which the
unknown is a part of the domain. This problem arises in
many branches of science and engineering, but the interest
of the authors is mainly the development of computerized
non-destructive techniques, aimed at the detection of
cracks inside a unreachable part of a mechanical or struc-
tural element.

An important limitation of the use of steady-state
dynamic data for crack detection should be pointed
out here. In this work, no unilateral effects or contact phe-
nomena are considered in the crack for the following
reasons:
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• The frequency domain based postprocessing is usually
not applicable.

• The nonlinearities that appear in the model convert the
optimization functions into non-differentiable ones,
making the choice of optimization algorithm different
from the classical gradient-based methods. The differen-
tiation of the boundary integral equation becomes a
nontrivial task.

• The solution of the nonlinear problem as well as the
optimization algorithm, which would require bilevel
techniques (a lower iteration level for the nonlinear sys-
tem solution and an upper one for the optimization,
which was studied thoroughly for the first time by Stav-
roulakis and Antes [2]), are dramatically more expensive
computationally. This moves the balance towards non-
contact testing.

The absence of contact marks off its field of applicability
when the crack is initially open and kept so during the exci-
tation. This is true as long as the small harmonic excitation
load is applied on a preloaded structure where the crack is
already open, which is the usual case, as the original load
motivates the creation of the crack. This way, the specimen
can be studied in service or working conditions, and the
small harmonic excitation will not alter the null contact
conditions of the crack.

A general IP can be written alternatively,

(1) as the solution of a set of implicit nonlinear equations
called observation equations, that relate some properly
chosen design variables Ph and the experimental data,
vex,
F ðP hÞ ¼ vex
(2) or as an optimization problem, where the residual of
the former set of equations is minimized,
min
P h

1

2
kF ðP hÞ � vexk2

:

In both cases, the most time-efficient solution algorithms
use sensitivity information (gradient), which should be
computed accurately and efficiently.

To perform this computation, besides the obvious but
time-consuming finite differences approach, two analytical
tools are available: direct differentiation method and
adjoint state approach. The first one was used by
Nishimura and Kobayashi [3], Meric [4], Aithal and
Saigal [5], Mellings and Aliabadi [6], Lee and Kwak [7]
or Rus and Gallego [8]. It is based on the direct differen-
tiation of the equations with respect to the geometri-
cal parameters which define the unknown flaw.
Mukherjee et al. [9–11] develop the direct differentiation
formulation for the indirect boundary contour method
for 3D static elasticity, first for boundary points and
then for internal points, and obtain moderately good
convergence.
On the other hand Bonnet et al. [12], applied the adjoint
state approach to the boundary integral equations to find
the sensitivity to geometry variation of a crack in bidimen-
sional elasticity and, later, in elastodynamics [13,14]. The
same approach was used by Burczyński et al. [15] and com-
pared to the direct differentiation.

The inverse problem of locating a cavity using elastody-
namic measurements was solved using the adjoint state
approach for the geometrical sensitivity and BFGS for
minimization of the quadratic cost functional by Guzina
et al. [16] for the case of 3D elastodynamics, attaining con-
vergence for a single elipsoidal cavity.

In this paper, the Stress Sensitivity Boundary Integral

Equation or Variation Hypersingular Boundary Integral
Equation is derived from the standard BEM equation and
used to supply the necessary geometrical gradient for the
search algorithm used for solving a complete IIP. This
method for determining the geometrical sensitivity is pre-
ferred above the adjoint state approach due to the much
lower requirements on discretization density, which
extends considerably the time of convergence. The good-
ness and capacity of convergence of the resulting algorithm
is exhaustively checked. The Sensitivity Hypersingular

Boundary Integral Equation provides the sensitivity of dis-
placements and tractions in an harmonic elastodynamics
state due to changes in the geometry of an internal crack.
This equation is obtained by a series expansion and a line-
arization, following a procedure first proposed by Tanaka
and Masuda [17] for potential problems, and Aithal and
Saigal [5] for static elasticity. In these papers some impor-
tant terms where missing and a first corrected formulation
was presented for potential problems by Gallego and
Suárez [18] in 1998 and by Rus and Gallego [19] in 2005.
The final equation should be equivalent to that obtained
by Bonnet [20] using material differentiation, but no
attempt has been made yet to prove this.
2. Boundary integral equations

In a domain X bounded by C, the displacement integral
equation (or uBIE, see [21]) can be written as

ci
kðyÞukðyÞ þ

Z
C
½qi

kðx; yÞukðxÞ � ui
kðx; yÞqkðxÞ�dCðxÞ ¼ 0;

ð2Þ

where ukðxÞ, kth component of the displacement vector in
the actual state at the observation point x; qkðxÞ,
¼rjkðxÞnjðxÞ traction in the actual state at point x. rjkðxÞ
is the stress tensor and nj the outward normal; ui

kðx; yÞ,
kth component of the displacement vector at the observa-
tion point x due to a point load applied in direction i at
the collocation point y (fundamental solution); qi

kðx; yÞ,
¼ri

lkðx; yÞnlðxÞ traction of the fundamental solution; ci
k,

free term whose value depends on the position of the collo-
cation point. Thus, ci

kðyÞ ¼ di
k (Kroenecker delta) if y 2 X;

ci
kðyÞ depends on the geometry of the boundary at y if
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y 2 C, and is such that ci
kðyÞ ¼ 1=2di

k when the boundary is
smooth (continuous normal) at y; ci

kðyÞ ¼ 0 otherwise.
The integral is understood in the Cauchy Principal

Value (CPV) sense. The variables in this equation are com-
plex numbers that represent the amplitude (modulus) and
phase (argument) of the harmonic real ones.

The fundamental solution for two-dimensional har-
monic elastodynamics is given by

ui
k ¼

1

2pl
½wdik � vr;ir;k�; ð3Þ

qi
k ¼

1

2p

"
/0 � v

r

� �
ðdikr;jnj þ r;ir;kÞ

� 2

r
vðnkr;i � 2r;kr;ir;jnjÞ � 2v0r;ir;kr;jnj

þ
c2

p

c2
s

� 2

 !
/0 � v0 � v

r

� �
r;ink

#
; ð4Þ

where ri ¼ xi � yi, r ¼ jrj; r;i ¼ or
oxi

. w and v are functions of
the position r and excitation frequency x, given by the
expressions

w ¼ K0ðksrÞ þ
1

ksr
K1ðksrÞ �

cs

cp
K1ðkprÞ

� �
; ð5Þ

v ¼ K2ðksrÞ �
c2

s

c2
p

K2ðkprÞ; ð6Þ

where, ka ¼ ix
ca

, and cp and cs are the P-waves and S-waves
propagation speeds, respectively; KnðzÞ is the modified Bes-
sel function of order n.

The equivalent integral equation for the stresses on the
boundary can be computed by application of Hooke’s
law to the previous equation,

qiðyÞ ¼ fkdijum;mðyÞ þ lðui;jðyÞ þ uj;iðyÞÞgnjðyÞ ð7Þ
yielding,

ci
kðyÞqkðyÞ þ

Z
C
½di

kðx; yÞqkðxÞ � si
kðx; yÞukðxÞ�dCðxÞ ¼ 0:

ð8Þ
The equation in this form is only valid for internal colloca-
tion points (y 2 XC, ci

k ¼ di
k) or on a smooth boundary

(ci
kðyÞ ¼ 1=2di

k). In this last case the integral can be under-
stood in the sense of the Cauchy principal value or Hadam-
ard finite part (see [22–24]).

The kernels in this integral equation (qBIE for short) are
obtained from the ones in Eq. (2) using Hooke’s law,

di
kðx; yÞ ¼ di

kjðx; yÞnjðyÞ;
di

kjðx; yÞ ¼ kdijum
k;mðx; yÞ þ lðui

k;jðx; yÞ þ uj
k;iðx; yÞÞ;

si
kðx; yÞ ¼ si

jklðx; yÞnjðyÞnlðxÞ;
si

jklðx; yÞ ¼ kdijr
m
lk;mðx; yÞ þ lðri

lk;jðx; yÞ þ rj
lk;iðx; yÞÞ;

ð9Þ

where the derivatives are performed with respect to the
coordinates of x, and the fact that o=oxm ¼ �o=oym for
the kernels since they are functions of the distance
r ¼ x� y, has been taken into account.
3. Derivation of the dqBIE

Assume a domain X bounded by a boundary C under
essential and natural boundary conditions. This problem
will be termed reference problem or RP and its solution is
readily computed by the standard BEM. Consider now a
modified domain eX due to a slight alteration of its bound-
ary or part of it, to eC. The modified boundary can be just
an internal crack within X. This second problem is termed
perturbed problem or PP. For both problems the material
properties and boundary conditions are the same.

The variation of the geometry will be given by a vector
dx such that,

~x ¼ xþ dxðxÞ: ð10Þ

Note that dx is defined at every x 2 X and not only on the
boundary. The solutions of the reference and perturbed
problems will be different, due to the change in the
geometry,

~uið~xÞ ¼ uiðxÞ þ duiðxÞ;
~qið~xÞ ¼ qiðxÞ þ dqiðxÞ;

ð11Þ

where the tilde is applied to any variable at the PP and du

and dq represents the shape variation or shape sensitivity of
the displacements and tractions, respectively. Observe that
where essential boundary conditions are given duiðxÞ ¼ 0,
whereas where the conditions are natural dqiðxÞ ¼ 0.

