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Abstract

In many inverse and optimization problems, the computation of the gradient of the response—displacements and tractions—at the

boundary of specimens due to a variation of the geometry is needed. Since finite difference techniques are error prone due to the difference

parameter and are computationally expensive, a formulation to compute this gradient by direct differentiation is developed based on the

boundary integral equation used for the standard Boundary Element Method.

The formulation is implemented and tested for the case of arbitrarily shaped cavities and inclusions in a bounded or unbounded solid in the

case of harmonic elastodynamics in 2D. The formulation is developed and studied independently of the discretization and of the

parametrization of the change of geometry. The gradient is compared to some simple analytically solvable problems as well as complicated

ones solved by centered finite differences for the sake of comparison. All of the cases give very stable and accurate results, both in static and

dynamic elasticity.
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1. Introduction

A direct problem can be stated as the calculation of the

response (certain field v) given the geometry of the domain

(U with boundary G), mechanical properties (k), physical

model (operator L), sources (b), and boundary conditions

(some known values of v or its dual variable, say q). In

opposition to this, an inverse problem is one in which part of

the information above is unknown. If a generic direct

problem is defined as,

LðkÞv Cb Z 0 on U (1)

different inverse problems can be stated depending on the

nature of the unknown (see [11]). To find the missing

information, additional data about the response has to be

provided, besides the boundary conditions. This additional

data yex is obtained experimentally at some points of the

domain or its boundary G.
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This paper is aimed at the solution of the so called

identification inverse problem (IIP), where the unknown is

the shape of the domain. This problem arises in many

branches of science and engineering, but the interest of the

authors is mainly the development of computerized non-

destructive techniques, aimed at the detection of flaws inside

a unreachable part of a mechanical or structural element.

A general inverse problem can be written alternatively

as,
(1)
 the solution of a set of implicit nonlinear equations called

observation equations, that relate some properly chosen

design variables z and the experimental data, yex,
FðzÞ Z yex
(2)
 or as an optimization problem, where the residual of the

former set of equations is minimized,
min
z

1

2
kFðzÞKyexk2
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In both cases, the most effective solution algorithms use

sensitivity information (gradient), which should be com-

puted accurately and efficiently.

To perform this computation, besides the obvious but

time-consuming finite differences approach, two analytical

tools are available: Direct Differentiation Method and

Adjoint State Approach. The first one was used by

Nishimura [15], Meric [14], Aithal and Saigal [1], Mellings

and Aliabadi [13], Lee and Kwak [12], Rus and Gallego [16]

and is based on the direct differentiation of the equations,

with respect to the geometrical parameters which define the

unknown flaw.

On the other hand Bonnet et al., in a series of papers [3–

5], applied to the Boundary Integral Equations in elasticity

and elastodynamics the Adjoint State Approach. The same

approach was used by Burczynski [7] and compared to the

direct differentiation.

In this paper a sensitivity boundary integral equation or

variation boundary integral equation is developed, to

obtain the sensitivity of displacement and tractions in a

harmonic elastodynamics state due to changes in the

geometry of an internal cavity or inclusion. The equation

is obtained by series expansion and linearization, follow-

ing a procedure first proposed by Tanaka et al. [18] for

potential problems, and Saigal et al. [1] for static

elasticity. In these papers some terms where missing and

a first complete formulation was presented for potential

problems by Gallego et al. in 1998 [9]. The final equation

should be equivalent to that obtained by Bonnet et al. [4]

using material differentiation, but no attempt has been

made yet to demonstrate this point.

The obtained equations are thoroughly tested numeri-

cally to demonstrate the accuracy of the procedure for the

shape gradient computation.
2. Boundary integral equations

In a domain U bounded by G, the displacement integral

equation (or uBIE, see [6]) can be written as,

ci
kðyÞukðyÞC

ð
G

½qi
kðx;yÞukðxÞKui

kðx;yÞqkðxÞ�dGðxÞZ0 (2)

where,
uk(x)
 k-th component of the displacement vector in the

actual state at the observation point x.
qk(x)
 sjk(x)nj(x) traction in the actual state at point x.

