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Abstract

This study deals with postbuckling behavior of laminated composite plates under the combination of in-plane shear,
compression and lateral loading using an Element-based Lagrangian formulation. Natural co-ordinate-based strains, stres-
ses and constitutive equations are used in the present shell element. The Element-based Lagrangian formulation described
in this paper, in comparison with the traditional approaches, is more attractive not only because it uses only single map-
ping but also it converges faster. In addition, the finite element (FE) formulation based on the assumed natural strain
method for composite structures shows excellence from the standpoints of computational efficiency as well as its ability
to avoid both membrane and shear locking behavior. The numerical results obtained are in good agreement with those
reported by other investigators. In particular, new results reported in this paper show the influence of various types of load-
ing, materials and number of layers on postbuckling behavior.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

A new class of materials, fiber-reinforced composite materials, is increasingly being used in a large variety
of structures including aerospace, marine and civil infrastructure. With the advancement of technology in
fiber-reinforced composite materials, the applicability of composites to such structures has been increased
significantly due to their merits such as high strength to weight ratio and resistance to corrosion.

Structural behavior of plates and shells using the finite element method has been studied by a variety of
approaches. Ahmad et al. (1970) developed shell elements referred as degenerate model. In general, such shell
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elements can describe accurately the various behaviors of plates and shells. However, for the thin structures,
their performance deteriorates rapidly as the element thickness becomes thin, which is called shear locking. In
order to overcome the shear locking problems Huang and Hinton (1986) developed a nine-node assumed
strain shell element using an enhanced interpolation of the transverse shear strains in the natural coordinate
system. Other finite elements employing the assumed strain method were then reported by Jang and Pinsky
(1987) independently and also a various background of the assumed strain method was presented by Simo
and Hughes (1986). Belytschko et al. (1989) presented a nine-node assumed strain shell element with a stabi-
lized matrix to control the zero energy modes and used a reduced integration for all the terms.

Based on the finite element techniques, various geometrically nonlinear formulations for laminated com-
posite structures are developed in the last two decades. Kim and Voyiadjis (1999) analyzed postbuckling
behaviors of laminated composite panels under in-plane compression. Kim et al. (2003) carried out initial
buckling and postbuckling analysis of composite plates under pure shear loading. However, the papers on
the postbuckling analysis of the laminated composite plates under the combination of in-plane shear, com-
pression and lateral loading have rarely been published. Moreover, most previous studies dealing with com-
posites and isotropic plates subjected to the compressive and combined loading have been limited to elastic
buckling behaviors (Featherston and Watson, 2005; Shufrin and Eisenberger, 2005; Featherston, 2003;
Loughlan, 2001).

In this paper, to avoid locking phenomena, the assumed natural strain method by Han et al. (2004) is used
and the equivalent constitutive equations is used to capture layer effect through the thickness direction. We
concentrate on the postbuckling analysis of laminated composite plates under the combination of in-plane
shear, compression and lateral loading. For a composite laminate, the combination of various types of loading
and lay-up sequences could play a dominant role in determining the nonlinear characteristics. Thus, the study
is further extended in this investigation to take into account the effects of loading and stacking sequences. This
study uses the first-order shear deformation theory and the numerical results are verified by comparing them
with the solutions obtained by Zhang and Matthews (1983a,b, 1985).

2. Geometry of the shell element

In general, the Lagrangian formulations for geometric nonlinear analysis can be classified into two ap-
proaches: (1) Total Lagrangian Formulation (TLF), where all the static and kinematic variables are referred
back to the initial undeformed configuration (B0), (2) Updated Lagrangian Formulation (ULF), where all are
referred to the current deformed configuration (Bt). Wong (1984) proposed a new variation of Lagrangian
formulation known as Element-based Lagrangian Formulation (ELF), where all the static and kinematic
variables are referred to a nonphysical ‘‘Element-based’’ configuration (B) as shown in Fig. 1. Unlike the
two traditional Lagrangian formulations, a standard parental element serving as the reference of deformation
is to be mapped directly into each element of the initial and deformed configurations in the Element-based
Lagrangian Formulation. Therefore, all balance equations governing the deformed configuration can be
expressed over the parental element domain in terms of the element natural co-ordinates.
2.1. Initial geometry and kinematic description