The goal is to obtain a boundary only integral equation
which relates the sensitivities of boundary displacements
and tractions to the variation of the geometry.

The procedure to obtain this boundary integral equation
follows these steps:

(1) The stress integral equation for an interior point is
written for both the RP and PP.

(2) The integrals and integrands in the integral equation
for the PP are expanded to first order, in terms of the
geometry variation.

(3) Subtracting the integral equation for the RP to the
linearized integral equation for the PP, the stress sen-
sitivity integral equation is obtained for an interior
point.

(4) The resulting integral equation is taken to the bound-
ary, taking care of the order of the singular kernels
and the required continuity of the variables.

The procedure is summarized in Fig. 1.
The ensuing equation will be termed Stress Sensitivity

Boundary Integral Equation or dqBIE. Its numerical solu-
tion is tackled using standard Boundary Element Tech-
niques, plus some non-standard approaches to discretize
the variation of the geometry.

After computing the shape sensitivities of displacements
and tractions on the boundary, the variation of any func-
tional of the variables,
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JðCÞ ¼
Z

Cq

uuðuÞdCþ
Z

Cu

uqðqÞdCþ
Z

Cf

wðxÞdC ð12Þ

can be computed using the chain rule,

dJðCÞ ¼
Z

Cq

ouu

ou
dudCþ

Z
Cu

ouq

oq
dqdCþ

Z
Cf

ow
ox

dxdC

ð13Þ
assuming that Cq, Cu, and Cf belongs to an unperturbed
part of the boundary, which is the case in the identification
inverse problems.

The functional may include domain terms since the sen-
sitivities at internal points can be computed as a postpro-
cessing step using the corresponding integral equation.

4. Variation of the boundary differential and the normal

vector

As a first step for developing the dqBIE, the variation of
some geometrical quantities that arise is considered in this
section.

The variation of the normal and the boundary differen-
tial are defined by

~n ¼ nþ dnþ h:o:t:;

d~C ¼ ð1þ dJÞdCþ h:o:t:;
ð14Þ

where h.o.t. stands for higher order terms.

4.1. Variation of the boundary differential

In Fig. 2 the relationship between the boundary differen-
tial at the reference and perturbed domain is shown.

At a boundary point n 2 C the boundary differential is
defined by

dC2 ¼ dni dni: ð15Þ
After the perturbation ~n ¼ nþ dn, and therefore the differ-
ential is given by

deC2 ¼ ðdni þ ddniÞðdni þ ddniÞ: ð16Þ

Expanding the product and neglecting terms higher than
linear,

deC2 ’ dC2 þ 2dni ddni ð17Þ

and then,

deC2 ’ dC2 þ 2dnidni;j dnj: ð18Þ

Taking the square root and neglecting again higher order
terms,

deC ’ dCð1þ dni;jtitjÞ; ð19Þ

where

ti ¼
dni

dC
ð20Þ

are the components of the tangent vector at n. Therefore,

dJ ¼ dni;jtitj: ð21Þ
4.2. Variation of the normal vector

In Fig. 3 the variation of the normal at a boundary point
is represented.

To obtain the variation of the normal vector is more
convenient to compute first the variation of the tangent
vector. From Eq. (20), the components of the tangent vec-
tor after perturbation are

~ti ¼
d~ni

deC ¼ dni þ ddni

dCð1þ dJÞ : ð22Þ

Neglecting terms higher than linear,

~ti ¼ ti � tidJ þ dni;jtj: ð23Þ
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Since the tangent vector has unit modulus, the second term
can be neglected,

~ti ¼ ti þ dni;jtj: ð24Þ

Now, the normal is perpendicular to the tangent vector,
then

~ni ¼ ni þ �ikdnk;jtj; ð25Þ

where �ik is the permutation tensor. But, to maintain the
unit modulus, only the component of the variation perpen-
dicular to the normal is kept,

~ni ¼ ni þ titl�lkdnk;jtj: ð26Þ

Therefore,

dn ¼ �ijdnj;ktitkt: ð27Þ
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Fig. 4. Artifice for limiting process. Left: x 2 Ce. Middle: x 2 Cþ after Ce.
Right: case of a non-smooth boundary.
5. Variation of the integral equation

Consider the qBIE for an collocation point inside the
perturbed domain,

~qið~yÞ þ
Z
eC ½di

kð~x; ~yÞ~qkð~xÞ � si
kð~x; ~yÞ~ukð~xÞ�deCð~xÞ ¼ 0: ð28Þ

The first step is to expand all terms in the above equation
about the reference configuration considering a small per-
turbation of the geometry. The expansion of the unknown
displacements and tractions are given by the definition of
the sensitivity in Eq. (11).

The two point kernels have to be expanded taking into
account that both the collocation point y and the observa-
tion point x are perturbed. Moreover, di

k depends on the
normal at the observation point nðxÞ while si

k depends on
the normal at both the observation and collocation points,
nðxÞ and nðyÞ (see Eq. (31)).

Therefore,

di
kð~x; ~yÞ ¼ di

kjð~x; ~yÞ~njð~yÞ

¼ ðdi
kjðx; yÞ þ ddi

kjðx; yÞÞðnjðyÞ þ dnjðyÞÞ þ h:o:t:;

si
kð~x; ~yÞ ¼ si

jklð~x; ~yÞ~njð~yÞ~nlð~xÞ

¼ ðsi
jklðx; yÞ þ dsi

jklðx; yÞÞðnjðyÞ þ dnjðyÞÞ

� ðnlðxÞ þ dnlðxÞÞ þ h:o:t:

ð29Þ

The perturbations of di
kj and si

jkl are simply computed by
Taylor expansion,

ddi
kjðx; yÞ ¼ di

kj;mðx; yÞdrm;

dsi
jklðx; yÞ ¼ si

jkl;mðx; yÞdrm;
ð30Þ

where drm ¼ dxm � dym arises form the fact that the kernels
depend on x� y but not on y nor x independently.

From the above expansions, and neglecting terms of
order higher than linear, the following expansions are
obtained:
di
kð~x; ~yÞ ¼ di

kðx; yÞ þ di
kj;mðx; yÞnjðyÞdrm

þ di
kjðx; yÞdnj þ h:o:t:;

si
kð~x; ~yÞ ¼ si

kðx; yÞ þ si
jklðx; yÞnjðyÞdnlðxÞ

þ si
jklðx; yÞdnjðyÞnlðxÞ

þ si
jkl;mðx; yÞdrmnjðyÞnlðxÞ þ h:o:t:

ð31Þ

Collecting the expansions of the kernels, variables and
boundary differential equations (31), (21), (27)), substitut-
ing in the integral equation (28) and subtracting the same
equation for the reference configuration, the sensitivity
stress integral equation at an interior point is obtained,

di
kdqkðyÞ þ

Z
C
½di

kðx; yÞdqkðxÞ � si
kðx; yÞdukðxÞ�dCðxÞ

¼
Z

C
½ðsi

jklðx; yÞnjðyÞnlðxÞukðxÞ

� di
jkðx; yÞnjðyÞqkðxÞÞdJðxÞ

þ ðsi
jklðx; yÞnlðxÞukðxÞ � di

jkðx; yÞqkðxÞÞdnjðyÞ
þ ðsi

jkl;mðx; yÞnlðxÞnjðyÞukðxÞ
� di

jk;mðx; yÞnjðyÞqkðxÞÞdrm

þ si
jklðx; yÞnjðyÞukdnlðxÞ�dCðxÞ: ð32Þ

Note that, assuming that the reference problem is solved,
and given a geometrical perturbation, the above equation
relates the stress vector at any internal point to the dis-
placements and tractions on the boundary. If this equation
is written for y 2 C, the ensuing equation provides a
boundary only formula to compute sensitivities on the
boundary to changes in the geometry of the domain.

6. Limit to the boundary

Eq. (32) cannot be directly set for y 2 C since the kernels
would be singular, or hypersingular, using a usual term in
Boundary Integral literature. A standard procedure is used
to perform the limit, perturbing the boundary around the
collocation point as shown in Fig. 4 and then evaluating
the limit of the ensuing integrals as e! 0.
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Prior to the limiting process is therefore to asses the
order of singularity of all the kernels and the corresponding
continuity requirements for the variables.
6.1. Kernels’ singularity and continuity requirements

The kernels of the standard qBIE, di
k, si

k, appear in the
left hand side of Eq. (32), which are singular and hypersin-
gular, respectively, that is

di
kjðx; yÞ ¼ Oðr�1Þ;

si
jklðx; yÞ ¼ Oðr�2Þ;

ð33Þ

where r ¼ jx� yj.
On the right hand side, the same kernels appear, plus

their derivatives

di
kj;mðx; yÞ ¼ Oðr�2Þ;

si
jkl;mðx; yÞ ¼ Oðr�3Þ:

ð34Þ

Apparently, the sensitivity equation is one order more sin-
gular that the reference equation qBIE. However, observe
that these two last kernels are multiplied by drm ¼ dxm�
dym, so, if drm 2 C�,

di
kj;mðx; yÞdrm ¼ Oðr�1Þ;

si
jkl;mðx; yÞdrm ¼ Oðr�2Þ

ð35Þ

and therefore, there is no increase in the singularity order.
Actually drm should be C1;a as shown later.