sjk(x) is the stress tensor and nj the outward normal.
ui
kðx;yÞ
 k-th component of the displacement vector at the

observation point x due to a point load applied in

direction i at the collocation point y (fundamental

solution).
qi
kðx;yÞ
 Zsi

lkðx;yÞnlðxÞ traction of the fundamental

solution.
ci
k
 free term whose value depends on the position of

the collocation point. Thus, ci
kðyÞZdi

k (Kroenecker

delta) if y2U ci
kðyÞ depends on the geometry of the

boundary at y if y2G, and is such that ci
kðyÞZ1=2di

k

when the boundary is smooth (continuous normal)

at y; ci
kðyÞZ0 otherwise.
The fundamental solution for two-dimensional harmonic

elastodynamics is given by

ui
k Z

1

2pm
½jdikKcr;ir;k� (3)

qi
kZ

1

2p
f0K

1

r
c

� �
dikr;jnjCr;ir;kÞK

2

r
cðnkr;iK2r;kr;ir;jnj

� ��

K2c0r;ir;kr;jnjC
c2

p

c2
s

K2

� �
f0Kc0K

c

r

� �
r;ink

�
ð4Þ

where riZxiKyi,rZjrj; r;iZ vr
vxi

. j and c are functions of the

position r and excitation frequency u, given by the

expressions,

jZK0ðksrÞC
1

ksr
K1ðksrÞK

cs

cp

K1ðkprÞ

� �
(5)

cZK2ðksrÞK
c2

s

c2
p

K2ðkprÞ (6)

where, kaZiu
ca
, and cp and cs are the P-waves and S-waves

propagation speeds, respectively; Kn(z) is the modified

Bessel function of order n.
3. Procedure description

The goal is to calculate the variation of the former

integral equation with respect to changes in the geometry of

the boundary G. The geometrical change is described as an

infinitesimal field dx(x), such that the coordinates of a point

x change after the perturbation to ~xiZxiCdxiðxÞ. Note that x

is a generic point on the boundary or/and inside U. This fact,

among others, was overlooked in the cited previous works

[1,18].

The development of this sensitivity integral equation

follows these steps (see illustration in Fig. 1)
(1)
 The displacement integral equation is established both

for the actual domain, and for the perturbed one, with

the collocation point at the interior of the domain (i.e.

y2U but y;G).
(2)
 A series expansion of the variables in the last one in

terms of the infinitesimal perturbation is performed.
(3)
 Terms higher than linear are neglected and the integral

for the actual domain is subtracted.
(4)
 The ensuing integral equation is taken to the boundary

by a careful limiting process as in the standard boundary

integral method.



Fig. 1. Procedure for the sensitivity integral equation.

Fig. 2. Variation of the boundary differential.
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The solution of the ensuing sensitivity boundary integral

equation (or duBIE) provides the values of the sensitivities

of displacements du and tractions dq on the boundary with

respect to a change of the geometry dx. The sensitivity of a

generic cost or objective functional J defined as,

JðGcÞZ

ð
Gq

4uðuÞdGC

ð
Gu

4qðqÞdGC

ð
Gf

jðxÞdG (7)

could be computed simply applying the chain rule,

dJðGcÞZ

ð
Gq

v4u

vu
dudGC

ð
Gu

v4q

vq
dqdGC

ð
Gf

vj

vx
dxdG (8)

assuming that the fractions of the boundary Gq, Gu and Gf are

accessible, and hence fixed.
4. Geometrical sensitivity of the boundary differential

and the normal vector

Before developing the complete duBIE, it is useful to

consider the sensitivity of some geometrical quantities that

arise in the following sections. To do that, the perturbed

domain and any magnitude computed in it, is notated with

an upper tilde. The variation of the normal and the boundary

differential are defined by the equations,

~nZnCdnCh:o:t: (9)
d ~GZð1CdSÞdGCh:o:t: (10)

where h.o.t. stands for higher order terms.
4.1. Variation of the boundary differential

In Fig. 2 the relationship between the boundary

differential at the actual and perturbed domain are shown.

At a boundary point (x the boundary differential is defined

by,

dG2Zdxidxi (11)

After the perturbation xZxCdx, and therefore the differ-

ential fulfills the equation,

d ~G
2
ZðdxiCddxiÞðdxiCddxiÞ (12)

Expanding the product and neglecting terms higher than

linear,

d ~G
2
xdG

2C2dxiddxiZ2dxidxi;jdxj (13)

Taking the square root and neglecting again higher order

terms,

d ~GxdGð1Cdxi;jtitjÞ (14)

where

tiZ
dxi

dG
(15)

are the components of the tangent vector at x. Therefore,

recovering Eq. (10),

dSZdxi;jtitj (16)
4.2. Variation of the normal vector

In Fig. 3 the variation of the normal at a boundary point is

represented. To obtain the variation of the normal vector,

it is more convenient to compute first the variation of the

tangent vector. Their components after the perturbation are,

~tiZ
d~xi

d ~G
Z

dxiCddxi

dGð1CdSÞ
(17)

Expanding Eq. (17) and neglecting terms higher than linear,

~tixtiKtidSCdxi;jtj (18)



Fig. 3. Differential geometrical in the vicinity of x.

