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a b s t r a c t

The present work develops an optimization procedure for a geometric design of a composite material
stiffened panel with conventional stacking sequence using static analysis and hygrothermal effects.
The procedure is based on a global approach strategy, composed by two steps: first, the response of
the panel is obtained by a neural network system using the results of finite element analyses and, in a
second step, a multi-objective optimization problem is solved using a genetic algorithm. The neural net-
work implemented in the first step uses a sub-problem approach which allows to consider different tem-
perature ranges. The compression load and relative humidity of the air are assumed to be constants
throughout the considered temperature range.

The mass, the hygrothermal expansion and the stresses between the skin and the stiffeners are defined
as the optimality criteria. The presented optimization procedure is shown to yield the optimal structure
design without compromising the computational efficiency.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Fibre reinforced polymer (FRP) composite materials have been
used in the aerospace industry because of their high strength-to-
weight and stiffness-to-weight ratios, and good behavior under
elevated temperature environments. However, the major draw-
back of these materials is its high cost, so a suitable design and
optimization process is essential in order to improve their struc-
tural behavior to cost ratio.

This has led several authors to study the optimization of com-
posite panels, considering frequently as an objective the minimum
mass, by geometric [1–3] and stacking sequence design [4–11]. On
the other hand, these studies have focused on buckling or post-
buckling dynamic analysis, without considering environmental ef-
fects. Nevertheless, these structures are exposed to extreme envi-
ronmental conditions and some researchers have studied
optimization problems of laminated composite plates with ther-
mal effects to maximize the critical temperature capacity with uni-
form [12,13] or nonuniform temperature distribution [14]. In
addition, Ijsselmuiden et al. [15] carried out a thermomechanical
design optimization of composite panels and Cho [16] studied
the hygrothermal effects in optimization problems of dynamic
behavior, where temperature and moisture are assumed to be uni-
form once they have reached equilibrium.
ll rights reserved.
Moisture and temperature changes affect the stiffness and
strength of composites, and generate tensions between bonded
sub-components. Their static and dynamic behaviors can depend
significantly on such hygrothermal conditions. The combination
of both phenomena is usually known as hot-wet (H/W) conditions.
This state is characterized by moisture absorption by the matrix
due its exposure to humid air and high temperature, which reduces
the mechanical properties of the laminate. Additionally, this
absorption causes a volume increase and consequently internal
tensions between elements and interfaces. Experimental results
show the influence of the temperature in moisture absorption
[17–20], so this phenomenon should be analyzed for different ther-
mal load cases and hygrothermal effects should be considered in
any design and optimization process. On the other hand, Orifici
et al. [21,22] analyzed the post-buckling failure of T-shaped string-
ers classifying in four failure modes: bend, blade, flange and core
failure. The authors also found that delamination arises under
the edges of stiffeners and the triangular resin-rich area.

The solution of the optimization problem is generally obtained
with genetic algorithms (GAs) which have become one of the most
employed solution method in engineering problems since they can
handle integer, zero-one, discrete and continuous variables and are
effective with nonlinear functions and non-convex design spaces.
Due to this, both geometric and stacking sequence variables can
be introduced. These methods are based on Darwin’s theory of nat-
ural adaptation and biological evolution [23,24], which is trans-
lated into algorithmic terms through the computational
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Table 1
T800/M21 UD CFRP properties [29].

Property Value Description

Exx (GPa) 134.7 Young’s modulus
Eyy = Ezz (GPa) 7.7
mxy = mxz 0.369 Poisson’s ratio
myz 0.5
Gxy = Gxz (GPa) 4.2 Shear modulus
Gyz (GPa) 2.5
axx (�C�1) �3.08 � 10�7 Coefficient of thermal expansiona

ayy = azz (C�1) 3.18 � 10�5

q (kg/m3) 1590 Density
XT (MPa) 2290.5 Longitudinal tensile strength
XC (MPa) 1051 Longitudinal compression strength
YT (MPa) 41.43 Transverse tensile strength
YC (MPa) 210 Transverse compression strength
SL (MPa) 69.4 Shear strength
SIS (MPa) 106.48 Shear strength in situ
a (�) 53.5 Transverse compression fracture angle
b 5.10�8 Shear response factor
g 0.5769 Toughness ratio (GI/GII)

a Values obtained using the relations described in [36].

Table 2
Geometric variables domain (mm).