The singularity order of kernels demands a correspond-
ing continuity order on the variables which multiplied
them, in order to yield regular expressions. Thus,

di
jkðx; nÞdqkðxÞ ! dqkðxÞ ¼ dqkðnÞ þ h:o:t:;

si
jklðx; nÞdukðxÞ ! dukðxÞ ¼ dukðnÞ þ duk;mðxm � nmÞ þ h:o:t:;

di
jkðx; nÞqkðxÞ ! qkðxÞ ¼ qkðnÞ þ h:o:t:;

si
jklðx; nÞukðxÞ ! ukðxÞ ¼ ukðnÞ þ uk;mðnÞðxm � nmÞ þ h:o:t:

ð36Þ
and same requirements from the rest of the integrals.
Besides, dxl;m has to be continuous, i.e., dxm 2 C1;a.

Table 1 summarizes the continuity requirements for the
variables, in order to regularize the integrals and perform
the limit to the boundary.

These conditions have to be met by the boundary
approximation used to solve numerically the ensuing BIE.
Table 1
Conditions of derivability of each variable

Variable Continuity for dqBIE

uk C1;a

qk C0;a

dxk C1;a

duk C1;a

dqk C1;a
6.2. Boundary decomposition and free terms

The integrals of any integrand F along the augmented
boundary are decomposed in two parts,Z

C
F dC ¼

Z
C�Ce

F dCþ
Z

Se

F dC: ð37Þ

For singular kernels ðOðr�1ÞÞ the first integral is the Cau-
chy Principal Value of the original integral, while the sec-
ond one vanishes or lead to a finite free term.

For hypersingular kernels ðOðr�2ÞÞ both integrals leads
to infinite terms, but these vanish, leading to the Hadamard
finite value of the original integral, while, in addition, the
second integral, along Se leads to finite free terms.

6.3. Free terms

Only the case of a smooth boundary point will be con-
sidered, since as in the original qBIE, standard interpola-
tion demands that collocation points are placed inside the
elements, where the boundary is smooth.

The free terms stem from the analytically calculable inte-
grals along Se. At smooth boundary points, the integration
can be done between dh1 ¼ 0 and dh2 ¼ p, without loss of
generality.

On the boundary Se, the following identities hold:

r ¼ e;

rk ¼ enk;

n ¼ ðcos h; sin hÞ;
t ¼ ð� sin h; cos hÞ;
dC ¼ edh;

ð38Þ

thus, a careful process finally yields the following expres-
sion, for which the details are provided in Appendix A,Z

Se

½di
kðx; yÞdqkðxÞ � si

kðx; yÞdukðxÞ�dCðxÞ

�
Z

Se

½ðsi
jklðx; yÞnjðyÞnlðxÞukðxÞ

� di
jkðx; yÞnjðyÞqkðxÞÞdJðxÞ þ ðsi

jklðx; yÞnlðxÞukðxÞ
� di

jkðx; yÞqkðxÞÞdnjðyÞ
þ ðsi

jkl;mðx; yÞnlðxÞnjðyÞukðxÞ
� di

jk;mðx; yÞnjðyÞqkðxÞÞdrm

þ si
jklðx; yÞnjðyÞukdnlðxÞ�dCðxÞ

¼ � 1

2
dqi þ F i lim

e!0

1

e
: ð39Þ

As mentioned above, the infinite free term cancels an equal
expression from the integral along C� Ce leading to the
Hadamard finite part of the original integral.

Collecting these results, the Stress Sensitivity Boundary
Integral Equation (or dqBIE ) at a smooth boundary point
is finally obtained,
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1

2
dqi

Z
C
½di

kðx; yÞdqkðxÞ � si
kðx; yÞdukðxÞ�dCðxÞ

¼
Z

C
½ðsi

jklðx; yÞnjðyÞnlðxÞukðxÞ

� di
jkðx; yÞnjðyÞqkðxÞÞdJðxÞ

þ ðsi
jklðx; yÞnlðxÞukðxÞ � di

jkðx; yÞqkðxÞÞdnjðyÞ
þ ðsi

jkl;mðx; yÞnlðxÞnjðyÞukðxÞ
� di

jk;mðx; yÞnjðyÞqkðxÞÞdrm

þ si
jklðx; yÞnjðyÞukdnlðxÞ�dCðxÞ; ð40Þ

where the integrals are understood in the sense of CPV or
HFP of the original ones. This integral equation relates the
variation (dx and drm) of a domain point x with the varia-
tion of displacements and tractions (duk and dqk) at the
boundary points, and the variation of the geometry of
the boundary (dnj and dS).
7. Numerical solution of the stress sensitivity BIE

Standard boundary element techniques are employed to
solve the dqBIE. The boundary is divided into a number of
elements, and within each one the geometry, displacements,
tractions and their variations are interpolated quadrati-
cally, where /n are standard quadratic base functions,

x ¼
X3

n¼1

/nxn; u ¼
X3

n¼1

/nun; q ¼
X3

n¼1

/nqn;

du ¼
X3

n¼1

/nun; dq ¼
X3

n¼1

/nqn;

where /n are standard quadratic functions. However, due
to the continuity requirements at the collocation points,
non conforming elements will be employed, instead of iso-
parametric ones. Besides, when dealing with crack prob-
lems, non-conforming quarter point elements will be used.

For the variation of the geometry dx a different
approach is followed,

dx ¼ HihðxÞdP h; ð41Þ

where dP h represents a finite number of variables which
parameterize the variation of the geometry. Note that no
parameterization of the geometry of the boundary is
needed, but only of its variation. This point is detailed in
the next section.
8. Parameterization of the variation of a crack shape

For cavities and inclusion identification, the virtual

deformation field has been proposed [25] but this approach
has limited interest when dealing with cracks, since it does
not have enough flexibility to transform straight initial
geometry to curved ones.

An advantage of the virtual deformation approach is
that dxk is defined not only on the boundary but in its
vicinity as well, allowing the computation of the derivatives
dxk;m. Nevertheless, any parameterization of the boundary
can be extended to point in domain in the normal to the
boundary point, transforming the derivatives to surface
gradients, see [26].

Another issue related to the discretization of the varia-
tion of the geometry is its relationship to the discretization
of the geometry itself. There are two main ways to use the
parametrization inside the discretized sensitivity boundary
integral equation:

• dx ¼ dxðxÞ, which means that at an integration point x,
the value of the matrix dx is computed using Eq. (41)
using the coordinates of x. This is the closest to the ana-
lytical definition.

• dx ¼
P

dxi/i which means that the value of the vector
dx is interpolated form its value at the interpolation
nodes, as the rest of the variables, using the same shape
functions /i. Thus dxi is only evaluated at the nodes i.

The first method proved a better behaviour.

8.1. Linear deformation field

There is a great freedom in the choice and invention of
parametrizations. The most usual ones are based on a def-
inition of the complete geometry by splines of all kinds and
orders, (in aeronautical shape optimization, usually cubic
B-splines, NURBS [27] or Bezier-curves [28]). In identifica-
tion problems, the geometry is usually defined by simple
geometrical entities, in turn defined by a few parameters
(like ellipses defined by the coordinates of the center, the
axes length and an angle of orientation in [29,30,6]).

A linear variation field is described by a constant defor-
mation tensor (two parameters) plus a displacement of the
field (four parameters making a total of 6). A definition of
more physical meaning, in the sense that it comes from a
deformation tensor, is the following:

H6
ih ¼

1 0 x2 x1 x1 x2

0 1 �x1 x2 �x2 x1

� �
;

where x ¼ xreal � xch (x with respect of the centroid of the
flaw), i is the index for the direction and h is the index
for the parameter, which gives each one a clear sense,

P h ¼

dxcg
1

dxcg
2

dx
dem

de0

de12

26666664

37777775¼
First coordinate of the centroid of the flaw
Second coordinate of the centroid of the flaw
Angle of rotation
Spherical strain
Horizontal elongation
Distortion

26666664

37777775:
8.2. Fourier parametrization

Ideally, a crack should be able to be represented by a
curved line with a higher order than just quadratic, in order
to adopt for example the shape of an S.
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Besides, a lower number of parameters should be used
as only deformations in the sense of the normal should
be needed, eliminating all the tangential components that
would appear, in a field defined with more generality in
the x and y direction.

A parametrization based on a Fourier series decomposi-
tion has the following advantages:

• The ends of the crack are straight in the limit (zero cur-
vature), maintaining the

ffiffi
r
p

behaviour of the crack tips.
• A Fourier series is capable of representing any shape

with a sufficient number of terms.
• It is straightforward to add terms as the identification

proceeds without need for redefining previous parame-
ters, as would happen with Lagrange polynomials.