G. Rus, R. Gallego / Engineering Analysis with Boundary Elements 29 (2005) 77–9180
Since only the non-parallel component affects the variation

of the normal, the second term is dropped out,

~tixtiCdxi;jtj (19)

Now, the normal is perpendicular to the tangent vector,

~nixniC3ikdxk;jtj (20)

where 3ik is the permutation tensor. To maintain the unit

modulus, only the component of the variation perpendicular

to the normal is kept,

~nixniCtitl3lkdxk;jtj (21)

Therefore,

dnxKnjdxj;ktkt (22)

5. Variation of the integral equation

Consider Eq. (2) for a domain point y, i.e. one within the

body U.

uiðyÞC

ð
G

½qi
kðx;yÞukðxÞKui

kðx;yÞqkðxÞ�dGðxÞZ0 (23)

The displacements and tractions change to ~uið~xÞ and ~qið~xÞ
when the geometry is perturbed to ~U. We now define the

variation or sensitivities of displacements and tractions dui

and dqi in,

~uið~xÞZuiðxÞCduiðxÞ (24)

~qið~xÞZqiðxÞCdqiðxÞ (25)

Note that these variations are material, meaning that they

include the change due to the modification of the geometry

(U to ~U), as well as those due to the change in the point of

computation (x to ~x). To find the equations that these

variations fulfill, the integral equation is written for the

perturbed domain,

~uið~yÞC

ð
~G

½qi
kð~x; ~yÞ~ukð~xÞKui

kð~x; ~yÞ~qkð~xÞ�d ~Gð~xÞZ0 (26)

The kernels in this equation are computed at perturbed

points. It is simple to relate them to the kernels at the actual
points by Taylor series expansion,

ui
kð~x; ~yÞZui

kðx;yÞC
vui

k

vxm

dxmC
vui

k

vym

dymCh:o:t: (27)

Taking into account that the kernels are radial functions of

riZxi-yi, then

ui
kð~x; ~yÞZui

kðx;yÞC
vui

k

vrm

dxmK
vui

k

vrm

dymCh:o:t: (28)

or more compactly,

ui
kð~x; ~yÞZui

kðx;yÞCui
k;mdrmCh:o:t: (29)

where the comma stands for derivation with respect to the

coordinates of the observation point x.

For the kernel qi
kð~x; ~yÞ the variation of the normal has to

be taken into account since,

qi
kð~x; ~yÞZ ~sjk

i ð~x; ~yÞ~njð~xÞ (30)

First, by Taylor expansion,

si
jkð~x; ~yÞZsi

jkðx;yÞCsi
jk;mðx;yÞdrmCh:o:t: (31)

and plugging in Eq. (30) this expansion and that of the

normal (Eq. (22)),

qi
kð~x;~yÞZqi

kðx;yÞCsi
jkðx;yÞdnjðxÞCsi

jk;mðx;yÞdrmnjðxÞCh:o:t:

(32)

Finally, the integral along the perturbed domain can be

transformed to the actual domain by,ð
~G

ð.Þd ~GZ

ð
G

ð.Þð1CdSÞdGCh:o:t: (33)

Collecting all the expressions above, substituting them in

the integral Eq. (26), subtracting Eq. (23), and neglecting

terms higher than linear, the following integral equation is

obtained,

duiðyÞC

ð
G

½qi
kðx;yÞdukðxÞKui

kðx;yÞdqkðxÞ�dGðxÞ

Z

ð
G

f½ui
k;mðx;yÞqkðxÞKs

i
jk;mðx;yÞnjðxÞukðxÞ�drm

C½ui
kðx;yÞqkðxÞKqi

kðx;yÞukðxÞ�dSðxÞ

Ksi
jkðx;yÞukðxÞdnjðxÞgdGðxÞ (34)

This integral equation relates the displacement variation at a

domain point y with the variation of displacements and

tractions at the boundary points, and the variation of the

geometry of the boundary.