The geometry of 9-node shell element shown is Fig. 2 has six degrees of freedom per node. Using the shell
assumption of straight normal remaining straight, the initial configuration of the shell element having constant
thickness h can be written as
PðniÞ ¼ PðnbÞ þ n3VðnbÞ; i ¼ 1; 2; 3; b ¼ 1; 2; ð1Þ

PðnbÞ ¼
X9

a¼1

NaðnbÞP
a
; ð2Þ

VðnbÞ ¼
X9

a¼1

NaðnbÞ
ha

2
bVa
; ð3Þ
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Fig. 1. The element-based Lagrangian formulation method.
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Fig. 2. Geometry of 9-node shell element with six degrees of freedom.
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where P denotes the position vector of a generic point in the shell element; P is the position vector of a point in
the mid-surface; Na denotes the two-dimensional quadratic Lagrangian interpolation function associated with
node a; P

a
are position vectors which have three Cartesian components; ha is the thickness of the shell at node

a; and bVa
is a unit normal vector at node a, which is normal to the mid-surface. The unit normal vector bVa

at
node a can be easily determined by
bVa
¼

oP
a

on1

� oP
a

on2

oP
a

on1

� oP
a

on2

���� ���� . ð4Þ
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Finite rotations about the three Cartesian axes, unlike infinitesimal rotations, do not qualify as vectors
(Groesberg, 1968). The use of rotations of shell normal about the three global coordinate axes, which is a com-
mon practice in linear analysis of shells, has to be abandoned because the transformation and the updating of
these rotations require special treatments when finite rotations are involved.

It has been noticed that in the rigid body dynamics, the rotational movement of a rigid body has been dealt
with quite successfully by using Euler�s angles (Groesberg, 1968), defined by a strict sequence of rotational
displacements. The transformation matrix can only represent two independent rotational modes, instead of
three modes as required, thus indicating the shortcoming of Euler�s angles when small rotation is specialized.
In Fig. 3, a new scheme proposed in this study is illustrated, which is based on another strict sequence of three
successive rotations. Transformation matrices for these rotations are
Fig. 3.
axis.
R1 ¼
1 0 0

0 c1 �s1

0 s1 c1

264
375; R2 ¼

c2 0 s2

0 1 0

�s2 0 c2

264
375; R3 ¼

c3 �s3 0

s3 c3 0

0 0 1

264
375; ð5Þ
where ci = coshi, si = sinhi (i = 1, 2, 3) and the expression of transformation matrix R is
R ¼ R1R2R3 ¼
c2c3 �c2s3 s2

c1s3 þ s1s2c3 c1c3 � s1s2s3 �s1c2

s1s3 � c1s2c3 s1c3 þ c1s2s3 c1c2

264
375. ð6Þ
The three rotations define a unique transformation matrix R through Eq. (6); thus they can be used as gen-
eralized coordinate for the attached reference system at each node. Then the fibre displacement with respect to
the mid-surface will be described by these three rotations. The displacement field u in the shell element can be
defined as
(a) (b)

(c)

Proposed rotation expression scheme: (a) a rotation, h1, about Y1 axis; (b) a rotation, h2, about Y 2 axis; (c) a rotation, h3, about eY 3
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uðniÞ ¼
X9

a¼1

NaðnbÞ �ua þ n3

ha

2
bea

� �
¼ �uðnbÞ þ n3�eðnbÞ; ð7Þ
where �u is the transitional displacement vector of a point in the mid-surface and bea
is the fibre displacement

vector at the node a, i.e.,
êa ¼ Ra bVa
� bVa

. ð8Þ
Consequently, using Eq. (8), the displacement field in Eq. (7) can be expressed as
uðniÞ ¼
X9

a¼1

NaðnbÞ �ua þ n3

ha

2
ðRa � I3�3ÞbVa

� �
; ð9Þ
where I3·3 is a unit matrix.

2.2. Incremental rotational and displacement vector

We first refer to the angular velocity vector in the analytical mechanics. It is well known that angular veloc-
ity is a vector, although its components are non-integrable (Meirovitch, 1970). Now that geometrically non-
linear problems with large rotations are solved by iterative methods, the incremental rotations have to be dealt
with appropriately (Fig. 4). The incremental rotations may be regarded as small when the displacement fields
are linearized and therefore can be treated as vectors like the angular velocity. Given a set of incremental rota-
tions Dh1, Dh2 and Dh3, an incremental rotation vector is defined as
Dr ¼ Dr1 þ Dr2 þ Dr3; ð10Þ

where
Dr1 ¼ Dh1u1; Dr2 ¼ Dh2u2; Dr3 ¼ Dh3u3 ð11Þ

with u1, u2 and u3 representing unit vectors along the directions of axes Y1, Y 2 and eY 3ðy3Þ, respectively.