• Fourier series have good properties from the point of
view of the regularization (see [31]).

The suggested parametrization is the following:
Hcrack
ih ¼

1� n 0 n 0 � sin a sin 1pn � sin a sin 2pn � � � � sin a sin npn

0 1� n 0 n cos a sin 1pn cos a sin 2pn � � � cos a sin npn

� �
;

where n is a normalized distance between the tips A and B,

n ¼ ðx1�xA
1
ÞðxB

1
�xA

1
Þþðx2�xA

2
ÞðxB

2
�xA

2
Þ

ðxB
1
�xA

1
Þ2þðxB

2
�xA

2
Þ2 and n ¼ 1; . . . ;1. � sin a and

cos a are the director cosines of the segment that joins the
crack tips (see Fig. 5).

8.3. Numerical evaluation

If the desired parametrization is substituted, dxi ¼
HihdP h, where Hih is the parameterization matrix, and
dP h the vector of discrete parameter variations, the follow-
ing expressions are derived:

dri ¼ ðHihðnÞ �HihðxÞÞdP h;

dni ¼ titmtl�mkHkg;ldP h;

dJ ¼ tktlHlh;kdP h:

ð42Þ

Substituting (42) in (40), the systems of equations can be
written as, dqBIE,

ci
kdqkðnÞ þ

Z
C

di
jkðx; nÞnjðnÞdqkðxÞ

h
�si

jklðx; nÞnjðnÞnlðxÞdukðxÞ
i
dCðxÞ

¼ gQi
hðnÞdP h;
A

B

α
ξ

crack

Fig. 5. Definition of the crack parametrization.
gQi
hðnÞdP h ¼ �

Z
C
ðdi

jkðx; nÞnjðnÞqkðxÞ
h

� si
jklðx; nÞnjðnÞnlðxÞukÞdJðxÞ

þ ðdi
jkðx; nÞqk � si

jklðx; nÞnlðxÞukðxÞÞdnjðnÞ
þ ðdi

jk;mðx; nÞnjðnÞqkðxÞ
� si

jkl;mðx; nÞnlðxÞnjðnÞukÞdrmðx; nÞ

�si
jklðx; nÞnjðnÞukdnlðxÞ

i
dCðxÞ

which can also be written as

Hdu�Gdq ¼ DdP; D ¼ gQi
hðnÞ;

where u and q are the displacement and stress vectors and P
is the parameter set. H and G are identical to the system
matrices in the usual BEM. D is a matrix that groups the
rest of the integrals, in which dn, dJ and dr have to be
substituted, and then dP becomes a common factor to be
extracted. The evaluation of the kernels at singular points
requires the use of special decompositions of the integrals,
as detailed in Appendix B.

The application of the boundary conditions yield the
same coefficients of the system matrix A as the usual
BEM, since the prescribed values have zero variation.
These variations are therefore not unknowns, as if they
were prescribed

Adv ¼ DdP;

where dv groups the non prescribed terms of du and dq in
the sequel, as done in the BEM. The solutions of the latter
system for each column of D can be performed and
grouped into J, which is called jacobian,

dv ¼ jdP ) j ¼ fjihg ¼
dvi

dP h
:

This procedure is computationally low power-consuming
since the system matrix A is already computed and factor-
ized from the direct problem, and the remaining operations
are the successive back and forward substitutions of the
columns of D.

9. Solution of the inverse problem

The used solution strategy for the IP, stated as the com-
putation of the parameters that best adjusts the response
prediction from a numerical model to the real measure-
ments, and formulated as a minimization problem of a cost
functional J for the parameters Ph that characterize the
defect. For that purpose, a residual vector R ¼ fRig is
defined to represent the discrepancy in the adjustment.
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Fig. 6. Infinite plate with crack.
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9.1. Residual

We introduce the residual vector R in order to quantify
the discrepancy between the measurements and theoretical
predictions. While the prediction is based on a set of h

parameters Ph, the ideal measurement data can be denoted
by a corresponding best adjusted set P r

h where the super-
script r denotes real defects,

RiðP hÞ ¼ viðP hÞ � vex
i ; ð44Þ

where vi are the ith response to be measured (either dis-
placements or tractions depending on the boundary condi-
tions), first for the computed case viðP hÞ, and second for the
experimental measurements vex

i .

9.2. Cost functional

A cost functional J is defined in terms of the former
residual R in a quadratic sense, which is also a least squares
sense. This definition is meaningful from the statistical
point of view, as well as from theory of linear algebra, since
is minimizes distances in an Euclidean sense. The cost func-
tional is hence defined as in Eq. (45) for the case of the dis-
crete frequency domain

J ¼ 1

2
RTR ¼ 1

2
kRk2

; ð45Þ

where T stands for the transpose in vectorial notation and
R means the conjugate of the complex magnitude R.

9.3. Selection of minimization algorithm

A good survey on search or minimization algorithms
can be found in Dennis and Schnabel [32] and others
[33,34]. Among them, the most promising methods were
tested in conjunction with the sensitivity supply and
BEM for static measurements by Rus and Gallego
[35,36]. It was shown that the Levenberg–Marquardt
method usually coupled a higher convergence speed in
terms of iterations with higher probability of success. The
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latter method has therefore been adopted as the standard
in the sequel.

9.3.1. Levenberg–Marquardt and trust region approach

(TRA)

By a multivariable Taylor series expansion of any func-
tion f ðxÞ until the second term, an affine model of
f ðxÞ : Rn ! R can be defined as

mcðxc þ pÞ ¼ f ðxcÞ þ rf ðxcÞTpþ 1

2
pTr2f ðxcÞpþ hTh�ðpÞ;

where rif ¼ of
oxi

is the gradient, r2
ijf ¼

o2f
oxi oxj

is the Hessian,
which will be symmetric if twice continuous differentiable.

The Levenberg–Marquardt method consists in an itera-
tive algorithm in which from a starting guess xk the follow-
ing sequence is repeated:

(1) ðJ T
k J k � lkIÞsk ¼ �J T

k Rk subject to kxkþ1 � xkk2 6 dk,
(2) xkþ1 ¼ xk þ sk.

This is performed as described above in the model-trust
region. This improves the behaviour of the algorithm for J

with not full column rank. A line search can be added on
this method, xkþ1 ¼ xk þ kksk.
1 –0.5 0 0.5 1
local coordinate

Analytical value
Numerical value at nodes (8 elements)

alytical comparison.



Fig. 8. Real scale description of crack benchmark.
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The model-trust region consists in modifying Hk such
that sk 6 dc, i.e. sk is within the trust radius dc. Primarily,
the step may be chosen by the ‘‘hook’’ step (by
ðHc þ lIÞsðlÞ ¼ �rf ðxcÞ), or, as in our case, by the dou-
ble dogleg step, which is the point located at a distance
dc of the line joining the Newton solution (�H�1rf ) with
the Cauchy solution �rf

kf k

� �
. Secondly, the trust region can

be reduced by yet another backtracking of
f ðxþÞ 6 f ðxcÞ þ arf ðxþ � xcÞ.
10
–4

10
–3

10
–2

Problem benchcrack  Parameter 1 Measure 15

lon

distance. Value versus finite epsilon.

0.5 0.6 0.7 0.8 0.9 1

roblem benchcrack

d Ux / d parameter 1
d Px / d parameter 1

0.5 0.6 0.7 0.8 0.9 1
 frequency

d Ux / d parameter 2
d Px / d parameter 2

by direct derivation. Red dots: finite differences value. Each curve is the
nterpretation of the references in colour in this figure legend, the reader is



10
0

10
1

10
2

10
3

10
–20

10
–15

10
–10

10
–5

10
0

Verification of Gauss quadrature

number of Gauss points

re
la

tiv
e 

er
ro

r 
in

 v
al

ue
 o

f i
nt

eg
ra

l

10
1

10
–5

10
–4

10
–3

10
–2

10
–1

10
0

Integration accuracy. Frequency: 1 Problem benchcrack

number of gauss points

m
ax

im
um

 r
el

at
iv

e 
er

ro
r 

in
 g

ra
di

en
t

displacement/stress
parameter 1
parameter 3
parameter 5
parameter 7
parameter 9
parameter 11

Fig. 11. Integration precision. Above: relative error in a hypersingular integral. Below: Error in the complete problem gradient calculation in the crack
problem.

10
0

10
1

10
2

10
–3

10
–2

10
–1

10
0

10
1

Element accuracy. Frequency: 0 Problem benchcrackstat

number of elements per subboundary

m
ax

im
um

 r
el

at
iv

e 
er

ro
r 

in
 g

ra
di

en
t

displacement/stress
parameter 1
parameter 3
parameter 5
parameter 7
parameter 9
parameter 11

Fig. 12. Number of elements. Evolution of the relative error as the mesh is refined. Static problem.