Note, firstly, that the kernels on the left hand side integral

are those of the original integral Eq. (2). Secondly, in the

integrand in the right hand side appear the same kernels,

their first derivatives, the displacement and tractions on
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the boundary at the actual configuration, and the variation of

the geometry and its derivatives.
6. Limit to the boundary

The integral equation obtained in the previous section

would be useful to compute sensitivities at interior points,

but its boundary counterpart provides the relationship

between the sensitivities of displacements and tractions

along the boundary only and the variation of the geometry.

In order to perform the limit, a point y at the boundary is

considered, and the actual boundary is distorted as shown in

Fig. 4

Carrying out the usual decomposition of the boundary

integral,ð
G

ð.ÞdG/

ð
GKG3

ð.ÞdGC

ð
S3

ð.ÞdG (35)

the limit to the boundary of each term in Eq. (34) can be

computed. The first integral converges in all cases, while the

second tends to zero or yields a free term.

For the left hand side terms in Eq. (34),

lim
3/0

duiðyÞC

ð
G

½qi
kdukKui

kdqk�dG

8<
:

9=
;

Zci
kdukðyÞC

ð
G

½qi
kdukKui

kdqk�dG (36)

where ci
k is the usual free term, since the kernels in this

integral are those of the standard integral equation. The

integrals in the right hand side of this expression are

understood as improper or Cauchy Principal Value. For this

limit to exist, the following expansion should hold,

dukðxÞZdukðyÞCh:o:t: (37)

i.e. duk has to be continuous at y. In addition dqk(x) has to be

bounded.

For the computation of the remaining integrals along the

circular path S3, the order of the kernels has first to be
Fig. 4. Circular distortion around boundary point.
assessed. This analysis leads to,

ui
kðx;yÞZOðlnrÞ si

jk ZO
1

r

� �

ui
k;mðx;yÞZO

1

r

� �
si

jk;mZO
1

r2

� �

To yield a finite integrand the rest of the variables in the

integrands have to be expanded to the proper order. For

instance,

lim
3/0

ð
S3

ui
k;mðx;yÞqkðxÞdrmdS3

ZsjkðyÞdym;l lim
3/0

32

ðq2

q1

ui
k;mnjnldqZ0 (38)

because the order of the integrand is only O(1/3). To arrive

at this result, the expansions,

qkðxÞZnjðxÞsjkðyÞCh:o:t: (39)

drmZdym;lðxlKylÞCh:o:t: (40)

should exist. The facts that dS3Z3 dq and xlKylZ3nl on the

circular boundary have been considered. In the same

manner,

lim
3/0

ð
S3

si
jk;mðx;yÞnjðxÞukðxÞdrmdS3

ZukðyÞdym;l lim
3/0

32

ðq2

q1

si
jk;mnjnldqZt1i

kmlukðyÞdym;l (41)

lim
3/0

ð
S3

ui
kðx;yÞqkðxÞdSðxÞdS3

ZsjkðyÞdSðyÞlim
3/0

3

ð
q2

q1

ui
knjdqZ0 (42)

lim
3/0

ð
S3

qi
kðx;yÞukðxÞdSðxÞdS3

ZukðyÞdym;l lim
3/0

3

ðq2

q1

qi
ktltmdqZt2i

kmlukðyÞdym;l (43)

lim
3/0

ð
S3

si
jkðx;yÞukðxÞdnjðxÞdS3

ZukðyÞdym;l lim
3/0

3

ð
q2

q1

si
jk3hmtjthtldqZt3i

kmlukðyÞdym;l (44)

To arrive at these expressions the following expansions

were considered,

ukðxÞZukðyÞCh:o:t: (45)
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dxmZdymCdym;jðxjKyjÞCh:o:t: (46)

Besides, qk(x) has to be bounded.

Collecting terms, the Sensitivity Boundary Integral

Equation for the displacements (or duBIE) is finally,

ci
kðyÞdukðyÞCti

klmðyÞukðyÞdyl;mC

ð
G

½qi
kðx;yÞdukðxÞ

Kui
kðx;yÞdqkðxÞ�dGðxÞ

Z

ð
G

f½ui
k;mðx;yÞqkðxÞKsi

jk;mðx;yÞnjðxÞukðxÞ�drm

C½ui
kðx;yÞqkðxÞKqi

kðx;yÞukðxÞ�dSðxÞ

Ksi
jkðx;yÞukðxÞdnjðxÞgdGðxÞ (47)

where ti
klmðyÞ is a free term that can be evaluated from Eqs.

