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Abstract

In this paper the most suitable algorithms for unconstrained optimization now available applied to an identification inverse problem in
elasticity using the boundary element method (BEM) are compared. Advantage is taken of the analytical derivative of the whole integral
equation of the BEM with respect to the variation of the geometry, direct differentiation, which can be used to obtain the gradient of the cost
function to be optimized. © 2002 Elsevier Science Ltd. All rights reserved.

Keywords: Inverse problems; Optimization algorithms; Identification of defects; Analytical derivative; Sensitivity equations

1. Introduction

Identification inverse problems (IIPs) arise in the search
of defects in materials and structures (subsurface flaws,
inclusions or cracks), or geological prospections (water,
oil, configuration of layers), among other applications.
They can be tackled with elastic excitation (static displace-
ments, or dynamic displacements in the form of a study of
the propagation of sound or seismic waves), or with electric,
thermal or other flow measurements, described by similar
potential equations.

The identification can be based either on propagation
phenomena (such as elastic deformation, wave propagation,
acoustics, etc.), governed by partial differential equations,
or based on radiation (X-rays tomography, reconstruction
by photography, etc.). In another classification, it is possible
to measure static response, steady state, transient response
and eigenmodes and eigenfrequencies. One may also distin-
guish between acoustic response and acoustic emission
depending on the source of the excitation. The problems
tackled here belong to the class of static elastic field.

Nowadays, most methods used for the solution of the IIPs
are qualitative, requiring either approximations to get analy-
tic solutions or interpretation of the measured data by an
experienced person.
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1.1. Inverse problems

A generic inverse problem can be defined as a counterpart
to the definition of a direct one. If the direct problem is
stated as the calculation of the response (certain field v,
like the displacements, and stress vectors g) in a specific
body defined by its geometry (2, mechanical properties (k),
behaviour model (operator L) and boundary conditions
(some known values of u and g)

L(k)v =¢q on Q)

the nature of the unknown yields the following classification
of inverse problems by Kubo [13]:

e IIP: a part of the geometry ({2). This is the problem we
are dealing with in this paper.

e modelization: the mathematical equations that govern the
behaviour (L).

e reconstruction: the boundary or initial conditions.

e external actions: q.

e material properties: some parameters characterizing the
material (k).

In order to find this data, supplementary information has
to be provided, in the form of some extra measurements of v
or g made on an accessible area of the specimen.

A sensible way to tackle this problem is to define the
geometry, the boundary of the domain, by a discrete or
continuous design variable(s) z. So, the problem can now
be stated as the search of z so that the implicit equation
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L(z, k)v = q holds with v ideally equal to the experimental
values v,

The selection of the design variables z and the simplifica-
tions that can be made are a subject closely related to the so-
called regularization methods. They are mainly aimed at
increasing the conditioning of the problem and making the
ensuing algorithms more convergent, when not convergent
at all. The principle of the regularization is the addition of
information about the variable z in some form (reduction of
unknowns by a parameterization, addition of conditions in
the relationship between parameters or in the geometry,
etc.). The study of the regularization methods is a very
broad and ongoing research area.

The explicit relationship between the primary variable v
and the design variable z will generally not be available as
F(z) = v. However, for a given value z, the variable v will be
computed by a suitable (numerical) method, here the boundary
element method (BEM). Hence for the real values of z, say Z,
F(z) will ideally be equal to v* at the measurement points.

At this point we can see the main difficulties of inverse
problem:

e F(z) may be a set of highly non-linear functions, making
the inverse problem ill posed, and the algorithms to solve
it, unstable and ill conditioned.

e The implication only holds in one direction, so the
solution of z may not be unique. The existence of multi-
ple solutions is a consequence of the non-linearity of F,
but can be increased by an incorrect choice of the design
variable or its parameterization.

e In real cases when the model is not accurately defined
and since the measurements involve unavoidable errors,
the equality F(Z) = v** will be unattainable, i.e. the real
value of v is not v due to experimental errors, and the
real relationship between v and z is not F due to
inaccuracies/errors in the model.

The tools to reduce these effects are known as regulariza-
tion techniques.