2606 G. Rus, R. Gallego / Comput. Methods Appl. Mech. Engrg. 196 (2007) 2596–2618



G. Rus, R. Gallego / Comput. Methods Appl. Mech. Engrg. 196 (2007) 2596–2618 2607
9.3.2. Normalization

The normalization means a scaling of the problem in the
sense that the units and magnitudes of the different param-
eters involved in the problem (for example the size of the
flaw with respect to the total size, or the combination of dis-
placement and stress measurements) may affect the solution.
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Whereas Newton and BFGS methods are unaffected
by scaling, the steepest descent and therefore the
trust region models are affected. Therefore, the values
introduced in the algorithms should previously be
modified by an scaling matrix Dx in the form, x̂ ¼
Dxx.
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There is a further effect that one should care. Too differ-
ent magnitudes may also affect the conditioning of the
matrices due to the computer precision, not only in the
optimization algorithms, but also in the BEM calculations.
The solution is similar as before.

9.3.3. Stopping

The stopping criteria is a relevant part of the iterative
search algorithm. The properties of different stopping crite-
ria in numerical optimization algorithms are the following.
Both of the methods are used simultaneously.

• Step: jxk�xk�1j
maxfxk ;typicalxg 6 tolerance. The drawback of this

method is that it may get stuck in local minima (or flat
regions).

• Residual: f 6 tolerance. The drawback of this method is
that it requires the residual to become close to zero.
Fig. 15. Description of crack benchmark. Initial guess.
10. Sensitivity tests

10.1. Comparison with analytical solution. Direct

derivation

The partial results corresponding to the sensitivity coef-
ficients are verified here. A problem with a calculable ana-
lytical solution and sensitivity is the one consisting in a
straight crack in an infinite medium subjected to an uni-
form stress from the end as shown in Fig. 6 can be found
in many fracture mechanics books.

The displacements of the points on the lip of the crack
follow:
ux ¼ 0;

uy ¼
ar2ð1� m2Þ

E

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2

q
being n the local coordinate on the crack, which varies
from �1 to 1.

The sensitivity to the semilength of the crack a in terms
of the material derivative is, evaluated at the boundary of
the hole

ux;a ¼ 0;

uy;a ¼
r2ð1� m2Þ

E

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2

q
:

The errors on the numerical calculations of these values at
the middle point of the crack are shown in Fig. 7, for dis-
cretizations of the crack of 2, 4, 8, 16 and 32 elements. The
value along the crack is also shown for a discretization of
four elements.

Despite the simplicity of the model, the errors in the
numerical figures remain low and converge properly as
the mesh is refined.

10.2. Comparison with numerical solution. Direct derivation

The sensitivity tests are performed using a set of simple
benchmark problems for the sake of reproductibility and
simplility of comparison. The fixed contour consists of a
2 · 2 box of a material with constants E ¼ 1:0; m ¼ 0:2,
q ¼ 1:0. As boundary conditions the baseline is fixed and
the upper side is subjected to an uniform unitary vertical
stress. The crack starts from a straight and centered hori-
zontal line of length 0.8, perturbed by the tip displace-
ment and fourier parametrization vector [�0.30,0.30,
�0.30, 0.70,0.00, 0.20, 0.00,0.00, 0.00,0.00, 0.00,0.00].

In the sequel, and unless other specifications are given,
eight quadratic elements are used for the outer boundary
and eight for the crack. The collocation points are always
placed at 0:2a from the edge of the element, being a the dis-
tance between two geometrical, displacement or stress
nodes.
10.2.1. Dependence of gradient value with frequency

The values of the gradients are shown at several struc-
tured points, in order to allow for the comparison. Two
values are given for each benchmark problem,

(1) dux
dHn

is the variation of the horizontal displacement of
the middle point on the upper side when parameter
n grows (see Section 8.1).

(2) dpx
dHn

is the variation of the horizontal stress vector of
the middle point on the lower side when parameter
n grows.

These values were computed using 32 elements for the
outer boundary and 32 for the crack. The distance for
the finite differences is set to 0:002

x . The division by x is jus-
tified by the equivalent scaling that the change of frequency
implies in the fundamental solutions. The presence of
eigenfrequencies, gives a jagged aspect to the graphics.
An estimation of the same value using finite differences is
made, superimposing it by dots. A perfect agreement is
shown visually, proving that the right value is being calcu-
lated. Therefore, the converging solution for refined meshes
should give the converged solution.
10.2.2. Integration precision

In order to have control over the sources of error we
now study the accuracy of the integration of the boundary
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integral equations. To do this, the Gauss quadrature is
modified.

From Fig. 11 the convergence of an hypersingular inte-
gral (first) and two benchmark problems by increasing the
number of integration points is confirmed. The reference
value is an integral with an extremely high number of
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Fig. 16. Convergence with distance from actual flaw: (a) static excitation, (b
(x ¼ 0:0; 0:5; 1:0; 1:5; 2:0).
points (2500 gauss points for the first and 10 gauss points
combined with an 8� refinement of the discretization).

10.2.3. Number of elements

To finish the study of integration accuracy, the discreti-
zation is varied by increasing the number of elements. Figs.
1
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12 and 13 prove a clear convergence of the solution by
increasing the refinement of the mesh. The reference value
is taken from a sufficiently refined mesh.
10.2.4. Influence of frequency
From Fig. 9 the epsilon (finite difference distance) cho-

sen for all the frequency comparisons is 10�4. The errors
measured in Fig. 14 are the comparison between the ana-
lytic gradient and the one obtained by centered finite differ-
ences. The eigenfrequencies are also shown to visualize the
relationship between the errors at the edge of the eigenfre-
quencies, which may cause the finite difference calculations
to diverge. It is shown that the errors are low even for fre-
quencies comparable to the first eigenfrequency (see
Fig. 10).

Unlike other examples, the reference value need not be
close to the exact solution of the physical problem, but to
the finite difference estimation for the same level of mesh-
ing. Crack problems show higher discordancies. Looking
closer at the figure, this only appears to happen for the last
parameters, which involve highly warped geometries. As
seen in the following figures, there are higher errors at a
low number of elements, but all are rapidly reduced by a
sufficient mesh refinement. Another relevant effect is that
the errors become higher at low frequencies, which may
be due to the numerical difficulties for the numerical con-
vergence of the dynamic fundamental solutions of the
BEM to the static ones in the 2D case.
11. Inverse problem solution

11.1. Convergence tests using Levenberg–Marquardt

algorithm and direct derivation

The benchmark problem used at the sensitivity test by
direct differentiation is used for the complete solution of
an identification inverse problem using a least squares min-
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Fig. 17. Convergence with different numb
imization algorithm: the Levenberg–Marquardt method
with line search and gradient supply.

The starting configuration or initial guess is the corre-
sponding to Fig. 15. The final configuration to be sought
is shown in Fig. 8.

The fixed boundary consists of a 2 · 2 box of a material
with constants E ¼ 1:0; m ¼ 0:2, q ¼ 1:0. As boundary con-
ditions the baseline is fixed and the upper side is subjected
to an uniform unitary vertical stress. The initial crack is a
horizontal centered segment of length 0.8, and the final
crack is defined by x ¼ �0:7þ 0:8k; y ¼ 0:3þ 0:4kþ
0:2 sinð2pkÞ, where the parameter k goes from 0 to 1. The
discretization is the same as for the sensitivity tests.
The used parametrization is the fourier crack parametriza-
tion.

The identification is made increasing gradually the num-
ber of parameters. They are increased stepwise in so called
restarts. In each of them, the search algorithm is run for a
particular subset of the parameters, and leaving the
remaining fixed at zero value. In the following step, the
search algorithm is run again with an increased subset of
parameters, and using as initial guess the output value in
the preceding step. A total of four restarts are carried
out, selecting the parameters listed in the legend. The max-
imum number of iterations per restart is limited to 20, and
the maximum increment in the value of each parameter is
limited to 0.2 in order to limit possible divergences, using
the arcTan remapping. The stopping criteria is DP ¼ 0:001.

Three plots are made for each benchmark problem: one
corresponding to the search with static data; one corre-
sponding to the values at frequency x ¼ 1:0, and a third
graphic with simultaneous data measured at frequencies
x ¼ f0:0; 0:5; 1:0; 1:5; 2:0g.
11.1.1. Relationship between convergence and distance

The scope of convergence for each problem at each fre-
quency is verified in this section. For this purpose, the
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number of iterations (when converged) are plot for a num-
ber of initial guess distances from the real solution. This
distance is simply defined by scaling the parameter vector
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Fig. 18. Convergence with errors: (a) static excitation, (b) single
ðx ¼ 0:0; 0:5; 1:0; 1:5; 2:0Þ.
that defines the initial configuration from the final one.
Fig. 16 shows the necessary iterations for the convergence
placing the initial guess at a proportional value between
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the zero-vector and the final parameter. In the case of
absence of convergence, the corresponding point is not
plotted. It should be noted that the convergence is not nec-
essary to the real result. The partial results at each restart
are plotted.

One may observe that the necessary iterations increase
more or less gradually with the distance and consequent
difficulty of the search. A high number of iterations
is needed for the search of cracks, even at simple
parametrizations.

Another interesting point is that, as expected, the suc-
cess in a particular restart is critical for the success of the
following one. This justifies the used dosage of parameters.