(41), (43), and (44). The integrals are understood in the CPV

sense. This equation is valid for any point on the boundary

smooth or not and relates the variations of displacement and

tractions on the boundary to the variation of the geometry.

The second free term appears to have been overlooked in

the literature. At a smooth boundary point this free term

vanishes and the equation simplifies to,

1

2
duiðyÞC

ð
G

½qi
kðx;yÞdukðxÞKui

kðx;yÞdqkðxÞ�dGðxÞ

Z

ð
G

f½ui
k;mðx;yÞqkðxÞKsi

jk;mðx;yÞnjðxÞukðxÞ�drm

C½ui
kðx;yÞqkðxÞKqi

kðx;yÞukðxÞ�dSðxÞ

Ksi
jkðx;yÞukðxÞdnjðxÞgdGðxÞ (48)

6.1. Remarks about the continuity requirements for

boundary variables

For arriving to the duBIE the boundary variables should

fulfill certain conditions demanded by the expansions to the

required order. In Table 1 the continuity requirements are

summarized.
Table 1

Continuity requirements for each variable at the collocation point—means

no conditions to fulfill and C1,a means the Hölder condition, with 0%a!1

Variable In uBIE In duBIE

uk C0,a C0,a

qk Bounded Bounded

skl – C0,a

dxl – C1,a

dul – C0,a

dql – C0,a

dskl – –
These conditions have importance in the discretization

and collocation method used to solve numerically the

equations, since the same conditions should be fulfilled by

the interpolated variables exact or approximately, to avoid

computational errors.
7. Numerical solution of the sensitivity displacement BIE

Standard boundary element techniques are employed to

solve the duBIE. The boundary is divided into a number of

elements, and within each one the geometry, displacements,

tractions and their variations are interpolated quadratically,

where fn are standard quadratic base functions,

xZ
X3

nZ1

fnxn uZ
X3

nZ1

fnun qZ
X3

nZ1

fnqn

duZ
X3

nZ1

fnundqZ
X3

nZ1

fnqn
7.1. Collocation

Using these standard elements, the continuity conditions

fulfilled by the approximation are given in Table 2.

These results show that the collocation points for the

duBIE can be placed at the standard locations, although, to

simplify the computation, at corners, multiple collocation

inside the adjacent elements are performed.
7.2. Parametrization

The variation of the geometry during a step in the

iterative inverse solution is represented by a so called

parameterization, which stands for a representation of the

geometry by a finite set of values. Many inverse problems

are ill-posed: solutions may not exist, there may be

multiple solutions, or they could be non-continuous with

respect to the data. The iterative numerical methods for

highly nonlinear and ill-conditioned equations that deal

with this kind of problems are never guaranteed to

converge, but the ‘probability’ of convergence

highly depend on the number of parameters to search.
Table 2

Continuity fulfillments for each variable at the collocation point. (1)

Depends on the parameterization of the variable boundary. CN is fulfilled

using a continuous variation field, as shown in Section 7.2

Component Between elements Inside elements

uk C0,a CN

qk C0,a CN

skl C0,a CN

dxl (1) (1)

dul C0,a CN

dql C0,a CN

dskl C0,a CN



Fig. 5. Circular flaw in an infinite plate subject to remote uniform loading.

Fig. 6. Convergence of horizontal displacement sensitivity at point A with

increasing number of elements (C analytical solution, K numerical

solution).
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This ill-conditioning is rooted in the physical meaning of

the problem, and to solve this a reduced number of

unknowns is employed, which amounts to a regularization

of the problem.

There is a wide range of alternative parameterizations.

The most usual ones are based on a definition of the complete

geometry by splines of all kinds and orders. In identification

problems, the geometry is usually defined by simple

geometrical entities, in turn defined by a few parameters

(like ellipses defined by the coordinates of the center, the axes

length and an angle of orientation [2,13,19]).

A different approach first put forward by Gallego and

Suárez [8] consists in defining directly the variation field

instead of the geometry, since it is not needed. The

advantage of this approach is that it can be applied to initial

geometries of any shape, and it is not limited, therefore, to

any set of simple shapes.

