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a b s t r a c t

This paper provides a probabilistic formulation to design a monitoring setup for damage
detection in piezoelectric plates, solving a model-based identification inverse problem
(IP). The IP algorithm consists on the minimization of a cost functional defined as the
quadratic-difference between experimental and trial measurements simulated by the finite
element method. The motivation of this work comes from the necessity for a more rational
design criteria applied to damage monitoring of piezoelectric materials. In addition, it is
very important for the solving of the inverse problem to take into account the random
nature of the system to be solved in order to obtain accurate and reliable solutions. In this
direction, two investigations are considered. For the first, the experimental measurements
are simulated combining a finite element and a Monte Carlo analysis, both validated with
already published results. Then, an uncertainty analysis is used to obtain the statistical dis-
tribution of the simulated experimental measurements, while a sensitivity analysis is
employed to find out the influence of the uncertainties in the model parameters related
to the measurement noise. Upon the study of the measurements, they are used as the input
for the damage identification IP which produces the location and extension of a defect
inside a piezoelectric plate. For the second investigation, a probabilistic IP approach is
developed to determine the statistical distribution and sensitivities of the IP solutions. This
novel approach combines the Monte Carlo and the IP algorithm, considering the trial mea-
surements as random. In conclusion, the analysis demonstrates that in order to improve
the quality of the damage characterization, only a few material parameters have to be con-
trolled at the experimental stage. It is important to note that this is not an experimental
study, however, it can be considered as a first step to design a rational damage identifica-
tion experimental device, controlling the variables that increase the noise level and
decrease the accuracy of the IP solution.

! 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Piezoelectric ceramics are widely used in electro-
mechanical devices due to their coupling between the elec-
tric and mechanical energies. They are used as sensors and
actuators in Structural Health Monitoring, Intelligent
Structures, etc. However, these ceramics are brittle and
susceptible to fracture, shortcoming that limits their per-

formance. In the last decades, many analytical, numerical
and experimental works about fracture mechanics have
emerged in the literature. Nevertheless, there are few stud-
ies about damage detection, despite it is an interesting way
to prevent the failure of these ceramics.

In recent years, identification inverse problems have
been developed in a variety of continuummechanics appli-
cations (see Liu and Chen, 1996; Rus et al., 2006; Tardieu
and Constantinescu, 2000; Bonnet and Constantinescu,
2005; Tarantola, 2005). Specifically, for the piezoelectric
ceramics, inverse problem techniques have been applied
todeterminetheir elastic, dielectric andcouplingproperties.
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For example, Kaltenbacher et al. (2006) defined a cost
functional as the difference between electric impedances
observed in laboratory and those obtained after solving
the direct problem by the finite element method (FEM). A
similar cost functional was used in Ruíz et al. (2004a,b),
which was minimized using genetic algorithms. On the
other hand, Araújo et al. (2002, 2006) proposed an inverse
problem to obtain the constitutive properties of composite
plate specimens with surface bonded piezoelectric patches
or layers, where the cost functional was the difference be-
tween the experimental and FEM-predicted eigen-frequen-
cies and its minimization was carried out using two
strategies: a gradient-based method, and neural networks.
Finally, in Rus et al. (2009) an identification inverse prob-
lems was applied to find defects in piezoelectric plates,
obtaining the optimal experimental configuration based
on probability of detection studies.

Rus et al. (2009) concluded that the inverse problem
solution strongly depends of the noise level on the experi-
mental measurement. If the systematic errors are ne-
glected, this noise level is related to the inherent
randomness of the material properties and excitation
loads. Note that Oden et al. (2003) reported the treatment
of physical uncertainties is a research area of great impor-
tance for the structural mechanics community. According
to this treatment, several questions emerge: what is the
sensitivity of the inverse problem solution to system
uncertainties?, which are the main variables responsible
for the experimental noise? and how can it be effectively
reduced?

To answer these questions, an inverse problem to find a
defect in a piezoelectric plates is formulated in this work.
The cost functional is defined as the quadratic-difference
between experimental and simulated measurements. The
simulated measurements are obtained by solving the di-
rect problem using a FEM with optimized meshes, whereas

the experimental measurements are also simulated in or-
der to carry out a controlled uncertainty and sensitivity
analysis. The latter simulation is performed using two pro-
cedures: (i) adding a noise normality distributed to the
FEM-simulated measurement and (ii) using Monte Carlo
techniques, together with the FEM, and considering the
material properties as normally distributed variables. Sub-
sequently, the two procedures, (i) and (ii), are compared
and, for the case (ii), a sensitivity analysis is performed in
order to determine which variables are responsible of
increasing the experimental noise level. Finally, a probabi-
listic inverse problem approach is performed, combining
the Monte Carlo analysis and the inverse problem solution
(obtained minimizing the cost functional by genetic algo-
rithms). This approach is applied for the two procedures
(i) and (ii), obtaining the sensitivities of the inverse prob-
lem solutions to system uncertainties and analyzing the
way to obtain accurate solutions.

These formulations are applied to solve the relation-
ships between system model, observations (measure-
ments) and IP solution (damage characterization
parameters), in a deterministic and in a probabilistic way
through the results depicted in the flow chart of Fig. 1.

In conclusion, a few properties must to be calculated
with a controlled error to obtain a satisfactory result using
the inverse problem technique. Although this is not an
experimental study, it can be considered as a first step to
design a rational damage identification experimental de-
vice, controlling the variables that increase the noise level
and decrease the accuracy of the inverse problem solution.