11.1.2. Dependence on the measurements

The number of data supply for an inverse problem is an
important factor. Here we solve the problems with a vary-
ing number of measurements: from a minimum of 8 (on the
half right vertical side), and increasing anti-clockwise along
the outer boundary until 64.

Fig. 17 is made for frequency x ¼ 1:0. The starting
guess is placed at an equivalent distance of 0.2. The number
of measurements does not seem to imply important effects
in the process of convergence. It should be noted that,
unless special regularization techniques are used, the num-
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Fig. 20. Crack identification in a beam: one measurement. Left: de
ber of measurement data should be equal or higher than
the number of parameters in order to allow for the conver-
gence to a realistic solution.

11.1.3. Dependence on the errors

In order to simulate real cases, some errors are intro-
duced in all parts of the model: measurements, geometry
(alteration of the coordinates of each node), elastic modu-
lus, other elastic constants, and frequency. The errors are
defined by a normal distribution of zero mean and variance
defined by the error.

Fig. 18 shows in the vertical axis the final value (i.e. after
search convergence) of the sum of geometrical invariants
error (length, center of gravity, and the 2D intertias, which
gives an indication of how different the guess is from the
real defect) when the problem has a particular value in
the error on either the measurements, the geometry, the
elastic modulus, the other material constants or the fre-
quency, for each curve respectively. The unitary value of
the error is tested at values of 0, 0.005, 0.02, 0.05, 0.10
(i.e., up to 10%).

These examples show that the fitness of the final estima-
tion is rapidly distorted even at small errors, but looking at
the values of the error, the estimation is reasonable, consid-
ering the ill-posedness of the IIP problem.
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12. Identification of delamination crack position and length

in a beam

This sample problem simulates the search and control of
a crack that appears on a bending beam of size 5 · 1 with
the mechanical properties shown in Fig. 19. In addition,
the density is 1.0 and the damping ratio 10% throughout,
for frequency x ¼ 1:0. A set of five nodes is measured,
on the area shown in figure of the first case, when a para-
bolic load is applied beside, whereas the second case is
solved for a single measurement of the vertical displace-
ment at the depicted node.

This may simulate the search of a delamination in an
isotropic composite beam of an airplane wing, for instance.
In Fig. 19 the correct convergence is shown after 7 + 7 iter-
ations in a first step that allows horizontal movement, and
a second step with all three parameters.

The wave analysis is used as before to this example, giv-
ing the results in Fig. 20. A good convergence is obtained
after 11 + 15 iterations.

13. Conclusions

A procedure for obtaining the gradient or sensitivity of
hypersingular boundary integral equations, the qBIE used
in the BEM (which is also valid for the uBIE) is developed.
The sensitivity is obtained analytically before discretiza-
tion, and before parametrization, with respect to a generic
differential variation field of the geometry.

The conditions required by all the kernels, weights, dis-
cretization and parametrization are studied, assuring the
applicability. Besides, all the necessary tools for the numer-
ical implementation have been developed and tested.

The numerical values converge well in statics and steady
state dynamics, both in simple and complex problems. The
convergence of the gradient values while improving the dis-
cretization is steady in every example, at similar rates to the
solution of the direct problems. This fact together with a
visually identical value in comparison with the gradient
estimation by finite differences indicates that the correct
values are being obtained.

In fact, the finite differences (FD) method seems to fail
in the low frequency dynamic problems, since a large finite
distance amplifies second order effects, whereas small val-
ues are unstabilizing rapidly due to low frequency-related
numerical inaccuracies in the direct problem. This inaccu-
racy together with the higher computational cost of FD
recommends the use of direct differentiation.

The functionality is confirmed by the application to the
solution of complete inverse problems by the Levenberg–
Marquardt method. The test of convergence has been made
including all the possible errors: measurement, model,
geometry and frequency, attaining good results. The scope
of convergence has been systematically studied by explor-
ing the range of distances from which the correct solution
is reached, in order to show the capabilities and reliability
of the method.
Finally, a technique for identification based on the study
of the steady state waveform is presented. It consists on the
harmonic decomposition of the response to a non-sinusoi-
dal harmonic excitation. This allows the measurement of
only one point, and allows for much lower computational
cost than transient analysis, as well as higher precision in
the measurements.

Appendix A. Free terms

A.1. Order of singularity

The basic integral equations before the limit to the
boundary (for n internal) are the following, and the order
of each integrand when n approaches x are studied for a
correct treatment of the integrals.

qBIE:

di
kqkðnÞ

þ
Z

C
di

jkðx; nÞnjðnÞqkðxÞ � si
jklðx; nÞnjðnÞnlðxÞukðxÞ

h i
dCðxÞ

¼ 0 ðn internalÞ
dqBIE:

di
kdqkðnÞ þ

Z
C
½di

jkðx; nÞnjðnÞdqkðxÞ

� si
jklðx; nÞnjðnÞnlðxÞdukðxÞ�dCðxÞ

þ
Z

C
½ðdi

jkðx; nÞnjðnÞqkðxÞ � si
jklðx; nÞnjðnÞnlðxÞukÞdJðxÞ

þ ðdi
jkðx; nÞqk � si

jklðx; nÞnlðxÞukðxÞÞdnjðnÞ
þ ðdi

jk;mðx; nÞnjðnÞqkðxÞ � si
jkl;mðx; nÞnlðxÞnjðnÞukÞdrmðx; nÞ

� si
jklðx; nÞnjðnÞukdnlðxÞ�dCðxÞ

¼ 0 ðn internalÞ

di
jkðx; nÞnjðnÞqkðxÞ r�1
A.2. Free terms calculation

The resulting free terms are the following, in the case of
a smooth boundary at the collocation point.



2614 G. Rus, R. Gallego / Comput. Methods Appl. Mech. Engrg. 196 (2007) 2596–2618
A.2.1. Free terms for the qBIE

(1) lim
e!0þ

Z
s

si
jklðx; nÞnjðnÞnlðxÞukðxÞdC
e

¼ nlujIQ1i
jl lim

e!0þ

1

e
þ nluj;kQ1i

jkl;

lim
e!0þ

Z
se

di
jkðx; nÞnjðnÞqkðxÞdC ¼ nlrjkQ2i

jkl:
(2)
he terms nluj;kQ1i
jkl þ nlrjkQ2i

jkl group into � 1
2
di

kqkðnÞ
T
taking into account that qk ¼ rjknjðxÞ ¼ ðkdjkum;mþ
lðuk;j þ uj;kÞÞnjðxÞ.

In the qBIE and dqBIE there are some terms that tend to
infinite when the radius e disappears (terms in lime!0þ

1
e).

Since all equations should take finite values in order to
have a physical sense, the sum of all those terms cancel
out with similar divergent terms in the integral along
C� Ce. The infinite terms are named with a starting initial
I (e.g. IQ1 is the Infinite free term of the qBIE number 1).

A.2.2. Free terms for the dqBIE

(1) lim
e!0þ

Z
si

jklnjðnÞukdnlðxÞdC

se
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jklm lim

e!0þ

1

e
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(2)
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e
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Z
se
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jl lim
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e
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jkl;

lim
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Z
se

�di
jk;mnjðnÞqkdrm dC ¼ njrkmdxl;nDQ8i

jklmn;
(4)
lim
e!0þ

Z
�di

jknjðnÞdqk dC
(5)

s
e

¼ nldrjkDQ12i
jkl þ dnlrjkDQ13i

jkl;

lim
e!0þ

Z
se

si
jklnjðnÞnlðxÞukdJ dC
(6)
¼ njukdxl;mIDQ3i
jklm lim

e!0þ

1

e
þ njuk;mdxl;nDQ3i

jklmn

þ njukdxl;nDQ7i
jklmn;

lim
e!0þ

Z
se

�di
jknjðnÞqkdJ dC ¼ njrkmdxl;nDQ9i

jklmn;
(7)
lim
e!0þ

Z
se

si
jklnlðxÞukdnjðnÞdC
(8)
¼ dnlujIDQ4i
jl lim

e!0þ

1

e
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lim
e!0þ

Z
se

�di
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The terms dnluj;kDQ4i
jkl þ dnlrjkDQ10i

jkl group into
� 1

2
di

krklðnÞdnlðnÞ taking into account that qk ¼
rjknjðxÞ ¼ ðkdjkum;m þ lðuk;j þ uj;kÞÞnjðxÞ.

Terms nlduj;kDQ11i
jkl þ nldrjkDQ12i

jkl also group into
� 1

2
di

kdrklðnÞnlðnÞ for the same reason. These last two
grouped terms reduce further to � 1

2
di

kdqk.
The sum of terms in DQ8i

jklmn;DQ9i
jklmn;DQ13i

jkl should
be equal to zero, although this has still not been confirmed
analytically.

It would make no sense to write the dqBIE for non-
smooth points since it should be written for points within
the elements, which are smooth.

Appendix B. Regularization of integrals

When the collocation point is not placed on the inte-
grated element, a regular Gauss quadrature formula can
be utilized.