Geometric variables: x Lower bound: x( l ) Upper bound: x( u )

x1 : Stringers base width 20 30
x2 : Stringers rib 20 30
x3 : Stringers separation 70 110
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operators of selection, crossover and mutation. In engineering
applications, the evaluation of the objective function may be per-
formed by means of an analytical function or, frequently, a numer-
ical model (a finite element model, for instance). Since a large
number of evaluations is generally required to obtain the optimal
solution, the whole solution process implies a high computational
cost. Some authors have used global approximation techniques to
reduce function evaluation computational time by using data pre-
viously obtained with analytical or numerical methods. In this
direction, Bisagni and Lanzi [25] developed an optimization proce-
dure with a global approximation strategy based on obtaining the
structure response by means of a system of artificial neural net-
works (ANNs) and GA. Lanzi et al. [26] performed a comparative
study between three different global approximation techniques:
ANN, kriging method and radial basis functions. All the techniques
showed a similar behavior that the dynamic finite element (FE)
analysis and computational time was satisfactorily reduced.

The aim of the present work is the definition of a fast multi-
objective optimization procedure for the geometric design of stiff-
ened panels under mechanical and hygrothermal loads, which
minimizes the mass, the stresses between elements and the strain
due to hygrothermal effects. The optimization problem is subject,
in turn, to the corresponding constraints of tensions between stiff-
ener-skin, provided by a failure criterion. The optimization proce-
dure is carried out under different thermal load cases. A global
approximation technique based on ANN is used to reduce compu-
tational cost.

This paper is structured as follows: firstly, in Section 2, a stan-
dard panel is analyzed to set up the model that will compute the
objective functions and to define suitable constraints; the optimi-
zation process is described in Section 3; next, results are shown
in Section 4 and finally, conclusions are presented in Section 5.

2. Definition of the multi-objective problem

2.1. Stiffened panel design

The considered structure is a compression loaded stiffened
composite panel with three stringers, as shown in Fig. 1. This kind
of panels represents a flat and partial idealization of the wings and
fuselage structures of commercial aircrafts and so is frequently
used in analysis and testing as a subcomponent. It is made of car-
bon fiber reinforced polymer (CFRP) and is symmetric in x–z and y–
z planes. The stiffener sections are double-L shaped showing
rounded corners with a mean radius of 4 mm for construction rea-
sons. No run-outs are present. The different stacking sequences
corresponding to each part of the geometry are shown in Fig. 1.
Ply thickness is 0.184 mm. The specimen studied in this work is
made with Hexcel T800/M21 prepeg ribbon of epoxy matrix rein-
Fig. 1. Stiffened panel (dimensions in mm).
forced with unidirectional carbon fibers. Its properties are shown
in Table 1. The parametric analysis of the stiffened panel is per-
formed in function of three geometric design variables x = (x1,
x2, x3) where x1 is the stringer base width, x2 is the stringer rib
and x3 is the distance between stringers with domains set forth
in Table 2 and x 2Xd, where Xd is the decision space.

2.2. Model of the panel: finite element modeling

For the automatic parametric generation of panels, a python
code is used together with the commercial software ABAQUS
[27]. The stiffened panels are modeled by 4-node shells S4R, with
six degree of freedom at each node, three integration points along
the thickness for each ply. A compressive controlled displacement
is applied to each transverse edge, while the longitudinal edges are
free, as shown in Fig. 1. On the other hand, different temperature
states are considered with a constant moisture.

The temperature and moisture are assumed to be in equilibrium
state. The thermal strain is defined as �T = aDT and the moisture
strain has been computed by the formulation proposed by Chang
et al. [20] which considers the influence that temperature has in
moisture strain for HTA1200A/ACD8801 material:

�H ¼ 0:591R
T þ 273

ð1Þ

where T is considered as the final temperature of the DT and R is the
relative humidity. This approach is used for transverse and out-of-



Table 3
Loading conditions for each subproblem.