2. Monte Carlo analysis

The Monte Carlo analysis (MCA) has been applied in
many research areas, like geophysics (see, Tarantola,
2005) or structural mechanics (see, Charmpis and Scheller,

Fig. 1. Flow chart of the results obtained to study the relationships between system model, observations (measurements) and IP solution (damage
characterization parameters), in a deterministic and in a probabilistic way.
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2006). The idea behind the MCA (an allusion to the famous
Casino) is old, but its application to the solution of scien-
tific problems is closely connected to the advent of modern
computers.

Consider a physical model represented by:

/i ¼ MðnjÞ ð1Þ

where /i are the i dependent or observable variables, nj are
the j independent variables, model parameters or random
variables (this last denomination is the form used in the
following) andM describes the model. MCA consists in per-
forming multiple evaluations of a sample of the random
variables. In general, MCA involves the five steps, see
Saltelli et al. (2000), shown in Fig. 2:

1. Selection of distribution functions for the random variables
nj. Distribution functions are chosen depending of the
type of problem (see Clemen and Winkler (1999) for a
revision of the models, their selection and their
calibration).

2. Generation of the sample. Many sampling procedures can
be used. However, two types are the most important: (i)
a random sampling is easy to implement and provides
unbiased estimates for means, variances and distribu-
tion functions (this procedure is preferred when suffi-
ciently large samples can be evaluated) and (ii) a Latin
hypercube sampling (see Cochran, 1977) is used when
large samples are not computationally practicable.

3. Evaluation of the model. The model M is executed using
numerical or analytical techniques. These can be seen
by the MCA as a black box.

4. Uncertainty analysis (UA). The purpose of UA is to deter-
minate the uncertainty in estimates for the observable
variables /i when the uncertainties in random variables
nj are known. Thus, the probability distribution function
(PDF) and cumulative distributions function (CDF) are
obtained. They allow an easy extraction of the probabil-
ities of having values in different subsets of the range of
/i. Furthermore, two scalar variables, the mean l and
the standard deviation r, can summarize the uncer-
tainty in scalar-valued results. These scalar variables
are calculated by (see Saltelli et al., 2000):

l ¼ 1
m

Xm

i¼1

/i; Variance ¼ 1
m$ 1

Xm

i¼1

/i $ lð Þ2 ð2Þ

where m is the number of executions of the model or
sample size.

5. Sensitivity analysis (SA). The goal of SA is to determine
the relationships between the uncertainty in the ran-
dom variables nj used in the analysis and the uncer-
tainty in the observable variables /i. This is a method
for checking the quality of a given model. There are
many available procedures to develop the SA, however
we use multiple linear regression, see Montgomery
and Runger (1999), which provides a relationship
between nj and / approximating M by means of:

/ %
XNn

j¼1

hjnj þW ð3Þ

where, Nn is the number of random variables, hj are the
regression coefficients, that can be used to indicate the
importance of individual random variables nj with respect
to the uncertainty in the output /, andW is the error of the
approximation. The multiple linear regression is aimed at
finding the hj parameters that minimize W. For this pur-
pose, at least Nn observations or simulations / are required.
The degree to which random variables are related to the
dependent variable is expressed by the correlation coeffi-
cient (R). Thus, the closer R2 is to unity, the better is the
model performance.

Standardized regression coefficients are defined in
Mayer and Younger (1974) by:

Hj ¼ hj
rnj

r/
ð4Þ

and, when the nj are independent, its absolute value can be
used to provide a measure of variable importance. Calcu-
lating Hj is equivalent to performing the regression analy-
sis with the input and output variables normalized to
mean zero and standard deviation one.

3. Problem description

The non-destructive evaluation (NDE) technique for
damage detection consists of a system where the tested
sample is excited and its response is measured, in order
to infer or reconstruct the damage status that is responsi-
ble for the alteration of the measurement in comparison
with the non-damaged state. Therefore, the first step to

Distribution
  functions

  Sample
generation

  Model 
evaluation

 Uncertainty
   Analysis

Sensitivity
  Analysis

 PDF

 CDF

 SRC

Fig. 2. Flow chart to compute the probability distribution function (PDF), cumulative distribution function (CDF) and standardized regression coefficients
(SRC) using the Monte Carlo analysis.
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apply a NDE technique is the election of the system, com-
prised by the specimen and the excitation and measure-
ment techniques.

3.1. Specimen

The NDE configuration considered for damage detection
in this work is shown in Fig. 3. The system consists in a 3-D
piezoelectric solid of dimensions (Lx ' Ly ' Lz), where the
damage to be found is a circular defect of radius r and cen-
tered at (x0, z0).

The material is a piezoelectric ceramic, which has the
ability to generate an electric charge in response to applied
mechanical stress and vice versa. From a mathematical
point of view, the piezoelectric constitutive equations in
the form strain–voltage are given by EFUNDA – Engineer-
ing Fundamentals (2006) as:

S ¼ sDTþ gtD; E ¼ $gTþ bTD ð5Þ
where S, T, E and D denote deformation, stress, electric
field and electric displacement or induction. On the other
hand, sD, g and bT denote elastic properties measured to
open circuit (.)D, coupling and dielectric properties mea-
sures to constant stress (.)T. In matrix form:

sD ¼

sD11 sD12 sD13 0 0 0
sD12 sD11 sD13 0 0 0
sD13 sD13 sD33 0 0 0
0 0 0 sD44 0 0
0 0 0 0 sD44 0
0 0 0 0 0 2ðsD11$ sD12Þ

2

666666664

3

777777775

;

g¼
0 0 0 0 g15 0
0 0 0 g15 0 0
g31 g31 g33 0 0 0

2

64

3

75;

bT ¼
bT
11 0 0
0 bT

11 0
0 0 bT

33

2

64

3

75

ð6Þ

Eq. (6) is also expressed in reduced or effective form in order
to apply the plain strain consideration (see Sosa and
Khutoryansky, 1996).