1.2. Solution strategies

Two set-ups of the IIP can be considered in order to find a

solution:

e solving directly the observation equation

F(z) =v&*

e minimize a suitably defined cost function f(z), for
instance,
P

1
mi = min —||F — X
zeg}ff(z) ze%l" 2” @ -

The exact solution of the observation equation may be
impossible since the equations may have no or non-unique
solution. On the other hand, some methods to find optimal
solutions, in some projective sense, are shown to be closely
related to the Gauss—Newton method.

In the second and more general approach, the definition
adopted for the cost functional as the L* norm of the residual
simply means that the deviation of the predicted
response from the measured one will be minimal (this
has some statistical interpretations as well, see Refs.
[1,15,20]).

There are several methods that can be applied to solve
inverse problems. A partial classification of them depending
on the scope of the convergence is shown in Fig. 1.

The ideal algorithm should cover all the scope in order to
start from a completely unknown configuration and end up
with any required approximation (1: accuracy). The way to
achieve this at an affordable computational cost (2: effi-
ciency) and a good likelihood to attain a solution (3: conver-
gence) is through several stages ranging from global to local
methods successively.

The methods tested in this paper are the optimization
algorithms, and in particular secant and least squares
methods since they are the most used in the literature.

2. The direct problem

The BEM provides clear advantages in comparison with
the finite element and other methods to tackle this kind of

Global
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Random search
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Techniques for R .
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Initialization

Fig. 1. A classification of inverse problem strategies.



G. Rus, R. Gallego / Engineering Analysis with Boundary Elements 26 (2002) 315-327 317

problem:

e [t does not require a remeshing of the domain at each
iteration. This reduces both the computational effort and
eliminates the important perturbations due to changes in
the mesh.

e The application of these methods to real problems may
require many iterations as well as high precision in the
intermediate solutions, so the use of finite elements
would be more expensive.

2.1. Governing equations

The elastic behaviour of a body under static loads is
governed by the equilibrium, compatibility and constitutive
equations. These equations can be summarized in a bound-
ary integral equation

mm® + | [akoxyume — o yao Jar = o

&)

where I"is the boundary of the body, g; the traction vector at
a boundary point whose outward normal is n;, and u; is the
displacement vector, ci(y) is the free term, which depends
on the position of the collocation point y (cj = 0 if y &
QUT: ¢j =1if y € 2 and its value depends on the local
geometry of the boundary if y € I); u} and ¢, are the
displacement and traction vectors of the fundamental
solution, respectively (see Ref. [6] for further details). The
boundary conditions,

ul(X) = I’_ti on Fm q[(x) = 671' on Fq

complete the set of equations to be solved, where I, and I',
are non-overlapping partitions of the boundary I

3. Sensitivity computation

Due to changes in the geometry, the variation of the cost
functional (8f) is necessary in order to improve and accel-
erate the convergence of the local minimization algorithms.
To do so, the sensitivity of the primary variables, du; and
dqy., to the variation in the geometry, has to be computed. A
classification of the different approaches to do this calcula-
tion, with respect to the computational cost, is the following:

e Finite differences (FD): this approach has a very high
computational cost since one additional direct problem
solution (or two for central schemes) at a finite distance
from the original one is required for each design variable.
This method has been widely used, however, due to its
simplicity [4,17].

e The adjoint variable method (AV): it is based on the
computation of an auxiliary problem, the adjoint one,
such that the sensitivities of the primary variables is
not needed in order to compute of. It implies the compu-

tation of an adjoint problem for each cost function, plus
some fast calculations to obtain each derivative with
respect to each design variable. This approach was used
in Refs. [2,5,16,7].

e Direct differentiation (DD): the sensitivity of the primary
variables is first computed and then the sensitivity of any
cost functional. A direct problem for each design variable
has to be solved. The basis for the direct derivative came
from the variation formulation used directly for inverse
problem in Refs. [21,22], and for the first time with
success in Refs. [18,19]. Mellings and Aliabadi [14]
successfully used DD of the discrete equations for
crack identification.