Subproblem
(n)

Loading conditions

Mechanical: compression controlled
displacement

Moisture content
(H [%])

Thermal (T[�C])

T Iðy1Þa TF
b DT(y2)c

SP1 �55 120 175
SP2 20 120 100
SP3 70 90 20
SP4 1.9 mm 70 20 �55 �75
SP5 70 20 �50
SP6 90 �55 �145
SP7 120 �70 �50

a Initial temperature.
b Final temperature.
c Temperature variation.
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Fig. 2. Optimization scheme.
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plane direction, while the longitudinal moisture strain is considered
negligible [28]. So the general form of stress–strain relationship for
a transversely isotropic ply in which temperature and moisture ef-
fects are considered is �Tot = �T + �H + �, where the components are:
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>:
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A standard stiffened-panel, analyzed in a previous project [29], is
taken as the reference panel with the following dimensions:
x1 = 24 mm, x2= 24 mm and x3= 100 mm. The behavior of the refer-
ence panel under different compressive and hygrothermal loads is
studied in depth, using LaRC-03 failure criterion [30], which defines
the following variables: failure indexes for transverse tensile failure
(FITT), transverse compressive failure (FITC), longitudinal tensile fail-
ure (FILT), and longitudinal compression failure (FILC).

For temperature rising cases, the strains in the perpendicular
direction are higher than the temperature decreasing cases, and
localized in the stiffener bases, so the tensions between stringers
and skin also increase. However, FITC and FILC indicate that the pa-
nel is capable of supporting larger temperature increases without
breaking up to 1.45 mm compressive controlled displacement.

For decreasing thermal variations, the panel shows lower ten-
sions, breaking with variations between �50� and �125� and com-
pressive moderated displacement, depending on the final
temperature. In these cases, FITT and FILC are the most important
failure indexes. The interaction between moisture and thermal ef-
fects helps to the behavior of the panel but the matrix is damaged
after the moisture absorption. Different environmental conditions
with decreasing and rising thermal variations have been consid-
ered in the optimization problem.

2.3. Definition of subproblems

The behavior of the panel under a wide range of temperatures
leading to different failure modes is analyzed. For this purpose,
the initial problem has been decomposed into seven sub-problems
so that, for each one, different ranges of temperature are consid-
ered. Initial temperatures correspond to the most significant values
used in experimental analysis (generally �55 �C, ambient temper-
ature, 70 �C, 90 �C and 120 �C) and temperature variations are cho-
sen by the most important cases within the considered
temperature range from �55� to 120� [31], where the minimum
and the maximum service temperature commercial transport air-
craft are considered as �54 �C and 71 �C respectively and the de-
sign ultimate loads at temperature up during takeoff and landing
is 93 �C; the temperatures higher than 100 �C are considered only
for special cases, such as supersonic transport, fighter, and bomber
aircraft. So the different subproblems described in Table 3 were
considered. The variables TI (initial temperature) and DT (temper-
ature variation) form the vectors yn = (y1n, y2n) where n is the num-
ber of each subproblem.

2.4. Formulation of the multi-objective optimization problem

A multi-objective problem is established, which seeks to mini-
mize the weight of the panel f1(x, yn), the local strain in direction
perpendicular f2(x, yn) and the tension between skin and stiffeners
f3(x, yn). All three objective functions are considered to be equally
important.

In this way, the optimization problem can be formulated as:

Minimize Yðf1ðx; ynÞ; f2ðx; ynÞ; f3ðx; ynÞÞ Y 2 Xo

Subjectto gkðx; ynÞ > 0 k ¼ 1;2

xðlÞj 6 xj 6 xðuÞj

where yn ¼ ðy1n; y2nÞ
x ¼ ðx1; x2; x3Þ

ð3Þ

where Xo is the objective space. The constraints gk(x, yn) are defined
as:
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g1ðx; ynÞ ¼ 1� FITCðx; ynÞ
g2ðx; ynÞ ¼ 1� FILCðx;ynÞ

�
if DT > 0;

g1ðx; ynÞ ¼ 1� FITTðx; ynÞ
g2ðx; ynÞ ¼ 1� FILCðx; ynÞ

�
if DT < 0

ð4Þ
Fig. 3. Neural network scheme.
3. Optimization procedure

The solution of the problem, displayed in Eqs. (3) and (4), im-
plies a high computational cost for the optimization process since
the values of the objective functions and the constraints are ob-
tained from a parametrized FE model. For this reason, the proce-
dure shown in Fig. 2 based on a global approximation technique
is used to reduce the computational time. This procedure is com-
posed by two steps:

1. A system of ANN that is partially capable to reproduce the solu-
tion of the FE model is developed. To the seven inputs corre-
sponding to each subproblem En(In) it delivers the different
outputs composed of the objectives and constraints En(On).