The plain strain consideration is assumed in this work.
This assumption is appropriate to simulate a transverse
section of a standard piezoelectric specimen, in which only
the plane x–z is studied. This 2-D reduction is also assumed
in Sosa and Khutoryansky (1996), for analytical, and
Pérez-Aparicio et al. (2007), for numerical studies about
piezoelectric with defects. Considering the plain strain
approximation, and in absence of body forces and electric
charge density, the piezoelectric behaviour is modeled by
Gauss’ law, the equation that relate the electric field and
the voltage, the mechanical equilibrium equation and the
compatibility equation:

r ( D ¼ 0; E ¼ $r/

rs ( T ¼ 0; S ¼ 1
2
ðruþrutÞ

ð7Þ

where u = (u, w) denotes the displacement in directions x
and z, respectively, and / is the electric potential or volt-
age. Finally, the standard sign criteria is used: electric field
and stress values are considered positive for the same
direction of polarization P (see Fig. 3) of the material and
for tractions, respectively.

3.2. Excitation and measurement

In order to proceed with the damage detection, the sys-
tem is excited by a mechanical traction Tap

xx transverse to
the poling direction, while its response (voltage /) is mea-
sured at Ni = 25 points equally spaced along the lower
boundary of the plate, see Fig. 3. According to Rus et al.
(2009), who performed an optimization of the excitation-
measurement system for damage detection in piezoelectric
ceramics in a previouswork, this configuration provides the
highest identifiability.Note thatamechanical load is applied
and an electrical response is measured, and therefore a cou-
pling effect is induced and captured in the testing.

4. Inverse problem methodology

A model-based inverse problem (IP) is applied to iden-
tify the defect shows in Fig. 3. Fig. 4 provides the flow chart

Fig. 3. Non-destructive scheme for damage detection.

R. Palma et al. /Mechanics of Materials 41 (2009) 1000–1016 1003



of the model-based IP, where two inputs need to be intro-
duced: (i) the parametrization, responsible for which
parameters of the model control the characterization of
the sought damage and (ii) the experimental measure-
ments. In the next step, the output of the direct problem
and the experimental measurements are inserted in a cost
functional (CF). Finally, the CF is minimized and the IP
solution (which is given in terms of the parameters that
best fit the characterization of the defect with the criteria
of measurement similarity) is obtained.

4.1. Parametrization

In the context of inverse problems, parametrization of
the model means to characterize the sought solution (the
defect in this case) by a set of parameters, which are the
working variables and the output of the IP. The choice of
parametrization is not obvious, and it is a critical step in
the problem setup, since the inverse problem is a badly
conditioned one, in the sense that the solution may not
be stable, exist or be unique, and the assumptions on the
damage model that allow to represent it by a set of param-
eters can be understood as a strong regularization tech-
nique. In particular, a reduced set of parameters is
chosen to facilitate the convergence of the search algo-
rithm, and they are also defined to avoid coupling between
them.

One should bear in mind that there is a strong relation-
ship between the number of input and output data (num-
ber of measurements and number of output parameters),
which is also responsible for the conditioning of the
problem. In particular, the number of measurements
must be equal or larger (preferably) than the number of
parameters.

The damage location and size estimation problem pre-
sented suggests the definition of the immediate parame-
ters x0, z0 to characterize the location of the center of the
defect, and the radius r that represents the extent of the
defect (see Fig. 3). Finally, the chosen parameters are
grouped in a vector p = {pi} = {x0, z0, r}, while the true
(and unknown) position and extent of the defect is repre-
sented by ~p ¼ f~x0;~z0;~rg.

4.2. Direct problem

The direct or forward problem consists of solving the re-
sponse of the piezoelectric plate shown in Fig. 3, given a

specific excitation and a specific defect. In order to solve
the direct problem, a numerical tool must be applied, since
there are not analytical solutions for finite piezoelectric
plates with a defect.

The finite element method (FEM) is the numerical
method employed to solve the direct problem in this work.
There are many research and commercial FEM codes that
solve piezoelectric problems in the literature. However,
we have used the 9-node quadratic FEM developed in
Pérez-Aparicio et al. (2007) and implemented in the re-
search academic finite element code FEAP, see Taylor
et al. (2005). The commercial FEM codes can usually only
be used as a black box, which does not allow to develop
automating algorithms with sufficient flexibility, like the
meshing technique used in this case, or the connection
with the search algorithms in the IP.

The boundary conditions applied to the plate to solve
the direct problem are shown in Fig. 5a. Note that the elec-
tric potential is set to zero along the top boundary of the
plate, since it requires a reference point. On the other hand,
the electric boundary condition around the defect is as-
sumed to be of the impermeable type, since the defect does
not need to be meshed, which improves the computational
efficiency. The choice of electric boundary condition has
generated controversy in recent years (see Ou and Chen
(2003) for discussion). However, according to the conclu-
sions given by Pérez-Aparicio et al. (2007) and considering
the circular shape of the defect in this work, the imperme-
able electric boundary condition is a good approximation.

Fig. 5b shows the FEMmesh used, with emphasis on the
cavity inside the plate representing a cavity-type defect. In
this work, the fully automatic algorithm developed in Rus
et al. (2009) has been used. This algorithm combines a
medial axis transform, a transfinite interpolation and a
stretching function of tangent hyperbolic type.

In order to determine the number of elements it is
developed a convergence study, where the error on mea-
surement point and the consumed CPU time are moni-
tored. The error is defined by the parameter g,

g ¼ /EXAðx0 þ r; z0Þ $ /FEMðx0 þ r; z0Þ
/EXAðx0 þ r; z0Þ

!!!!!