In the present paper the sensitivity boundary integral
equations are obtained not by the formulas of material
differentiation of integrals, as in Ref. [5], but by an alter-
native procedure based on series expansion. Although it has
not been rigorously established, both procedures should lead
to the same or equivalent integral equations. The effect of
the exact (DD) versus the approximate (FD) computation of
the gradient is considered and thoroughly tested for the
chosen algorithms.

3.1. Sensitivity computation by direct differentiation

In order to compute the sensitivity of the primary
variables with respect to the shape of a domain, the variation
of the boundary integral equation, 8BIE, was properly
derived by Suarez and Gallego [19] for potential problems
and Rus and Gallego [18] for elasticity.

The shape sensitivity of a magnitude v(x) can be under-
stood as its derivative with respect to a change in the geo-
metry. In this sense, that sensitivity can be defined as:

v(X + h ox) — v(x)
Y .

dv(x) = lim

For this reason, the responses of two problems, an original
one v(x) and one corresponding to a geometry perturbed by
an infinitesimal magnitude 8x, namely v(x + d8x), are
compared. The second one is obtained from the first, with
the help of a series expansion of each term arising in the
boundary integral equation.

Consider a perturbed problem where the shape of the
domain and therefore its boundary is modified by a infini-
tesimal variation of the design variable. In the sequel 0 and
I" denote the modified domain and its boundary, whereas (2
and I refer to the same ones for the actual one. In general a
tilde over a variable denotes its value for the modified
configuration.

Eq. (1) can be written for an interior collocation point y in
the assumed domain,

.1+ [ [alsyus D ~ iy D Jareo = o
@
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Fig. 2. Graphical explanation of &n; and &J.

and the same equation can be set at the corresponding point
¥ in the modified domain,

wi(§. 1) + Jf |2 9, 1) = (% P& 1) [daF )
0. 3)

The extra parameter, the boundary, in the primary variables
has been added to stress their dependence on the shape of
the domain, which is the unknown variable for the IIP.

3.2. Series expansion

The variation of the needed data and geometrical values
are defined as follows, and explained in Fig. 2.

ox; =X — x;, 3y, =3 — Vi» on; = i(§) — n;(y),
dI'§) = (1 + 3)dI(y), Su; = u,(§, ") — u(y, D,
8q; = ¢, 1) — qi(y, D. )

Note that the variation of the displacements and tractions are
material variations since the change from the assumed
configuration to the actual one implies the change of both
the boundary and the calculation point.

The variables and quantities in Eq. (3) can be written in
terms of the same variables and quantities of the actual
domain and their variations. Likewise, the kernels in this
integral equation can be expanded in series using the varia-
tions defined in Eq. (4).

u,i(i; y) = u};(x; y) + uiym(x; y)dr,, + h.o.t.
GX§) = op& PR = gi(x:y) + opxyRmx)  (5)
+0';k,m(x; y)dr,n;(x) + h.o.t.

where h.o.t. stands for higher order terms and &r,, = 8x,, —

8y111 = 6(Xm - ym)

3.3. Variation boundary integral equation (6 BIE)
Substituting Egs. (4) and (5) in Eq. (3), neglecting higher

order terms, and subtracting Eq. (2), an integral equation

valid for an interior point x is obtained. A final limit to a
smooth boundary point leads to the variation boundary

integral equation (3BIE),

1 . )
S0 + | (alous — i g )ar
r

= Jr{(u,i’mqk - U}}(,n,njuk)ﬁrm + (u};qk — q;{uk>8J - U;kuk an}df.
(6)

The discretization of the 3BIE follows standard boundary
element techniques. First, the boundary is divided into a
number of elements (I'.), and at each one, the variables
are interpolated in terms of their value at a series of points
(interpolation nodes) using shape functions ¢, and ¢,,. The
sensitivities are consistently discretized in the same way,

wx) = ¢ g = g

nel, nel,

duix)= D ¢ du”  Bqi(x)= > i, dq]".

nel, nel,

However, the variation of the geometry of the boundary
(8y), will be interpolated using a special parameterization,
which will be C* regardless of the discretization of the
boundary, something which will assure the convergence of
the limits to the boundary. For each cavity, the following
parameterization will be considered, dy(y) = P 8z where,

[1 0 (m=3) (i) () (» —yg)]
P(y) =

0 1 —(n =) (=) —(=—») (n—)

being (y(l), y(z)) the coordinates of the centroid of the flaw.