2. A GA obtains to get the optimal value for the design variables
previously described.

3.1. Model of the panel: neural network modeling

An ANN is a system used for information processing whose ba-
sic unit is inspired by the fundamental cell of the human nervous
system: the neuron. This system is capable of acquiring knowledge
and resolve situations that cannot be expressed mathematically by
the experience [32].

The ANN needs a learning process and a training set, composed
of input–output patterns, as known examples. The input signals of
an artificial neuron are continuous variables instead of discrete
pulses, as presented in a biological neuron. Each input signal
passes through a weight or gain, known as synaptic weight or
strength of the connection whose function is analogous to the syn-
aptic function of the biological neuron. An other term, called bias,
supposes a reinforcement of these connections. The summation
node accumulates all input signals multiplied by the weights and
bias and output passes through a transfer function or, where appro-
priate, activation function. The result of this sum is known as prop-
agation function, which obtains the output vector.

A commercial software, MATLAB [33], was applied for develop-
ing an ANN procedure that includes the following process:

(a) Choice of data set. The training data set is composed by seven
subsets that correspond to the different sub-problems
displayed in Table 3. The set consists of an input–output
Table 4
Objectives and constraints values for each subproblem. Bold values denote relevant result

Method SP1 SP2

Objectives m (g) 378 378
rxy (MPa) FE Analysis 32.84 28.79

NN System 33.15 29.89
Error (%) 0.9 3.1

�yy FE Analysis 4.76 4.46
NN System 4.78 4.57
Error (%) 0.4 2.5

Constraints FITT FE Analysis – –
NN System – –
Error (%)

FILC FE Analysis 0.996 0.64
NN System 0.97 0.68
Error (%) 2.6 6.2

FITC FE Analysis 0.978 0.80
NN System 0.98 0.82
Error (%) 0.2 2.5
pattern-pairs obtained through FE analysis.
The input pattern forms a vector In, composed of the geomet-
rical parameters x and the vector yn, and the output pattern
On, composed of the corresponding responses of the panel
for each sub-problem (objectives and constraints).

(b) Architecture of the ANN. The complexity of the problem is
solved by using by a suitable architecture to implement
the information of the input–output pattern for each sub-
problems discussed that, once inside the network will be
merged.
This architecture, shown in Fig. 3, is defined by multilayer
perceptron (MLP) that consists of an input layer with a vec-
tor dimensions In, two hidden layers with compet and tansig
functions as activation and transfer functions respectively,
and Levenberg–Marquardt [34] backpropagation learning
rule and an output layer, with tansig function, that obtains
the vector On, calculated from the bias and weights are
adapted after training in the network.

(c) Training of the ANN. The ANN is taught to form the relation-
ship between input and output variables by the training data
set of known input–output patterns. This set is composed by
s discussed in the text and Table 5.

SP3 SP4 SP5 SP6 SP7

378 378 378 378 378
25.43 24.85 23.90 22.08 22.49
26.50 24.66 24.16 21.80 22.05

4.2 0.7 1.1 1.2 1.9

4.24 4.23 4.22 4.22 4.21
4.16 4.17 4.17 4.35 4.23
1.9 1.4 1.2 3.0 0.5

– 0.32 0.42 0.948 0.784
– 0.31 0.45 0.93 0.81

6 7.1 1.9 3.3

0.61 0.58 0.47 0.996 0.87
0.65 0.54 0.49 0.98 0.89
6.5 6.9 4.2 1.6 2.3

0.36 – – – –
0.38 – – – –
5.6



Table 5
Comparison of the reference and optimal panels for the most restrictive subproblems.

Panel SP1 SP3 SP6

Objectives m(g) Reference panel 379 379 379
Optimum panel 378 378 378
Reduction (%) 0.54 0.54 0.54

rxy (MPa) Reference panel 35.52 27.06 23.24
Optimum panel 32.84 25.43 22.08
Reduction (%) 7.55 6.02 4.99

�yy Reference panel 5.09 4.46 4.37
Optimum panel 4.76 4.24 4.22
Reduction (%) 6.48 4.93 3.43
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the response of 120 FE analysis for each sub-problem to
achieve a good performance of the system. A data processing
MSE of about 10�4 is obtained.

3.2. Genetic algorithm

A variant of the algorithm Non-dominated Sorting Genetic Algo-
rithm II (NSGA-II) [35] is used to solve the formulated problem by
the Toolbox for Matlab (Global Optimization). It is one of the results
of the evolution of the GA and is based on the application of elitism
preserving the use of Pareto front. This elitism is controlled by two
options: the Pareto fraction and crowding distance measure func-
tions. The first, limits the number of individuals on the Pareto front
and the distance function helps to maintain diversity on a front by
favoring individuals that are relatively far away on the front.