!!!!!' 100

where /EXA(x0 + r, z0) and /FEM(x0 + r, z0) are the exact and
FEM-computed electric potentials at the edge of the circu-
lar cavity (where the field will show the maximum concen-
tration, and the maximum error will be located). Since

Parametrization
  Direct
Problem

    Cost
Functional
    (CF)

Experimental
measurement

Minimization

Output

Fig. 4. Flow chart of the model-based inverse problem.
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there is no available analytical solution for the electric po-
tential on the edge of a finite plate, the exact solution is
estimated by a highly refined FEM mesh (using 96,000
elements).

The convergence curve is shown in Rus et al. (2009). For
a mesh composed of 1176 elements the numerical error is
4.8 ' 10$4% (note that the electric field is obtained by a
scalar potential with one degree of freedom by node) and
the solution requires a CPU time of 6 [s] using a PC of 1
[Gb] of RAM memory and Linux operating system. There-
fore, an optimized mesh is achieved, specially to apply to
IP where, due to the optimization procedure, many evalu-
ations have to be performed.

After the solution of the forward problem, the measure-
ments are synthesized in the output as a vector of Ni = 25
voltages measured along the bottom of the plate. This is
noted as:

Direct problem output ! /FEM
i ; i ¼ 1; . . . ;Ni ¼ 25 ð8Þ

4.3. Experimental measurement

The main goal of this work is to explore how the prob-
abilistic nature of the system can be formulated and how it
affects the damage search. The origin of the system inde-
terminateness lies in the uncertainties of the parameters
in the governing equations of the material behaviour.

Tarantola (2005) distinguishes two kinds of probabilis-
tic parameters, the model parameters and the observable
parameters. The model parameters include the uncertain-
ties condensed in the piezoelectric properties, i.e. the
piezoelectric constitutive parameters, whereas the
observable parameters randomness are expressed as
uncertainties in measurements. Both magnitudes are
therefore treated as random variables, instead of determin-
istic ones.

The uncertainties in the observations or measurements
are formulated in two alternative ways: (I) adding a nor-
mally distributed noise level to the direct problem output
(white noise), by means of generating random numbers
with a normal probability and (II) developing a uncertainty
analysis, namely, considering the material properties as
random variables and using the FEM model to compute
the ensuing random measurements. These two procedures
can be formulated as:

(I) Deterministic with random noise

Experimental measurement !

/
EXPð9Þ
i ¼ /FEM

i þ ciRMSð/FEM
i Þw ð9Þ

where ci are random variables generated by a Gaussian dis-
tribution of mean 0 and standard deviation 1,w is a param-
eter defined to control the noise level and RMS is the root
mean square given by:

RMSð/FEM
i Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
Ni

XNi

i¼1

/FEM
i

# $2
vuut ð10Þ

(II) Probabilistic model-based

Experimental measurement !

/
EXPð11Þ
i ¼ Nðl/FEM

i
;r/FEM

i
Þ; i ¼ 1; . . . ;Ni ð11Þ

where N denotes an arbitrary distribution function and
l/FEM

i
and r/FEM

i
can be determined a posteriori by means

of MCA, see Eq. (2).
The first procedure (also performed in Rus et al. (2006,

2008), Liu and Chen (1996), Lahmer et al. (2008) and Kaipio
(2008)) has two limitations: (i) it assumes that the noise is
normallydistributedand (ii) thenoise levelw is anunknown
magnitude. The second procedure has the inconvenient of
requiring a large number of experiments, but, if the random
variable distributions are accurate, it is a good technique to
design the experiment (see Saltelli et al., 2000). To avoid
these limitations, a goal of this work is to validate the first
procedure as an acceptable approximation of the second
one.

4.4. Cost functional

The cost functional (CF) is defined as the quadratic-dif-
ference between the experimental and FEM-predicted
measurements:

f ¼ 1
2Ni

XNi

i¼1

/EXP
i $ /FEM

i

# $2 ð12Þ

where Ni = 25 is the number of measurement points and
/EXP

i is /
EXPð9Þ
i or /EXPð11Þ

i , depending of the simulation meth-
od selected.

(a) (b)

Fig. 5. (a) Boundary conditions and (b) example of the mesh used to solve the direct problem by the FEM.
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In contrast to gradient-based algorithms, for which the
CF is defined as f, when the minimization is carried out by
genetic or other heuristic algorithms, the CF is usually de-
fined in an alternative way as f L:

f L ¼ log f þ eð Þ ð13Þ

where e is a small non-dimensional value (here adopted as
e = 10$16) that ensures the existence of fL when f tends to
zero. In addition, as it was argued in Gallego and Rus
(2004), this new definition of the CF usually increases the
convergence speed of the minimization algorithms.

4.5. Minimization

In order to minimize the CF and calculate the IP output,
theminimization problem is formulated to find pi such that,

min
pi

f LðpÞ ð14Þ

Standard genetic algorithm (GA) is employed in this
work to minimize the Eq. (14) and to obtain the IP output,
which is a set of parameters that identify the position and
extension of the defect. Other optimization techniques, like
gradient-based algorithm, can be applied. However, in Rus
et al. (2009) it was concluded that GA guarantees conver-
gence, whereas gradient-based algorithm strongly depends
on the initial guess that needs to be provided.

The GA is a heuristic optimization technique based on
the rules of natural selection and genetics: the superiors
survive while the inferiors are eliminated. A population of
individuals (called chromosomes) is randomly generated.
The population comprises a group of chromosomes which
represent possible solutions in the problem space. Each
individual is assigned a fitness or cost functional by com-
puting the response corresponding to those parameters,
for which one direct problem is solved independently,
and comparing with the reference response. Genetic oper-
ators such as crossover and mutation are applied to obtain
the child population. Finally, the child chromosomes with
higher fitness replace some of their parent chromosomes.
The process runs until a stopping criterion (like the num-
ber of generations) is reached.