The discrete design or geometric variable vector, dz, is a
six component vector defined as,

" 5y0 T
B2
dw
8z =
o8&,
d&
KEY
- Horizontal displacement of the centroid 7]
Vertical displacement of the centroid
Rotation
a Dilatation
Elongation
B Distortion _

This parameterization represents the variation of the geo-
metry as a movement of the cavity due to a virtual deforma-
tion field.

All the variables that depend on the variation of the
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geometry can be written in terms of the geometric variables
as well. Thus,

or; = (Py(x) — Py(y))dz;,

where ¢; is the tangent vector to the boundary and

Qj _ dy; dy,

= ik po Ry =Pyty — Pyol,
dym dym ij.k 1j 27,141 2j,242

sz = _Plj,ltl + Plj,2t2-

3.4. Direct design variable update

After following this discretization procedure the 8BIE is
cast in an algebraic system of equations,

Hdu=Godp + Adz

where du and 8p collect the variation of the displacements
and tractions at all interpolation nodes on the boundary.
Applying the boundary conditions as in the direct BEM,
rearranging the system according to the boundary condi-
tions, collecting the unknown sensitivities of displacements
and tractions in the vector 8v, and solving the ensuing
system of equations, the following the matricial relationship
is obtained,

o = A ¥z )

At this point, the matrix A has several usages. In the frame-
work of optimization algorithms, A is the Jacobian of v
needed in most of the algorithms (named later J), whereas
in the observation equation approach, the use is as follows.

If the actual estimate of the design variable, z; is such that
F(z;) = v, # v™, one would like the new estimate z;,; to
be such that F(z4)=v"™, or F(z4,) - F(y) =
v — v, = dv,. The linear version of the previous equation
is given by the system of equations in Eq. (7). This over-
determined system of equation is solved by least squares,
leading to

5z = (ATA) AT oy (8)

Then, the design variables are updated from its previous
estimate by

Zke1 =2 T 0z

and the whole procedure is repeated until a suitable conver-
gence criterion is fulfilled. This is the simplest procedure to
solve the observation equations. In Section 4 a brief review
of the most suitable algorithms for solving the inverse
problem cast as an optimization problem are presented.

4. Algorithms for unconstrained optimization

A good survey on the methods for local unconstrained
optimization was carried out by Dennis and Schnabel [12],
and others [11].

The unconstrained optimization problem can be simply

stated as

. S,
min f@ R R.

The methods tested in this paper are the most used in the
literature to solve IIP: BFGS, Gauss—Newton, damped
Gauss—Newton and Levenberg—Marquardt method. In the
following paragraphs a brief summary of them is presented.

4.1. Newton’s method

By a multivariate Taylor series expansion to the second
term, a model of f(x) can be defined as,

1
me(e +p) = () + gx)'p + 5P HEp

where g;(x.) = df/dx; is the gradient, H;(x.) = 82f/8x,- dx; is
the Hessian.

Newton’s method is an iterative procedure that follows
the following steps,

1. k=0, initialize x;

2. Compute g, = g(x;) and H, = H(xy)
3. Solve Hys;, = —g;

4. Update x; 41 = x; + s

5. Repeat 2-5 until convergence.

The interesting property of this approach is that
converges g-quadratically (x4, — x| = cxlxy — x.[).

If the gradient and the Hessian are not available, they can
be calculated with the FD approximations,

_ SO+ e — flxe — he;) ~ Y2
8ilxe) = o, error = h; )
Hy(x) = Sxe + hie; + hje)) — f(x. — hie) — flx. — hyey) + f(x.)
I,
error = % (10)

It is very interesting to remark that with a properly
chosen FD increment the convergence properties of
Newton’s method are preserved, therefore reducing the
number of function evaluations. The increment should
be h; = 107 PO max {|xi, typical x;} sign (x;) where n =
2 to compute the gradient, and n = 3 for the Hessian, and
DIGITS is the number of reliable base 10 digits in f(x).