This incremental rotation vector can be expressed in different reference systems:

(a) In the fixed global coordinate system x1x2x3
Dr ¼
Dhx1

Dhx2

Dhx3

8><>:
9>=>; ¼ RG

Dh1

Dh2

Dh3

8><>:
9>=>;; ð12Þ
1Y
2Y

3Y
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33 ( )yY
∼

1rΔ
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3rΔ

Fig. 4. Incremental rotation vector.
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where
RG ¼
1 0 s2

0 c1 �s1c2

0 s1 c1c2

264
375. ð13Þ
(b) In the attached reference system y1y2y3
D�r ¼
Dhy1

Dhy2

Dhy3

8><>:
9>=>; ¼ RTDr ¼ RA

Dh1

Dh2

Dh3

8><>:
9>=>;; ð14Þ
where
RA ¼ RTRG ¼
c2c3 s3 0

�c2s3 c3 0

s2 0 1

264
375. ð15Þ
For node a, the increment of the nodal fiber displacement in the attached reference system due to the incre-
mental normal rotation D�ra, can be expressed as
Dêa
A ¼

n3ha

2

� �
D�ra � bVa� �

¼ n3ha

2

� �
Wa

D�r1

D�r2

D�r3

8><>:
9>=>;

a

ð16Þ
in which
Wa ¼
0 bV a

3 �bV a

2

�bV a

3 0 bV a

1bV a

2 �bV a

1 0

2664
3775. ð17Þ
Thus, the increment of nodal fiber displacement due to the incremental rotation of normal can be expressed in
the global reference system as
Dêaðn3Þ ¼ RaDêa
Aðn3Þ ¼

n3ha

2

� �
RaWaD�ra ð18Þ
which can be written in the form
Dêaðn3Þ ¼ n3Ha

Dh1

Dh2

Dh3

8><>:
9>=>;

a

; ð19Þ
where
Ha ¼ ha

2
RaWaRa

A. ð20Þ
Let the nodal incremental displacement vector for node a be
DUa ¼ D�ua
1;D�ua

2;D�ua
3;Dha

1;Dha
2;Dha

3

	 
T
. ð21Þ
The increment of nodal fiber displacement will be
Duaðn3Þ ¼ I3x3 n3Haj½ �DUa. ð22Þ

Then the incremental displacement field within the element can be expressed as
DuðniÞ ¼
X9

a¼1

NaðnbÞDuaðn3Þ ¼
X9

a¼1

NaðnbÞ I3�3jn3Ha½ �DUa. ð23Þ
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3. Torsional effect

As the element has no direct stiffness contribution to the drilling degree of freedom, the stiffness matrix may
be singular if neighboring elements are nearly co-plane. In the past, a fictitious torsional spring was added
either locally at the element level, or in some pseudo-normal direction defined at each node. This technique
often is found unsatisfactory, especially for a flexible system in which an unrealistic amount of strain energy
in the spring can be produced by a rigid body motion. In this study, based on the procedure proposed by
Kanok-Nukulchai (1979), the drilling degree of freedom will be tied to the in-plane twist by a penalty
functional through an additional strain energy as
Ut ¼ ktG
Z

V e
atðn1; n2Þ �

1

2

ow2

oz1

ðn1; n2; 0Þ �
ow1

oz2

ðn1; n2; 0Þ
� �� �2

dV ; ð24Þ
where kt is a parameter to be determined (the value of 0.1 is suggested); G is the shear modulus; Ve is the vol-
ume of the element; at is the in-plane torsional rotation; w1 and w2 are displacement components in the local
coordinate system; zi (i = 1, 2, 3) are local Cartesian coordinates with z3 axis normal to the shell mid-surface;
and dV is the volume element. A two-by-two Gauss integration scheme is applied for the evaluation of the
torsional stiffness in order to avoid the over-constrained situation.