The parameters used for the GA minimization are
shown in Table 1. The selected population size should
guarantee to find a global optimum at an adequate compu-
tational cost and genetic diversity has to be injected to the
mutation and crossover parameters in order to ensure that
the solution does not fall in local minima.

4.6. Probabilistic damage solution

The minimization algorithm in the previous section
provides a deterministic output of the inverse problem as

a fixed value of the damage characterization parameters.
However, a probabilistic study of the IP solution is carried
out by combining the latter with the MCA described in Sec-
tion 5.2, where the modelM (see Eq. (1)) is the IP algorithm
(see Fig. 4).

5. Results

5.1. Variables and notation

The voltage measured along the bottom of the plate (see
Fig. 3) depends on: (i) the load (Tap

xx ), (ii) the specimen
geometry (Lx, Lz, x0, z0 and r) and (iii) the material proper-
ties (see Eq. (6)). However, in this work, only the material
properties are treated as random variables nj.

Material properties are assumed to be normally distrib-
uted and uncorrelated with each other. This assumption
also was performed by Ramamurty et al. (1986). The
means are given by the catalogue properties of PZT-4 (see
EFUNDA – Engineering Fundamentals, 2006), while the
standard deviations (uncertainties) are assumed to be
about 0.1% of the mean value.

Table 2 shows the problem variables with their random
or deterministic character, the mean, the standard devia-
tion (STD) and the standardized regression coefficients
(SRC) notation.

5.2. Validation of Monte Carlo analysis

In order to validate the MCA, it is considered the simple
problem consisting of the piezoelectric plate, described in
Section 3, but without defect. For this problem, the voltage
along the bottom of the plate is given by Palma (2006):

/ANA ¼ $g31 1$ sD12
sD11

% &
LzTap

xx ð15Þ

The error propagation (EP) theory (see Bevington, 1969)
allows to quantify the sources and magnitudes of errors in-
volved in the measurements of voltages for the case with-
out defect, where an analytical solution is available. Two
types of errors can be studied: systematic and random er-
rors. However, we only consider the second type, which
can be dealt with in a statistical manner using the follow-
ing relationship:

r/ANA ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XNn

j¼1

@/ANA

@nj

 !2

rnj

' (2

vuut ð16Þ

where r/ANA and rnj are the standard deviations of the Eq.
(15) and of the random variables, respectively.

Fig. 6 shows (a) the mean and (b) the standard deviation
versus the sample size m when random sample (RS) and
Latin hypercube sample (LH) are considered. The analytical
solution obtained using the EP theory is superimposed on
the figure to observe the convergence. On the one hand,
Fig. 6a shows that the mean converges to the real value
(represented by EP) faster using LH than RS. This results
agree with the results obtained by McKay et al. (1979),
who concluded that LH results are more stable estimates
of the mean and standard deviation than random

Table 1
Parameters used for the GA minimization.

Parameter Value

Population size 30
Crossover ratio 0.8
Mutation ratio 0.02
Number of generations 200
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sampling. On the other hand, in Fig. 6b both sample types
converge slowly. This test justifies the choice of LH for the
MCA sampling.

A LH sample of 150 executions is considered the opti-
mum sample size for this problem. Furthermore, for uncer-
tainty and sensitivity analysis the LH sample is a good
election as it was shown in McKay et al. (1979).

Table 3 shows the mean, standard deviation and stan-
dardized regression coefficients calculated using EP theory
and the MCA with random sample m = 150 and solving the
modelM (now the plate without defect) by the FEM. All the
results agree very well (low relative errors), validating our
MCA implementation.

5.3. Uncertainty of measurements

In order to develop an UA and a SA for the experimental
voltage simulated, the MCA is applied for a piezoelectric
plate with a defect inside. The defect is characterized by
the coordinates ~x0 ¼ 3:5;~z0 ¼ 2 and ~r ¼ 0:5 [cm], while
the material properties (mean and standard deviation)
are given in Table 2. The model M is the particular plate
(described in Section 3) with defect and its response is
computed by the FEM. The sample size is m = 150.

Fig. 7a shows the voltage measured along the bottom of
the plate versus the coordinate x for each measurement
point. Three curves of the voltage are represented, using:
the direct problem solution /FEM

i , the technique shows in
Eq. (9) /

EXPð9Þ
i with w = 0.1% and the other one expressed

in Eq. (11) /
EXPð11Þ
i . Two deductions can be drawn: (i) the

mean obtained with the MCA (represented by circles)
agrees with the direct problem solution and (ii) the voltage
simulated by /

EXPð9Þ
i falls between the error bars (standard

deviation calculated using the MCA). On the other hand,
Fig. 7b shows the p-value, obtained using the Jarque–Bera
normality test (see Jarque and Bera, 1987), versus the mea-
surement points. Since the probability is larger than the
significance level (5%), the null hypothesis (the data are
normally distributed) cannot be rejected. Therefore, a

Table 2
Deterministic and random variables for the problem. STD and SRC denote the standard deviation and the standardized regression coefficient, respectively.