4.2. Modified Newton’s methods

Applying Newton’s method far form the optimum can
lead a quadratic model that does not properly represent
the non-linear function f(x), or even lead to a non-positive
definite Hessian matrix, therefore invalidating the convex
quadratic model. In such cases a full Newton’s step s, =
—H; ! gi can lead to an inadequate estimate x| = x; + 5.
Two families of strategies, termed globally convergent
modifications of Newton’s method have been devised (in
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the sense of assuring the convergence from almost any start-
ing point, but the convergence to the absolute optimizer is
not assured) to deal with this problem: line search and
model trust region.

Line search. The idea is very simple: given a descent
direction, py, take a step in that direction that yields an
acceptable x;.; = x; + Ap,. The acceptable step, A, is
obtained backtracking form the full Newton’s step, if neces-
sary, until a new estimate is obtained. It is not necessary that
A minimizes the function r(A) = f(x; + Apy), but that the
step fulfils the following conditions:

r(A) = r(0) + arr'(0) (11)

r'(A) = Br(0), B>« (12)

where « and 3 are properly chosen parameters. These condi-
tions guarantee that both the sequence of estimates is mono-
tonically decreasing, and converges to a minimizer. There
are scores of different algorithms, which use quadratic,
cubic or mixed models of the line, when not bisection or
any other one-dimensional technique [11].

Model-trust region. The idea in this family of global
strategies is to define a ball of radius 6, around the actual
estimate x, where the quadratic function m(x,. + s) can be
trusted to model adequately the function f(x, + s). A step
outside this trust region is not allowed and therefore the step
is defined by a constrained minimization problem:

minm,(x, + 5) = f(x.) + gx.)'s + +5"H(x)s

subject to ||s||, = §,.

This problem reduces to an unconstrained minimization
one:

minmt(x, + s) = f(x,) + g(xc)Ts + %ST(H()CC) + ul)s

whose solution is given by an augmentation of the Hessian

s(w) = —(H(x) + D)~ ' g(x,)

where w = 0 is such that ||s(w)|| = 8,, unless ||s(0)|| = 8., in
which case s(0) = H(x.) 'g(x,) is the appropriate step.

Different approaches to solve for u the equation ||s(w)|| —
0. = 0 leads to variants of the model trust region, such as
the locally constrained optimal (‘hook’) step and the double
dog-leg step. The trust radius is updated by backtracking if
the first estimation does not provide a satisfactory step, and
by heuristic rules when a proper step is attained.

4.3. Secant methods

The use of Newton methods requires the computation of
the Hessian of the non-linear function f(x). In IIP the
Hessian is not easily available and its computation by FDs
is expensive. The secant methods is a class of algorithms
that use cheaper ways of approximating the Hessian, usually
updating the approximate Hessian in the previous estimate.

The best Hessian update is provided by the positive defi-
nite secant update or BFGS (obtained independently by
Broyden, Fletcher, Goldfarb and Shanno in 1970). The
update is given by,

Veewie1 |, HieasioisioiHy
yl_,skfl

Hk = Hk—l +
T
Sk—lkalskfl

where y;— = g — gr—1 and sp—y = x; — X413 & = Vf(xp)
is the gradient.

The algorithm can be initialized computing the Hessian,
Hy = V*f(x) by FDs, or, if computationally expensive,
simply by Hy = 1.

Save for the calculation of the Hessian by updating, the
rest of the minimization algorithm remains as in Newton’s
method, so the globally convergent modifications are
equally applicable for the secant methods.

The practical interesting property of the method is that it
converges g-superlinearly (e, — x| = crlee — x.))-

There are other updates, such as the Powell-Symmetric—
Broyden update, the Davidon—Fletcher—Powell update, and
the Inverse—Positive—Definite—Secant update. But the prac-
tice has stated the Broyden-Fletcher—Goldfarb—Shanno
(BFGS) or Positive Definite Secant update as the best
option.

4.4. Non-linear least squares problem

Newton’s methods and the secant updates can be
extended to the non-linear least square problem, taking
advantage of its special structure. This problem is defined
by,

min /() = 3 R ORC)

where R : R" — R" is the non-linear residual function, and
r;(x) and the n components of R(x).