The variation field dxi expresses the change of position of

each material point,

~xiZxiCdxi (49)

The parametrization is defined as,

dxiðxÞZQigðxÞdPg (50)

in terms of a finite number of parameters dPg and a known

parametrization matrix Qig(x). The simplest parametrization

is described by a constant virtual deformation field. This is

represented by the following parametrization matrix,

ðQigÞZ
1 0 x2Kx0

2 x1Kx0
1 x1Kx0

1 x2Kx0
2

0 1 Kðx1Kx0
1Þ x2Kx0

2 Kðx2Kx0
2Þ x1Kx0

1

" #
(51)

where x0 is an arbitrary point, for instance the centroid of the

flaw. The elements of the parameter vector dPg has the

following physical (virtual) meaning,

ðdPgÞZ

dx0
1

dx0
2

du

d3m

d30

d312

2
66666666666664

3
77777777777775

Z

Variationoffirstcoordinateof thecentroidof theflaw

Variationofsecondcoordinateof thecentroidof theflaw

Angleofrotation

Sphericstrain

Horizontalelongation

Distortion

2
6666666666664

3
7777777777775

(52)
With this parametrization the variable boundary changes as

if it were subject to a constant deformation field, modifying

its shape and location. Regardless of its initial shape

(circular, elliptical, squared, etc.) the same parametrization

can be used. Note that this representation for dxi(x) is CN.
8. Discrete system of equations

Applying the boundary discretization and approximation

to the duBIE and collocating the equation at the nodes,

the left hand side of Eq. (47) leads to,

HduKGdq (53)

where H and G are the standard boundary element matrices,

while du and dq collect the variations of displacements and

tractions at the boundary nodes.

On the other hand, substituting the linear parametrization

on the right hand side of Eq. (47) the following expression is



Fig. 7. Displacement sensitivity along the boundary for different meshes: (a) four elements, (b) eight elements, (c) sixteen element, (d) thirty-two elements.
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Table 3

Error (%) in displacement sensitivities with respect to analytical solution along the boundary for different meshes (NaN: at points where the analytical solution

is nil and the relative error cannot be computed)

Point pos.

(degrees)

Four elements (%) Eight elements (%!10K2) 16 Elements (%!10-3) 32 Elements (%!10K4)

dux duy dux duy dux duy dux duy

0.00000 0.088 NaN 1.287 NaN 1.306 NaN 1.123 NaN

11.2500 4.030 16.66 1.366 15.38

16.8750 2.966 8.153

22.5000 6.626 25.36 2.343 15.46 1.680 7.706

33.7500 5.177 13.15 2.370 6.593

39.3750 3.262 6.135

45.0000 1.365 2.360 6.420 9.515 4.820 8.282 2.658 4.891

56.2500 6.897 8.103 3.365 3.963

61.8750 3.953 4.617

67.5000 12.39 8.086 7.122 0.819 3.173 1.693

78.7500 8.111 4.687 7.162 0.110

84.3750 3.982 2.672

90.0000 3.175 0.932 NaN 5.882 NaN 2.268 NaN 0.061

101.250 8.111 4.687 7.162 0.110

106.875 4.120 4.326

112.500 12.39 8.086 7.122 0.819 3.173 1.693

123.750 6.897 8.103 3.365 3.963

129.375 3.440 5.394

135.000 1.365 2.360 6.420 9.515 4.820 8.282 2.658 4.891

146.250 5.177 13.15 2.370 6.593

151.875 3.259 7.905

157.500 6.626 25.36 2.343 15.46 1.680 7.706

168.750 4.030 16.66 1.366 15.38

174.375 2.635 8.830

Fig. 8. Flaw location and shape (cavity or inclusion).
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obtained,

gU
g
i ðxÞdPg (54)

where,

gU
g
i ðxÞZ

ð
G

½ðui
k;mðx;xÞqkKsi

jk;mðx;xÞnjðxÞukðxÞÞðQigðxÞ

KQigðxÞÞCðui
kðx;xÞqk

Ksi
jkðx;xÞnjðxÞukðxÞÞtktlQlg;k

Ksi
jkðx;xÞukðxÞtitmtl3mkQkg;lðxÞ�dGðxÞ (55)

Applying the equation at every collocation point, the

following system of algebraic equations is obtained,

HduKGdqZDdP (56)

where dP is the parameter set. D is a 2N!M matrix that

contains the elements gUh
i ðxÞ, where N is the number of

nodes and M the number of parameters.