Variable Character Mean STD Units SRC notation

Tap
xx Deterministic 1 – '103 [Pa] –

Lx Deterministic 6 – '10$2 [m] –
Lz Deterministic 6 – –

sD11 Random 10.990 0.011 '10$12 [m2/N] H1 ¼ HsD11
sD12 Random $5.360 0.005 H2 ¼ HsD12
sD13 Random $2.220 0.002 H3 ¼ HsD13
sD33 Random 8.240 0.008 H4 ¼ HsD33
sD44 Random 20.160 0.020 H5 ¼ HsD44

g31 Random $10.690 0.011 '10$3 [Vm/N] H6 ¼ Hg31
g33 Random 25.110 0.025 H7 ¼ Hg33
g15 Random 37.980 0.040 H8 ¼ Hg15

bT11 Random 7.660 0.008 '107 [Nm2/C2] H9 ¼ HbT11
bT33 Random 8.690 0.009 H10 ¼ HbT33
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Fig. 6. (a) Mean and (b) standard deviation versus sample size for random sample (RS) and Latin hypercube sample (LH). EP shows the mean and standard
deviation computed using the error propagation theory.

Table 3
Mean, standard deviation and standardized regression coefficients calcu-
lated using Monte Carlo analysis (model evaluated with the FEM code) and
propagation error theory (analytical expression).

MCA EP Relative error (%)

l/ [V] 0.9542 0.9542 0
r/ [V] 0.0011 0.0011 0
HsD11

$0.293 $0.292 0.34
HsD12

$0.273 $0.272 0.37
Hg31 $0.916 $0.917 0.11
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normal distribution Nðl/FEM
i

;r/FEM
i

Þ is obtained for each
measurement point. This result is in accordance with the
linearity of the model and the normal distribution of all
the random variables. Furthermore, the standard devia-
tions in each measurement point is about 0.1% of the mean
value, which supports the value w = 0.1% used in Eq. (9) in
order to obtain /

EXPð9Þ
i . In conclusion, Eq. (9) used in Rus

et al. (2009) is valid when w = 0.1%. Therefore, the two
hypothesis formulated in Section 4.3 and assumed in Rus
et al. (2009), namely, normal distribution of the noise
and that the noise level on measurements is of the same
order of magnitude as the uncertainties in material
constants, are now validated.

5.4. Sensitivity of measurements

Fig. 8 shows the standardized regression coefficients
SRC (see notation in Table 2) in absolute value versus the
measurement points, from which three observations can
be made: (i) the measurements are most sensitive to the
material properties sD11; sD12 and g31. These properties corre-
spond to those that explicitly appear on the analytical
solution without defect, see Eq. (15). This means that the
total sensitivity is the sum of the sensitivity without defect
and the alteration due to the defect. The large value of the
first component is responsible for the overall magnitude of
the sensitivity, which effectively masks the defect-depen-
dent component. The largest sensitivity value corresponds
to jHg31 j % 0:9, which agrees with the constitutive equa-
tions that directly relate g31 with the applied load Tap

xx and
the electric field Ez from which the electric voltage is mea-
sured (see Eq. (6)). Note that a purely piezoelectric effects
is induced. (ii) The presence of the defect is responsible for
a non-zero sensitivity to some material constants, that is
null without defect (see Eq. (15)). These particular proper-
ties are: g33; g15; b

T
11 and bT

33, and produce a sensitivity one
order of magnitude smaller. Furthermore, the sensitivity is
larger at the measuring points where the voltage alteration
due to the defect is larger. This can be verified by looking at
the first measuring point (coordinate 0). This measure-
ment, whose value is close to that provided by the analyt-
ical expression, is least altered by the defect, and shows the
smallest sensitivity, as predicted. On the other hand, the
sensitivity is about three order of magnitude smaller for

sD13. (iii) Finally, the measurements are not sensitive to
two particular mechanical properties: sD33 and sD44 (only
noise is shown on the corresponding figures).

To sum up, Fig. 9 shows all the SRC’s in absolute value
superposed and in logarithmic scale versus the measure-
ment point. The three observations are clearly identifiable
in this figure, since the curves corresponding to each
observation appear to be grouped and follow three differ-
entiated trends.

5.5. Effect of noise amplitude

In this section, the output of the IP is obtained minimiz-
ing the quadratic-type CF by means of GA for a defect char-
acterized by ~p ¼ ð3:5;2;0:5Þ ' 10$2 [m]. In order to
represent the IP solution versus the noise level, a Distance
between predicted and real parameters is defined in an
Euclidean sense as (see Rus et al., 2009):

Distance ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1 ~pi $ pið Þ2

q

PN
i¼1~pi

ð17Þ

where N is the number of parameters to identify.
Fig. 10 shows the Distance from the identified damage

parameters to the real one, as defined in Eq. (17), versus
an increasing noise level controlled by the parameter w,
see Eq. (9). Ten different realizations of the search (GA
minimizations) are performed for each noise level, and
the mean (circle) and the standard deviation (error bar)
of the resulting distances are obtained. The figure shows
how the deviation of the IP output steadily increases with
the simulated noise. A standard noise level w = 0.1% is used
in most of the analysis of this work, as a consequence of
the assumption of 0.1% of standard deviation in the mate-
rial properties. If the uncertainty in the material properties
is different, the dependency of the IP output is shown to be
adequately smooth for different levels of uncertainty. On
the other hand, for noise level bigger than 0.5% the IP solu-
tion becomes unstable, because the cost function is dis-
torted (see Fig. 11). Remember that the cost functional
has multiple local minima, of which the absolute one is ex-
pected to match the real parameters. When the noise is
large, other local minima surpass the expected one, and
the solution becomes unstable.
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Fig. 7. (a) Voltage measured versus the coordinate x for each measurement point using the direct problem (solid line), the procedure shown in Eq. (9)
(dotted line) and the other one shown in Eq. (11) (circle represents the mean and error bar the standard deviation). (b) p-Value, obtained using the Jarque–
Bera normality test, versus the measurement points.
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The error in the IP output is a combination of the errors
originated by the uncertainty in the model (noise), the
numerical errors of the model (FEM) and the error from
the search algorithm (GA). For the case without noise,
the error originated by the GA is about 5 ' 10$5, while
the remaining error generated by FEM is about 4.8 '
10$4 (see Section 4.2). These figure conclude that the
numerical tool errors are less significant than the error
(noise) generated by the uncertainty in the model.