B.1. Singular points

As it uses to happen with integral equation methods, the
integrals have singularities of different orders. After the
limiting process the integrals are defined outside the artifi-

cial ball around the pole, and divided into a first one that
may have a singularity, and turns to be a Cauchy Principal
Value (CPV:

R b
a CPV ¼ lim�!0ð

R��
a þ

R b
�
Þ), and a second

integral that tends to a so called free term, calculated in
the appendix:Z

C
f dC ¼ lim

�!0

Z
C�C�

f dC

� �
þ lim

�!0

Z
C�

f dC

� �
:

When some values at this point tend to infinite, the first
term has singularities: log 1

x ;
1
x ;

1
x2. In order to be able to

compute them numerically in an efficient way, we need to
use a combination of two techniques:

• Decomposing the kernel in a sum of a regular part (con-
tinuous and differentiable, and not tending to infinite),
which will be integrated numerically, and a simpler sin-
gular part, to be integrated analytically (

R
¼
R

regular
þR

analytic
).

• Placing the collocation points a bit separated from the
ends of the elements when necessary. As proved later,
this will not be needed for this formulation as long as
the varying geometry is smooth.

• Integrating by special gauss quadratures:
Z
ln

1

x

� �
f ðxÞdCðxÞ ¼

X
g¼gauss

xln
g f ðnln

g ÞJ :
The four different types of integrals that arise here are
computed as follows:
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B.2. Regular

This arises when the kernel of the integral is bounded
and Holder continuous, with finite derivative in the whole
range. We use a simple gauss quadrature with a variable
change:Z

C
f ðsÞds ¼

Z 1

�1

JðnÞf ðsðnÞÞdn ¼
X

g¼gauss

JðnÞxgf ðsðngÞÞ:
CPV Regular

Fig. B.1. Steps in the regularization of 1-singular integrals.
B.3. Log-singular

This appears when the integral has the formR
C f ðsÞ þ gðsÞ log 1

rðsÞ ds, where f and g are also bounded
and Holder continuous. We utilize the special gauss
quadratureZ

C
f ðsÞ þ gðsÞ log

1

rðsÞ ds

¼
X

g¼gauss

JðnÞxgf ðsðngÞÞ

þ
X

g¼gauss

JðnÞxggðsðngÞÞ log
Absðng � nodÞJðnÞ

rJ lnðnÞ

� �

þ
Xleft

g¼gauss

J lnxln
gðsðnln

g ÞÞ
log 1

r

þ
Xright

g¼gauss

J lnxln
gðsðnln

g ÞÞ
log 1

r

;

where J lnðnÞ ¼ JðnÞð1þAbsðnodÞÞ, and nod is the value of
n where the singularity appears.

B.4. 1
r Singular

This means that the integral has the form
R

C
f ðsÞ
rðsÞ ds,

where f is again bounded and Holder continuous. Two
methods are mainly used in the literature, one from Gal-
lego [37],Z b

a

f ðsÞ
rðsÞ ds ¼

Z b

a

f ðsÞ � f ðs0Þ dr
ds

rðsÞ dsþ f ðs0Þ
Z b

a

dr
ds

1

rðsÞ ds

¼
Z b

a

f ðsÞ � f ðs0Þ
riðsÞ

oyiðsÞ
on

rðsÞJðsÞ

rðsÞ dsþ f ðs0ÞðLnðrðbÞÞ

� LnðrðaÞÞÞ

and one from Guiggiani [38]Z b

a

f ðsÞ
rðsÞ ds ¼

Z b

a

f ðsÞ
rðsÞ �

f ðs0Þ dn
ds

n� n0

 !
ds

þ f ðs0Þ
Z b

a

dn
ds

1

n� n0

ds

¼
Z b

a

f ðsÞ
rðsÞ �

f ðs0Þ
JðsÞðn� n0Þ

� �
ds

þ f ðs0ÞðLnjnðbÞj � LnjnðaÞjÞ:

We propose a simpler variation of this technique inspired
in the work by Fettis [39]. It is based in two principles:
• The Cauchy Principal Value consists of e valuating the
integral excluding a symmetric and arbitrarily small
boundary around the singularity. The singular kernel
can be expressed in terms of its series expansion, giving:
f ¼ a

r þ bþ cxþ dx2 þ � � � Using the property that the
terms of order 2n� 1 are antimetric, ðrÞ2n�1 ¼
�ð�rÞ2n�1, we can decompose the integral in two parts
and do the specular range of one of them in order to
get the antimetric terms, which will vanish. Among these
terms, the singular one a

r is one of the vanishing termsZ 1

�1

f ðxÞdx ¼
Z �e

�1

f ðxÞdxþ
Z 1

e
f ðxÞdx

¼
Z 1

e
f ð�xÞdxþ

Z 1

e
f ðxÞdx

¼
Z 1

e
ðf ðxÞ þ f ð�xÞÞdx

the terms involved areZ 1

e
ðf ðxÞ þ f ð�xÞÞdx

¼
Z 1

e

a
x
þ bþ cxþ dx2 þ � � �

� ��
þ � a

x
þ b� cxþ dx2 � � � �

� ��
dx

¼
Z 1

e
ð2bþ 2dx2 þ � � �Þdx

which is bounded at the singularity and may be written asZ 1

e
ð2bþ 2dx2 þ � � �Þdx ¼

Z 1

0

ð2bþ 2dx2 þ � � �Þdx

¼
Z 1

0

ðf ðxÞ þ f ð�xÞÞdx:

• We apply a change of variable in order to center the sin-
gularity, transforming any collocation point in natural
coordinates into zero. The main property this change
needs is to keep the continuity and the derivability over
the range, especially at the singularity. The simplest
change found is the following:

nðtÞ¼ signðncÞ 1�ð1�jncjÞð1� signðncÞnÞe�Ln 1
1�jnc j

signðn0Þt
h i

:

The process can be schematized in Fig. B.1. Therefore
the integral is done as
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I ¼
Z

C
AdC ¼

Z 1

�1

AðnÞJðnÞdn ¼
Z 1

0

F ðtÞ � F ð�tÞdt;

where

A¼ /
r
; J ¼ dC

dn
; J 1ðtÞ ¼

dn
dt
;

F ðtÞ ¼ AðnðtÞÞJðnðtÞÞJ 1ðtÞ;

nðtÞ ¼ signðncÞ 1� ð1� jncjÞð1� signðncÞnÞe�Ln 1
1�jnc j

signðn0Þt
h i

;

J 1ðtÞ ¼ ð1� jncjÞ 1þLn
1

1� jncj
ð1� signðncÞnÞ

� �
e�Ln 1

1�jnc j
signðn0Þt:
B.5. 1
r2-Singular

Following the method for computation of hypersingular
Kernels completely defined by Guiggianni [38], one may
use the formulas,

I ¼ lim
e!0þ

Z
Cs�Se

Aðy; xÞdCðxÞ þ B
e

	 

I ¼

X2

m¼1

Z 1

�1

F mðg; nÞ � F m
�2ðgÞ
ðn� gÞ2

þ F m
�1ðgÞ

n� g

 !" #
dn

(

þF m
�1ðgÞ ln

2

bmðgÞ

���� ����signðn� gÞ

�F m
�2ðgÞ signðn� gÞ cmðgÞ

bmðgÞ
2
þ 1

2

" #)

(g ¼ 1 for m ¼ 1, and g ¼ �1 for m ¼ 2) when the singular-
ity is placed between two elements and, in the case of a
mid-node collocation point,

I ¼
Z 1

�1

F ðg; nÞ � F �2ðgÞ
ðn� gÞ2

þ F �1ðgÞ
n� g

 !" #
dn

þ F �1ðgÞ ln
1� g
�1� g

���� ����� F �2ðgÞ �1

1� g
þ 1

�1� g

� �
(g 2 ð�1; 1Þ) where y and g are the collocation point in real
and local coordinates, and x and n are the integration point
in real and local coordinates (�1 6 n 6 1). The terms bm

and cm account for the distortion by the local coordinates
transformation of the originally symmetric vicinity of the
collocation point

F ðg; nÞ ¼ AðyðgÞ; xðnÞÞJ mðnÞ ¼ F �2ðgÞ
ðn� gÞ2

þ F �1ðgÞ
n� g

þOð1Þ;

bm ¼
1

J mðgÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ox1

on

� �2

þ ox2

on

� �2
r ;

cm ¼ �
ox1

on
o2x1

on2 þ ox2

on
o2x2

on2

2J mðgÞ4
¼ �

ox1

on
o2x1

on2 þ ox2

on
o2x2

on2

2 ox1

on

� �2

þ ox2

on

� �2
	 
2

:

An alternative method was later proposed by Saez and
Gallego [37], and reads in the case of a collocation point in-
side the element,

I ¼
Z

C

1

r2

drðxÞ
dC

���� ���� /ðxÞ � /ðxcÞ � r
d/ðxcÞ

dr

� �
dC

� /ðxcÞ
1

R1

þ 1

R2

� �
þ d/ðxcÞ

n
1

JðxcÞ
ln

R2

R1

� �
;

where

Aðx; yÞ ¼ 1

r2
/ðxÞ;

/ðxÞ ¼ /ðxcÞ þ r
d/ðxcÞ

dr
þOðr2Þ;

d/ðxcÞ
dr

¼ d/ðxcÞ
n

1

JðxcÞ
sign

drðxcÞ
dC

� �
:

We propose and use a development from the idea of Fettis
[39] that yields the following formula, whose main advan-
tage is that it does not require the calculation of a further
derivative of the kernel. The main advantages of the change
of variable is that it annihilates the free terms by its symme-
try, and moreover it simplifies the integrals to only a regu-
lar one without need for a second asymmetric one, as done
in [39].