When dealing with inclusions, the subregioning

approach has been used. The duBIE s for the matrix and

the inclusion are established and the equations are coupled

using the equilibrium and compatibility conditions, as in the

standard formulation.
8.1. Computation of the shape sensitivities

Eq. (56) can be solved for an arbitrary value of the

parameters dP. The application of the boundary conditions

for displacement and traction variations yield the same

system matrix A as the standard BEM, since the prescribed



Fig. 9. Modulus of gradient for a variable cavity; continuous lines show the value obtained using duBIE; dots, finite difference values. Upper graph, sensitivity

with respect to dx0
1, lower graph, sensitivity with respect to dx0

2.
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values have zero variation, yielding,

AdvZDdP (57)

where dv groups the variation of displacement and traction

at boundary point where they are not prescribed.

The solutions of this system of equations for each

column of D can be performed and grouped into gJ,
Fig. 10. Modulus of gradient for a variable cavity; continuous lines show the value

with respect to du, lower graph, sensitivity with respect to d3m.
which has the meaning of a shape Jacobian, so that,

dvZgJdP (58)

From a computational point of view, this procedure is

very cheap since the system matrix A is already

computed and factorized to compute the displacement

and traction fields on the boundary, so the computation
obtained using duBIE; dots, finite difference values. Upper graph, sensitivity



Fig. 11. Modulus of gradient for a variable cavity; continuous lines show the value obtained using duBIE; dots, finite difference values. Upper graph, sensitivity

with respect to d3 0, lower graph, sensitivity with respect to d312.
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of the shape jacobian only entails forward and back

substitutions for the M columns of matrix D, where M is

usually a very low number.

Eq. (58) allows the computation of the linear variation of

any boundary displacement or traction for a given virtual

deformation of the flaw. The elements of the shape Jacobian

represent the derivative or sensitivity of the boundary

variables with respect to the shape parameters.
r2Þcos2q
uy

Þcos2qÞsinq
9. Sensitivity tests

In a series of applications the sensitivity is computed and

the results are compared to analytical ones, when available

or with results obtained by central finite differences.

9.1. Circular cavity in an infinite domain in elastostatics

In the first application a simple elastostatic problem is

considered, since its analytical solution is known and the

shape sensitivity can be computed by simple differentiation.

Consider a circular cavity in an infinite domain, (see

Fig. 5), subject to remote uniform tension. The displacement

along the cavity boundary is analytically known [10,17]:

uxZ
scosqða4ð1CnÞKa2ðK3CnÞr2C2r4K2a2ð1CnÞða2K

2Er3

Z
Ksða4ð1CnÞCa2ð1K3nÞr2C2nr4C2a2ð1CnÞða2Kr2

2Er3

where a is the radius of the cavity.
The material derivative with respect to the radius of the

cavity particularized at its boundary is given by,

ux;aZ
3scosq

E

uy;aZ
Kssinq

E

The shape sensitivity has been computed using the duBIE

with respect to the parameter d3m which is equivalent to the

variation of radius. The error of the sensitivity of the

horizontal displacement at point A compared to the exact

solution is shown in Fig. 6, for discretizations of the cavity

of 4, 8, 16 and 32 elements. The collocation strategy is to

move the first and last nodes of the elements inwards by

20% throughout.

The following four graphics show the values of the two

components of the displacement variation for all the nodes

versus the analytical solution in the case of 4, 8, 16 and 16

elements (Fig. 7). In Table 3 the error (%) between the

analytical and the computed solution for the different

meshes is presented.

Note that even with a very coarse mesh (four quadratic

elements), the numerical solution is indistinguishable from
the analytical one. The numerical error is about 1% in this

case as shown in Table 3 below.



Fig. 12. Plate with a cavity: amplification factor for uy(A) vs. the excitation frequency.
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9.2. Comparison with numerical solutions

Sensitivity tests are performed using two benchmark

problems for the sake of reproducibility and simplicity of

comparison. The external shape and boundary conditions of

the known body are common for both problems, one with a

cavity and the other with an inclusion (see Fig. 8).

The fixed contour consists of a 2!2 box of a material

with material properties EZ1.0; nZ0.2, rZ1.0. In the case

of an inclusion, it is made of a softer material with EZ0.5,

and the same remaining material constants. As boundary

conditions, the lower side is fixed and the upper side is

subjected to an uniform unitary vertical stress with varying

frequency. Eight quadratic elements are used to discretize

each of the outer sides of the boundary and 32 for the flaw

boundary, making a total of 64 elements.
Fig. 13. Modulus of gradient for the variable elastic inclusion; continuous lines s

graph, sensitivity with respect to, lower graph, sensitivity with respect to dx0
2.
The boundary of the cavity or inclusion is defined as an

ellipse of center (K0.3, 0.2), semiaxes 0.41 and 0.22, and

inclined 39 degrees with respect to the horizontal axis.