Fig. 11(left) shows the dependency of the cost functional
on the spatial locationof thedefect (fixing the size at the real
value) for increasingnoise levels. If nonoise is simulated, the
cost function shows a clear optimum that the search algo-
rithm is able to find. The shape of the cost function is dis-
torted when the noise level increases in three significant
ways: (i) the optimumbecomes fuzzy and the area of admis-
sible solutions larger, (ii) theshapeof thefitness functionbe-
comes wavy (i.e. the gradient no longer points towards the
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Fig. 8. SRC’s in absolute value versus measurement points.
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minimum), making the convergence process slower and
moreunstable and (iii) for large levels of noise, the optimum
is located far from the real solution.

Fig. 11(right) shows the GA convergence for different
noise levels. For the case w 2 (0, 0.1)%, the full convergence
is obtained for less than 200 generations. A larger noise level
is associated with slower convergence, probably due to the
wavy and fuzzy shapes of the cost functional described
above.

5.6. Study of the robustness of the method

The robustness and potentiality of the method has been
studied evaluating a SA and obtaining an IP solution for a
selection of different damage positions, 16, and for differ-
ent damage areas, 10. Fig. 12 shows the different configu-
rations studied to carry out the robustness analysis.

In order to show the SA results by scalar parameters, the
calculated and measured voltages can be expressed by:

/FEM
i % hi0 þ

XNn

j¼1

hijnj

/EXP
i ¼ /FEM

i )

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XNn

j¼1

h2ijr2
nj

vuut
ð18Þ

where the multiple linear regression approximation and
the PE theory have been used. Replacing (18) into (12)
and using the SRC definition (4):

f ¼ 1
2Ni

XNn

j¼1

kj ð19Þ

where kj are the scalar parameters, which depends of the
SRC of the random variable j and of the standard deviation
of the measurement point i:

kj ¼
XNi

i¼1

H2
ijr2

/i
ð20Þ

Fig. 13 shows the kj parameters and the Distance, de-
fined by (17), versus the damage position 1, 2, . . ., 16
shown in Fig. 12. In order to obtain the kj, a SA is evaluated
for each damage position. On the other hand, to obtain the
Distance an IP is solved using GA and a noise level of
w = 0.1% for each damage position. Fig. 14 shows the kj
parameters and the Distance versus the damage area, see
Figs. 12 and 9 for legend. The noise level used is w = 0.1%.

From the two latter figures, the following conclusions
can be extracted: (i) again, the largest sensitivities are
those corresponding with the plate without defect, sD11; sD12
and g31. (ii) New components of sensitivity appear with
the defect: g15; g33; b

T
11 and bT

33, and their magnitude is cor-
related with the area of the defect; the remaining sensitiv-
ities are just due to noise. The sensitivities associated to
the presence of a defect show little dependency on the po-
sition of the defect, and are significantly larger than those
associated with noise, which means that at all positions,
the defect can be successfully identified, as the Distance
figure (on the right) shows. The Distance for all positions
is around 1.1%, which is mainly due to the simulated noise
w = 0.1% (see Fig. 10). It is also worthwhile to note that all
Distance plots follow similar trends, and that the positions
close to the boundary are easier to detect, which may be
related to the application of the boundary conditions. (iii)
The sensitivities associated to g15; g33; b

T
11 and bT

33 are actu-
ally those that allow to detect and locate the defect, and
this can be verified by the fact that in the range of relative
defect area 0.02–0.08, their magnitude coincides with that
of noise, and for this range, the found Distance is also sig-
nificantly larger (the IP does not converge successfully),
whereas for larger areas, the Distance converges towards
approximately 1% (when w = 0.1%).

To sum up, this technique has been shown in theory to
be able to detect the location and size of a damage for real-
istic errors, as shown in Fig. 13. The size or area is more dif-
ficult to identify than the location, and the smallest defect
that can be found in theory is of the order of 0.08% with
acceptable error, as shown in Fig. 14. These conclusions
are corroborated by another perspective, the histograms
in next section.
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5.7. Effect of system uncertainty model in the IP output

There are two ways to increase the accuracy of the IP
solution. The first one consists in decreasing the noise le-
vel, and this has been studied in Section 5.3. The second

way consists on determining which material properties
deteriorate the IP solution given a fixed experimental mea-
surement, and this is the goal of the this section.

To analyze the effect of model uncertainties, the MCA is
combined with the IP algorithm (the model M, see Eq. (1),
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Fig. 12. Different damage positions and damage areas to carry out a robustness analysis.
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Fig. 13. kj and Distance versus damage position. For legend see Fig. 9.
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is now the IP algorithm), considering the material proper-
ties as normally distributed values (see Table 2). In con-
trast with the deterministic IP algorithm, which considers
deterministic model parameters to obtain the synthetic
trial observations /FEM

i in Eq. (12), the probabilistic IP algo-
rithm considers both terms /EXP

i and /FEM
i (experimental

and trial observations) as probabilistic magnitudes. There-
fore, the cost function f in Eq. (12) can be considered as a
probabilistic function. Note that the goal of this formula-
tion is to estimate which properties decrease the accuracy
of the IP solution, while the aim of the Section 5.3 was to
estimate which properties decrease the noise level. Hence,
the MCA output, namely the probabilistic IP output, consist
of scalar values, histograms, cumulative distributions func-
tions and standardized regression coefficients for each of
the three IP output parameters: x0, z0 and r.