The Jacobian of R is given J = (9r;/dx;), and then
V() = gv) = JTWRX); V() = H) = J (0J(x) +
3 )V ().

4.4.1. Gauss—Newton method
This method is based on approximating the Hessian of

f(x) by
H, = J{ I,

i.e. neglecting the contribution S(x) = Y; r,»(x)Vzri(x), and
then applying the basic algorithm in Section 4.1.

The rationale of this approximation is that the term S(x)
will be small when the solution is a zero-residual one, or if
the residual function is not too non-linear. In these cases this
algorithm converges g-linearly and even q-quadratically.
The disadvantage is that it is not necessarily globally
convergent, and that it is not well defined if J does not
have full column rank.
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It can be shown that Gauss—Newton’s step,
-1
S = —(JkT Jk) IR,

is a descent direction. In this case the globally convergent
modifications mentioned in Section 4.2 can be applied, lead-
ing to the damped Gauss—Newton method and Levenberg—
Marquardt method.

4.4.2. Damped Gauss—Newton method
In this method the next estimate is computed by,

-1
xen = xc =~ A(JEJ) IR

where A is obtained by a one-dimensional line search. This
method is globally convergent although it may be very slow.
Besides, the method is not well defined for non-full column
rank Jacobian J(x).

4.4.3. Levenberg—Marquardt method

This is the Gauss—Newton method modified by the
model trust region approach. Then, the new estimate is
obtained by

X1 = X T s ()

where s;(n) = —(J7J, + p,I)fljkTRk, and p is obtained
solving the equation [|sy(w)|| — & = 0, except if s,(0) =
o., when u = 0.

This modification improves the behaviour of the algo-
rithm for J with not full column rank, and for big second
terms S(x) in the Hessian. Depending on the strategy to
approximate u different variants of the Levenberg—
Marquardt method have been coded.

4.5. Scaling

The different order of magnitude of the variables involved
in a problem, and especially inside the design parameters
(for example the size of the hole with respect to the total
size, or the mixture of displacement and stress measure-
ments) cause important numerical and algorithmic
problems. A homogeneization is therefore crucial, and is
done by a scaling of the magnitudes.

Whereas Newton’s and BFGS methods are unaffected by
scaling, the steepest descent and therefore the trust region
models are affected. Therefore, the values introduced in the
algorithms should previously be modified by a scaling
matrix D, in the form, X = D x.

There is a further effect that one should care about. Too
different values may also affect the conditioning of the
matrices due to the computer precision, not only in the
optimization algorithms, but also in the BEM calculations.
The solution is similar to that described before.

5. Equivalence between the solution of the observation
equations and the minimization of residual

The procedure summarized in Section 3.4 consists of
updating the design variables by computing iteratively
their increment through the solution of the so-called varia-
tion boundary integral equation (8BIE) [9]. The procedure
follows these steps:

. k=0, initialize z;

. Compute v; = F(z;) (direct problem)

. Compute the matrix A, = A(z;) (see Section 3.4)

. Solve A; 8z, = v, =v™* — v, by least squares, i.e.
82 = (ALAY 'ALO™ =)

. Update 73, = z; + 8z

. Repeat 2—6 until convergence.

B W -

AN

On the other hand, the IIP can be as well solved by setting
a non-linear least squares problem (see Section 1.2),

1 1
min (@) = - |F@) =" = JR@'R@

where R(z) = F(z) — v**. The Gauss—Newton method for
this residual function is,

1. k=0, initialize z;

2. Compute R, = F(z;) — v*

3. Compute the Jacobian J;, = V_R(z;)

4. Compute the step s, = —(J{ J,) ' JIR,
5. Update 7,41 =z + 8¢

6. Repeat 2—6 until convergence.

It is easily checked that s, = 8z, since, firstly, A; =
V.F(z;) as mentioned at the end of Section 3.4, and there-
fore Ay = V_(F(z) — v¥*) = V,R(z;) = J;; secondly, v** —
v = v* — F(z;) = —Ry, and therefore, both steps are the
same. In short, the solution of the IIP by the presented direct
update approach is equivalent to the solution of a
corresponding non-linear least squares problem by the
Gauss—Newton method.