The fitness function, which measures the genetic informations
of each individual, is composed of the different objectives and
the constraints. A penalty method is used to describe the
Fig. 4. Comparison between ref
constraints, reported in Eq. (4). The individuals with better charac-
teristics survive during the evaluation process.

The genetic search is performed with a population size of 75
members, generated randomly, with a ’genotype’ function as
crowding distance measure and the value of the Pareto fraction
is set as 0.5.

4. Results and discussion

The GA converged after 33 generations and required 1701 fit-
ness function evaluations. A considerable reduction of the compu-
tational cost is achieved with the optimization procedure
proposed. In fact, to obtain the optimal configuration, 120 FE anal-
ysis for each subproblem were performed in a total computational
time of about 35 h. The used computer is a DELL Precision T1500
with an Intel� Core™ i5 CPU with 2.67 GHz, 4 GB of RAM, Windows
7 x64 Edition. The CPU time required by the ANN training process
was approximately 25 min, while the computational cost for opti-
mization was about 8 min. However, a direct optimization using
GA coupled with FE analysis supposes about 1701 different simu-
lations for each subproblem, which means roughly 500 h of com-
putational time.

The optimal panel has been selected between all those solutions of
the Pareto front such as each objective function has the same weight.
This panel is characterized by a mass of 378 g and the following
dimensions: x1 = 26.397 mm, x2 = 21.404 mm and x3 = 90.23 mm.

The solution obtained using the ANN modeling is compared
with the FE modeling for each subproblem as shown in Table 4.

In turn, all the failure indexes of LaRC criterion are verified to be
lower than 1. For this parameters, the most restrictive problems
have been the SP1 for temperature increase and SP3 and SP6 for
temperature decrease. In comparison with the reference panel,
erence and optimal panels.
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the reduction in mass is 0.54%, and the hygrothermal strain and the
tensions between the stiffeners and the skin are reduced about
6.48–3.43% and 7.55–4.99% respectively depending on the sub-
problem (Table 5).

Positive and negative temperature increments of five degrees
are considered for each interval in Fig. 4, where the comparison be-
tween these panels is shown for the extreme temperature cases. In
both cases, the reference panel breaks as failure indexes values
indicate in Fig. 4a and d while the optimal panel shows a good per-
formance and the strain and the tension between the stiffeners and
the skin are considerably reduced.

5. Conclusions

An optimization procedure for stiffened panels under mechani-
cal and hygrothermal loads has been developed. This procedure
consists of the interaction between an ANN system and a GA with
the purpose of reducing the computational cost that could reach a
direct optimization using FE analysis to obtain the response of the
panel. For the correct definition of the optimization problem, the
behavior of a reference panel has been analyzed by means of FE
with the aim of selecting the most significant objectives and con-
straints for the possible load states.

A set of seven subproblems characterized by different tempera-
ture ranges and moisture presence was considered in the optimiza-
tion procedure. This decomposition of the initial problem in several
subproblems helps to analyze the hygrothermal effects with negative
or positive thermal variations and to find the optimal panel for the
maximum number of load cases at which these structural elements
can be subject. However, the implementation of different subprob-
lems increases the computational cost in the optimization problem.

The use of ANN systems can increase the speed of the optimiza-
tion processes, reducing the computational cost about 92.8%. The
drawback of these tools is the time required to design its architec-
ture to obtain the suitable learning, which can be higher in specific
terms and affect the optimization results. However, comparing the
optimal panel behavior calculated with FE analysis and ANN sys-
tem, it can observed that is suitable for all subproblems and is able
to reduce the several objectives satisfying the considered con-
straints. Comparing the optimal and reference panels, the mass is
reduced about 0.54% and the hygrothermal strain and tension be-
tween stringers and skin are decreased until 6.48% and 7.55%
respectively in specific load cases.

In conclusion, ANN and GA reduce the computational cost with
suitable accuracy and can help to implement several load states to
minimize the global problem. These tools can be used in engineer-
ing applications with a unique or various ANN systems. On the
other hand, to reduce the time required to train the ANN and re-
place the problematic trial-and-error approach, a GA system could
be used to find the optimal internal architecture.
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