In order to decrease the CPU time required to evaluate a
sample size of the m = 100 by MCA, the minimization is
now carried out by replacing the GA by the BFGS gradi-
ent-based algorithm (see Dennis and Schnabel, 1983). BFGS
provides quicker convergence given a controlled initial
guess. The drawback of BFGS compared to GA is that it is
sensitive to the choice of random initial guess, and may
not converge. In this problem, the initial guess is not taken
as a random number, but replaced by the value x0 = 3.5,
z0 = 2 and r = 0.5, which corresponds to the definition of
the real problem: ~x0 ¼ 3:5;~z0 ¼ 2 and ~r ¼ 0:5 [cm], and
should not be far from the IP solution when uncertainties
are included. Note that this section is not interested in test-
ing the robustness or convergence of the IP search, but to
study the influence of the random character of the model
parameters on the final IP solution.

Table 4 shows the scalar parameters obtained by means
of the MCA (see Eq. (2)) and the Distance defined in Eq.
(17) for the three IP output parameters andwhen the exper-
imental measurement considered are the two procedures

developed in this work. The Distance value is lower for
/

EXPð11Þ
i than for /

EXPð9Þ
i . Since the second consideration,

/
EXPð11Þ
i , is more realistic from an experimental point of view,

the simple noise application used in Rus et al. (2009) (/EXPð9Þ
i )

can be applied for theoretical or numerical studies, ensuring
better results for future experimental studies.

Figs. 15 and 16 show the histograms and the cumulative
distribution functions for the three parameters and for
both experimental measurement considerations. Accord-
ing to this figure and for both considerations, the best scat-
tering is attained for the parameter r and, therefore, this
parameter is the more difficult to detect. On the other
hand, the parameter x0 is relatively easy of detect.

However, the most relevant conclusion is that the IP
output using the probabilistic model formulation (Fig. 16)
has a narrower dispersion and a clearer expected value
(steeper cumulative distribution function and fewer outli-
ers in the histogram) than when using the approximated
model (Fig. 15). This proves that the approximated model
defined in Eq. (9) comprises the final solution given by
the fully probabilistic model, and provides a valid solution
on the safe side. This observation extends the conclusion in
Section 5.3, and validates the simplified semi-explicit for-
mulation not only to estimate the uncertainties of the
observations, but also of the final IP solution.

5.8. Sensitivity to system uncertainties in the IP output

Fig. 17 shows the standardized regression coefficients,
in absolute value, for both types of experimental measure-
ment simulations (see Table 2 for notation). The profiles of
sensitivities are approximately the same for the three IP
output and for the experimental measurement consider-
ations, which further supports the conclusion in the previ-
ous section. Furthermore, these profiles also agree with the
others obtained for the experimental measurements (see
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Table 4
Scalar MCA parameters for the three IP output parameter and for both experimental measurement simulations.

Measurement type x0 [cm] z0 [cm] r [cm] Distance

l r l r l r

/
EXPð9Þ
i 3.55 0.03 2.11 0.09 0.45 0.15 0.018

/
EXPð11Þ
i 3.52 0.06 2.04 0.08 0.54 0.14 0.016
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Section 5.3 and Figs. 8 and 9). Therefore, the parameters
that increase the noise level and decrease the accuracy of
the IP solution can be concluded to be the same that affect
the measurements, namely, sD11; sD12 and g31.

6. Conclusion

A procedure to obtain the sensitivity of the measure-
ments to material constant uncertainties in a model-based
NDE system for piezoelectric ceramics has been developed

and validated using Monte Carlo techniques, error propa-
gation theory and with the help of an analytical solution.
On the other hand, the Monte Carlo technique has been
combined with the inverse problem algorithm in order to
develop a probabilistic IP approach, where the probability
distribution functions of the IP output have been obtained.
A few conclusions are extracted.

For the experimental measurement study, the assump-
tion that the noise on measurements is normally distrib-
uted is demonstrated as long as the uncertainty in
material constants is normally distributed. Furthermore,
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the magnitude of measurement noise is of the same order
of magnitude as the material constants uncertainty.

For the probabilistic study, the detection of the coordi-
nates of the center of the defect has been concluded as
more easy to find. However, the radius of the defect is
more difficult to find and a uncertainty treatment or a
sophisticated minimization algorithm must be applied in
order to obtain accurate results.

For both studies and as a practical conclusion, the
uncertainty on the constants sD11; sD12 and g31 should be con-
trolled and reduced to accurately detect defects, since they
are the most responsible ones of lack of sensitivity to the
effect of the defect. In contrast, the measurements have
been shown to be almost insensitive to uncertainties in
constants sD13; s

D
33 and sD44.

When assessing the robustness of this technique, the
size or area is found to be more difficult to identify than
the location, and the smallest defect that can be found
within an acceptable error is of the order of 0.08% of area.
Interestingly, the sensitivities associated to g15; g33; b

T
11 and

bT
33 are found as those responsible of allowing the tech-

nique to detect and locate the defect, and their value deter-
mines such capability.

The inverse problem solution strongly depends of
the noise level, which is evidenced by Fig. 10. There-
fore, in order to increase the accuracy of the solution,
the sensitivity analysis suggests that the uncertainty
of the material constants sD11; s

D
12 and g31 should be

determined experimentally with a precision one or
two orders of magnitude better than that of the rest
of the properties.

The results obtained in this work are limited to the case
of a simple damage type and to a 2-D model, in order to
test new formulations while keeping low CPU times. Thus,
extending these two limitations are the goal of our future
work.
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