Actually the direct update is merely the solution of the
observation equations, F(z) = v**, by Newton’s method, but

Table 1
Methods tested

Method Exact gradient (Gr)  Line search (LS)
Gauss—Newton (G-N) Yes No

Yes Yes

No Yes
Levenberg—Marquardt (L-M)  Yes No

Yes Yes

No Yes
BFGS Yes Yes

No Yes
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Fig. 3. Problems.

taking into account that these equations form an over-
determined system of non-linear equations.

This link between the two approaches may allow for the
adaptation of techniques of one into the other, suggesting
new procedures. Examples of possible study in this direction
could be:

e Use the singular value decomposition of the linearized
observation equations onto minimization algorithms in
order to damp higher singular values as a regularization
technique (see Ref. [15], chapter 7, and Ref. [10], chapter
2).

e Application of theory of factor analysis (see Ref. [15],
chapter 10), both after an adaptation to non-linear theory.

e Application of truncated least squares techniques to the
definition of the minimization functional (see Ref. [10],
chapter 3).

6. Numerical results
6.1. Methodology

The following tests are aimed at finding the advan-
tages and disadvantages of the most suitable optimization
algorithms for IIP in static 2D elasticity. Three algorithms
are tested, and different variants of them, as shown in
Table 1.

For each iteration, the problem is divided into three
stages:

1. Calculation of a direct problem with the BEM. For this
purpose, a simple code for two-dimensional elasticity
with standard quadratic elements has been implemented.
The details of the formulation can be found in Refs. [6,8].
The code was written in FORTRAN90 and run on an HP700
workstation.

2. Calculation of the sensitivities matrix A(z) that comes
from the 3BIE. This computation is implemented
with the former code in order to take advantage of
common calculations. The formulation is detailed in
Ref. [18].

3. The optimization algorithm computes the iteration
step s;. This algorithm has been taken from the Matlab
Optimization Toolbox, version 5, with the proper
modifications to match the needs of the problem.

Table 2
Parameters of the benchmark problems

Problem A B C D E F

Number of exterior elements 12 12 12 12 12 24

Number of flaw elements 4 4 4 8 4 8
Total number of elements 16 16 16 20 16 32
Number of design variables 5 2 2 4 5 2

Number of experimental data 5 2 2 8 5 80
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Table 3

Summary of results (number of function calculations/number of gradient requests)

Method Gr LS A B C D E F Mean Success (%)
G-N Yes No 8/8 —/— /- 5/5 —/- 31/31 14.7/14.7 50

Yes Yes 13/5 —/- /- 17/6 —/- 35/- 21.7/5.5 50

No Yes 10/0 —/— /- 41/0 —/- —/- 25.5/0.0 33
L-M Yes No i 6/6 6/6 71 17/17 15/15 9.7/9.7 100

Yes Yes 13/5 14/5 23/8 17/6 42/13 —/— 21.8/7.4 83

No Yes 10/0 23/0 34/0 41/0 64/0 40/0 42.4/0.0 100
BFGS Yes Yes 9/3 20/6 23/7 21/5 61/17 35/- 28.2/7.6 100

No Yes 12/0 32/0 37/0 64/0 61/0 —/- 41.2/0.0 83

6.3. Results

6.2. Description of the benchmark problems

A set of simple models that enhance different aspects
of the IIP each, as well as some from other authors for
a comparison have been chosen. They range from rela-
tively easy ones to more challenging problems, although
practical problems could become much more complicated.
For each problem, all the algorithms in the previous table
are tested. The geometry, loads, boundary conditions and
experimental data, are sketched in Fig. 3. The number of
elements, design variables and measurement data are
shown in Table 2.

Problems A to D consist of a 3 X 3 square with one or two
circular flaws. Problem F consists of a 100 X 50 rectangle
with different boundary conditions and an elliptical
interior flaw. This problem was solved by Bezerra et
al. [3]. Here only two parameters are allowed from a
starting circle, allowing horizontal and vertical displace-
ment. The solution converges to a circular configuration
close to the real elliptical one. Bezerra et al. solved this
problem in 35 iterations.