Only at two points the values of sensitivities are shown:

at point A the sensitivity of horizontal displazament, and at

point B the sensitivity of horizontal traction. For the sake of

comparison, the sensitivities are computed by central

differences, using a fine mesh (eight times the number of

elements).

9.2.1. Sensitivity for a variable shape cavity

Figs. 9–11 show the value of the shape sensitivities of

ux(A) and tx(B) with respect to the six shape parameters

defined in Section 7.2. The continuous and discontinuous

lines represent the modulus of the values computed

numerically by the proposed procedure, while the dots are
how the value obtained using duBIE; dots, finite difference values. Upper



Fig. 14. Modulus of gradient for a variable ealastic inclusion; continuous lines show the value obtaine using duBIE; dots, finite difference values. Upper graph,

sensitivity with respect to du, lower graph, sensitivity with respect to d3m.
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the values computed by finite differences using a fine mesh

(using !8 refinement). The results show an excellent

agreement between the values computed with both

procedures.

In Fig. 12 the ratio between the vertical displacement

at point A and the applied stress is plotted, in order to

show the dynamic behavior of the problem. Comparing
Fig. 15. Modulus of gradient for a variable elastic inclusion; continuous lines show

sensitivity with respect to d3 0, lower graph, sensitivity with respect to d312.
this curve with the preceding ones, it is observed that the

maxima of the sensitivity curves do not have any

relationship with the natural frequencies of the plate. No

deterioration close to or at eigen frequencies is observed.

For all the parameters and both variables (ux(A), qx(B)),

the maximum is located at uZ0.72 rad/s, close to but

lower than the third eigen frequency. This third eigen
the value obtained using duBIE; does, finite difference values. Upper graph,



Fig. 16. Plate with a cavity: amplification factor for uy(A) vs. the excitation frequency.
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frequency is actually due to the presence of the cavity,

and therefore about this value the displacements and

tractions are more sensitive to changes in its geometry.

This is therefore a key consideration in the design of the

defect identification experiments.
9.2.2. Sensitivity for a variable shape inclusion

Similar results are shown for the case of an elliptical

inclusion. Figs. 13–16 show the value of the shape

sensitivities of ux(A) and tx(B) with respect to the six

shape parameters of the inclusion. Again, the lines represent

the modulus of the values computed numerically by the

proposed procedure, while the dots are the values computed

by finite differences using a fine mesh. The results show an

excellent agreement between the values computed with

finite differences and direct differentiation, even close to the

first two shown eigenfrequencies.
10. Conclusions

A shape sensitivity Integral Equation has been developed

from the standard displacement Integral Equation through a

linearization procedure. The equation has been carried to the

boundary through a limiting process which leads to a shape

Sensitivity Boundary Integral Equation. This equation

includes a new free term which vanishes for the case of

smooth boundary collocation points, but which appears to

have been neglected previously. It is valid for harmonic

dynamic elasticity in 2D, which is extensible to transient

elastodynamics by a Fourier transform.

All these developments are performed prior to any

consideration about the discretization of the variables or the

geometry, and prior to the parametrization.

The parametrization of the flaws is reduced to a virtual

deformation field, representing linearly the variation of the

geometry, and not the geometry itself. This procedure can be

applied for cavities or inclusions of any shape.

The continuity conditions required by all the kernels, the

discretization and the proposed parametrization are pre-

sented, assuring the applicability. Besides, all the necessary
tools for the numerical implementation have been devel-

oped and checked.

Some tests have been performed to asses the applicability

of the formulation and the accuracy of the proposed

numerical solution procedure. The numerical values match

the analytical ones, as shown for a simple problem with

known exact solution, and converge rapidly to the exact

ones after increasing the number of elements.

For problems with more complex geometries, the results

have been compared to those obtained by central finite

differences, using a fine mesh, and the results again are

indistiguishable.

The procedure allows the computation of sensitivities for

arbitrarily shaped cavities, inclusions and outer domains,

and harmonic dynamic excitation at a range of frequencies.

The accurate and effective computation of shape gradients is

solved with this procedure, and can be integrated with any

gradient base minimization algorithm to solve a general

identification inverse problem.
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