The integral is eventually implemented as

I ¼
Z

C
A dC ¼

Z 1

�1

AðnÞJðnÞdn

¼
Z 1

0

F ðtÞ � F ð�tÞ
t

dt � /ðxcÞ
1

rð1Þ þ
1

rð�1Þ

� �
;

where

A¼ /
r2
; J ¼ dC

dn
; J 1ðtÞ ¼

dn
dt
;

F ðtÞ ¼
GðnðtÞÞ �G0ðnðtÞÞ drðnðtÞÞ

dC

��� ���
t

0@ 1AJðnðtÞÞJ 1ðtÞ;

GðnðtÞÞ ¼ AðnðtÞÞt2; G0ðnðtÞÞ ¼ /ðncÞ
t2

r2ðnðtÞÞ ;

nðtÞ ¼ signðncÞ 1� ð1� jncjÞð1� signðncÞnÞe�Ln 1
1�jnc j

signðn0Þt
h i

;

J 1ðtÞ ¼ ð1� jncjÞð1þLn
1

1� jncj
ð1� signðncÞnÞÞe�Ln 1

1�jnc j
signðn0Þt;

dr
dC

���� ����¼ r1t1 þ r2t2

r

��� ���:
The sign should always be nonzero for any argument.

This formula can be derived in the following way. The
basic steps if the regularization itself are shown in
Fig. B.2. The Hadamard finite part is defined as an integral
in which some infinite term is eliminated,



RegularCPVFP

Fig. B.2. Steps for regularization of 2-singular integrals.
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I ¼
Z FP

C
A dC ¼

Z FP

C

/ðsÞ
r2ðsÞ dCðsÞ

¼ lim
e!0

Z sc�e

si

/ðsÞ
r2ðsÞ dCðsÞ þ

Z sf

scþe

/ðsÞ
r2ðsÞ dCðsÞ

�
�/ðscÞ

1

rð�eÞ þ
1

rðeÞ

� ��
:

If we develop the kernel with a simplified notation,

I ¼
Z FP

C
A dC ¼

Z FP

C

/t2

r2

t2
dC

¼
Z CPV

C

/t2

r2 � /ct2

r2
dr
dC

�� ��
t2

dCþ
Z FP

C

/c

r2

dr
dC

���� ����dC:

Here, G ¼ /t2

r2 , doing the symmetric change of variable,
doing the same considerations as for the 1

r integrals, and

defining F ¼
/t2

r2 �
/c t2

r2 j
dr
dCj

t ,

I ¼
Z 1;CPV

�1

/t2

r2 � /ct2

r2
dr
dC

�� ��
t2

JJ 1 dt

þ lim
e!0

/c
1

rð�eÞ2
� 1

rð�1Þ2
� 1

rð1Þ2
þ 1

rðeÞ2

" #

� lim
e!0

/c
1

rð�eÞ2
þ 1

rðeÞ2

" #by FP definition

¼
Z 1

0

F ðtÞ � F ð�tÞ
t

dt � /c
1

rð�1Þ2
þ 1

rð1Þ2

" #
:

Some considerations are useful:

• G is bounded and Hölder continuous.
• F is bounded and Hölder continuous.
• The kernel of the integral F ðtÞ�F ð�tÞ

t is bounded and Höl-
der continuous, and the range of the integral may be
modified from tðeÞ ! 1 to 0! 1.

More references about the basics on integration, Krom-
mer [40] and Lutz [41], computation of bessel functions
[42,43] and regularization can be found, in order of appear-
ance, in [44,45,39,46–52].
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[37] A. Sáez, R. Gallego, J. Domı́nguez, Hypersingular quarter-point
boundary elements for crack problems, Int. J. Numer. Methods
Engrg. 38 (1995) 1681–1701.

[38] M. Guiggiani, Direct evaluation of hypersingular integrals in 2D
BEM, in: W.H. Vieweg (Ed.), Proc. 7th GAMM Seminar on
Numerical Techniques for Boundary Element Methods/Notes in
Numerical Fluid Mechanics, vol. 333, Kiel, Germany, 1991, pp. 23–34.
[39] H.E. Fettis, Expressions for divergent integrals in terms of convergent
ones, in: G. Hammerlin (Ed.), Numerical Integration International
Series of Numerical Mathematics, Birkhauser, 1991.

[40] A.R. Krommer, C.W. Ueberhuber, Computational Integration,
SIAM, 1998.

[41] E.D. Lutz, Numerical methods for hypersingular and near-singular
boundary integrals in fracture mechanics, Ph.D. thesis, Cornell
University, Ithaca, New York, USA, 1991.

[42] I.S. Gradshteyn, I.M. Ryzhik, Table of Integral, Series, and Products,
Academic Press, 1963.

[43] M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions,
Dover, 1964.

[44] L. Jun, G. Beer, J.L. Meek, Efficient evaluation of integrals of order
1/r, 1/r2, 1/r3, using Gauss method, Engng. Anal. 2 (1985) 118–123.

[45] J.C.F. Telles, A self-adaptative coordinate transformation for efficient
numerical evaluation of general boundary element integrals, Int. J.
Numer. Methods Engrg. 24 (1987) 959–973.

[46] M. Guiggiani, G. Krishnasamy, F.J. Rizzo, T.J. Rudolphi, Hyper-
singular boundary integral equations: a new approach to their
numerical treatment, in: L. Morino, R.P. . Springer (Eds.), Proc.
IABEM Symposium/Boundary Integral Methods, Rome, Italy/
Berlin, Germany, 1990, pp. 211–220.

[47] M. Guiggiani, G. Krishnasamy, T.J. Rudolphi, F.J. Rizzo, A general
algorithm for the numerical solution of hypersingular boundary
integral equations, J. Appl. Mech. 59 (1992) 604–614.

[48] T. Rudolphi, The use of simple solutions in the regularization of
hypersingular boundary integral equations, Math. Comput. Modell.
15 (3-5) (1991) 269–278.

[49] V. Saldek, J. Sladek, M. Tanaka, Regularization of hypersingular
and nearly singular integrals in the potential theory and elasticity,
Int. J. Numer. Methods Engrg. 36 (1993) 1609–1628.

[50] Q. Huang, T. Cruse, Some notes on singular integral techniques in
boundary element analysis, Int. J. Numer. Methods Engrg. 36 (1993)
2643–2659.

[51] N.A. Dumont, On the efficient numerical evaluation of integrals with
complex singularity poles, Engrg. Anal. Bound. Elem. 13 (1994) 155–
168.

[52] M. Tanaka, V. Sladek, J. Sladek, Regularization techniques applied
to boundary element methods, Appl. Mech. Rev. 47 (10) (1994) 457–
499.

http://www.cs.wpi.edu/~matt/cs563/talks/nurbs.html
http://www.cs.wpi.edu/~matt/cs563/talks/nurbs.html
http://www.geocities.com/CapeCanaveral/Launchpad/7394/
http://www.geocities.com/CapeCanaveral/Launchpad/7394/
http://www.mathworks.com
http://www.mathworks.com

	Hypersingular shape sensitivity boundary integral equation for crack identification under harmonic elastodynamic excitation
	Introduction
	Boundary integral equations
	Derivation of the  \delta qBIE
	Variation of the boundary differential and the normal vector
	Variation of the boundary differential
	Variation of the normal vector

	Variation of the integral equation
	Limit to the boundary
	Kernels '  singularity and continuity requirements
	Boundary decomposition and free terms
	Free terms

	Numerical solution of the stress sensitivity BIE
	Parameterization of the variation of a crack shape
	Linear deformation field
	Fourier parametrization
	Numerical evaluation

	Solution of the inverse problem
	Residual
	Cost functional
	Selection of minimization algorithm
	Levenberg-Marquardt and trust region approach (TRA)
	Normalization
	Stopping


	Sensitivity tests
	Comparison with analytical solution. Directderivation
	Comparison with numerical solution. Direct derivation
	Dependence of gradient value with frequency
	Integration precision
	Number of elements
	Influence of frequency


	Inverse problem solution
	Convergence tests using Levenberg-Marquardt algorithm and direct derivation
	Relationship between convergence and distance
	Dependence on the measurements
	Dependence on the errors


	Identification of delamination crack position and length in a beam
	Conclusions
	Free terms
	Order of singularity
	Free terms calculation
	Free terms for the qBIE
	Free terms for the  \rdelta qBIE


	Regularization of integrals
	Singular points
	Regular
	Log-singular
	 {{1}\over{r}}  Singular
	 {{1}\over{{r}^{2}}} -Singular

	References