In Table 3 the results in terms of function evaluations
and gradient evaluations required are summarized. The
problems have been sorted from easier to more complex,
and (—/-) means no convergence. Note that where no exact
gradient is supplied, the given figures are the number of
function evaluations, which is higher than the number of
iterations (number of function evaluations = number
of iterations + number of design variables X number of
gradient requests). On the other hand, the exact gradient
computation adds some extra computational time, since
involves the calculation of matrix A, plus the solution of the
system matrix, already factorized however, for each column of
that matrix. This extra time does not amount to a complete
function evaluation, since this latter involves the setting and
solution of a whole new system of equations Hu = Gp.

The computing time has not been evaluated directly; only
the number of function evaluations and exact gradient
evaluations, since no particular code optimization has
been performed.

5 gradient evals:

L L L L L

1 15 2 25 3 35 4 45 5 55 6

ITERATIONS

Fig. 4. Example D. Gauss—Newton (exact gradient and no line search). Left: geometries at starting and intermediate iterations. Right: error or cost functional f

at each iteration.
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Fig. 5. Example D. Levenberg—Marquardt (exact gradient and no line search).
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Fig. 6. Example D. BFGS (exact gradient and line search).
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Fig. 7. Example E. Gauss—Newton (exact gradient and no line search).
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Fig. 8. Example E. Levenberg—Marquardt (exact gradient and no line search).
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Fig. 9. Example E. BFGS (exact gradient and line search).
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Fig. 10. Example F. Gauss—Newton (exact gradient and no line search).
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30 40 50 60 70
ITERATIONS

Fig. 11. Example F. Levenberg—Marquardt (exact gradient and no line search).

The graphics of the evolution of the geometry and cost
function f(z) = 1/2R(z)TR(z) are shown in Figs. 4—12.

7. Conclusions

In this paper different methods for the solution of IIPs
casting them as unconstrained non-linear optimization
problems are compared.

From the point of view of the global convergence, i.e.
capacity to arrive to an optimum from a badly chosen initial
guess, the Gauss—Newton approach is the worst, whereas
there is not very much difference between Levenberg—
Marquardt and BFGS (as seen in the number of achieve-
ments in Table 3.

The use of a line search does not improve very much the
solution. A reason for this is that the problem is actually
constrained by the condition of the flaw remaining inside the
domain. Therefore, the step is shortened when an impossible
configurations is reached.

ERROR

The convergence rate emphasizes the difference between
BFGS and the two first methods. GN and LM are very
similar for easy problems, but when the global strategies
are necessary (e.g. test F), LM appears to be the fastest.
The use of a line search is a critical choice. In easy problems
surprisingly it retards very much the solution, but it becomes
necessary for complex problems.

The use of analytic gradient instead of FDs reduces the
computations as much as one should expect: by 20—50% for
complex cases, and by 50-80% when the line search is not
necessary.

To sum up, each method has shown some advantages and
disadvantages. They are summarized in Tables 3 and 4.

e The Levenberg—Marquardt method provides both robust-
ness and high convergence rate.

e The global strategy is important in complex problems,
but it retards the procedures near the solution.

e The use of analytic gradient regularly accelerates the
calculation.

L L L
0 40 50 60 70
ITERATIONS

Fig. 12. Example F. BFGS (exact gradient and line search).
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Table 4
Characteristics summary of the optimization algorithms

Levenberg—Marquardt BFGS

Gauss—Newton
Convergence High convergence rate Good compromise
rate vs.
probability of
convergence
Particularities Good for local scope Good for global scope

(near the solution)

(far from the solution)

High probability of convergence

Does not take advantage of the
structure of the cost functional

In addition, a relationship between the two main types of
inverse problem layouts, the observation equation methods
and the minimization methods has been found. In particular,
it is proved that the direct solution of the linearized observa-
tion equation by least squares is identical to the simple
Gauss—Newton method. This may unify the methods
allowing for transferring the advantages and techniques
from one to the other.
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