4. Natural strain tensor

Following the natural co-ordinate system (Han et al., 2004), the natural strain tensor corresponding to the
Green strain tensor may be defined as
eEab ¼
oPI

ona

oPJ

onb
EIJ . ð25Þ
It should be noted that the Green strain tensor and the natural strain have the following tensor transfor-
mation relationship
eEab ¼
1

2

oPI

ona

ouI

onb
þ ouJ

ona

oPJ

onb

� �
. ð26Þ
The incremental membrane, bending and transverse shear strains with Eq. (26) can be separated into linear
and nonlinear parts such as:
DeEm ¼ DLeEm þ DNLeEm
; ð27aÞ

DeEb ¼ DLeEb þ DNLeEb
; ð27bÞ

DeEs ¼ DLeEs þ DNLeEs
. ð27cÞ
5. Strain energy and stress resultants of laminated plates

The strain energy U of the shell represented as a three-dimensional body is given by the expression, where in
curvilinear coordinates the stress tensor Sij is contracted with the strain tensor Eij
U ¼ 1

2

Z
V

SijEij dV . ð28Þ
In the laminated structures, the stiffness properties are function of the normal coordinate. In Fig. 5, a cross-
section of laminated plate composed of N layers is presented. A linear elastic properties of the anisotropic lay-
ers are characterized by the tensor of elasticity Cijkl. In many applications, it can be assumed that calculations
of shell stiffness properties can be performed neglecting the differences in spatial and shell mid-surface metrics.
In this case, the Hook�s law for each layer can be written by
Sij ¼ CijklEkl. ð29Þ
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Since the present formulation is based on the natural co-ordinate reference frame, we introduce here an
explicit transformation scheme between natural co-ordinates and the global co-ordinate system, to obtain a
natural co-ordinate based constitutive equation (Kim and Park, 2002; Kim et al., 2003). The stress tensor
in the natural coordinate can be written as follows:
eS ij ¼ eCijkl
eEkl ¼ eJ 0TeDijklT

TeEkl; ð30Þ
where eJ 0 is the determinant of the Jacobian matrix and eDijkl is the constitutive matrix for orthotropic mate-
rials with the material angle h. The transformation matrix T in Eq. (30) is given by Han et al. (2004). Substi-
tuting Eq. (30) into Eq. (28) the strain energy U can be expressed by
U ¼ 1

2

Z
A

Z h=2

�h=2

eCijkl
eEij
eEkl dn3 dA. ð31Þ
After integration, throughout the thickness, the strain energy can be obtained in terms of shell quantities:
stress resultants and couples and laminated shell stiffness characteristics
Aabcd;Babcd;Dabcd ¼
Z h=2

�h=2

eCabcdð1; n3; n
2
3Þdn3;

Aa3b3 ¼ ks

Z h=2

�h=2

eCa3b3 dn3.

ð32Þ
The Reissner�s value of 5/6 is used as the transverse shear correction factor (ks) in the FE formulation based on
the first shear deformation theory.

The shell element displays resultant forces acting on a laminate which are obtained by integration of stres-
ses through the laminate thickness. In this study, we impose the plane state on the natural constitutive equa-
tion of Eq. (30) before forming the equivalent constitutive equation. The constitutive relations of the
composite laminate are as follows:
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N ab

Mab

Qa3

8><>:
9>=>; ¼

Aabcd Babcd 0

Babcd Dabcd 0

0 0 Aa3b3

264
375

eEm

cdeEb

cdeEs

b3

8>><>>:
9>>=>>;. ð33Þ
6. Transverse shear and membrane locking

In order to avoid locking problems, the assumed natural strain method in the nine-node shell element by
Han et al. (2004) is used. Thus the transverse shear and membrane strain fields are interpolated with the fol-
lowing sampling points,
~e13 ¼
X2

i¼1

X3

j¼1

Xiðn1ÞNjðn2ÞeEd

13; ~e23 ¼
X2

i¼1

X3

j¼1

Xiðn2ÞNjðn1ÞeEd

23;

~e12 ¼
X2

i¼1

X2

j¼1

Xiðn1ÞXjðn2ÞeEd

12;

ð34Þ
where d = 2(j � 1) + i denotes the position of the sampling point as shown in Fig. 6 and the shape function
Xi(n1) and Nj(n2) are
X1ðn1Þ ¼
1

2
ð1þ

ffiffiffi
3
p

n1Þ; X2ðn1Þ ¼
1

2
ð1�

ffiffiffi
3
p

n1Þ;

N1ðn2Þ ¼
1

2
n2ðn2 þ 1Þ; N2ðn2Þ ¼ 1� n2

2; N3ðn2Þ ¼
1

2
n2ðn2 � 1Þ

ð35Þ
in which Xi (n2) and Ni (n1) can be obtained by changing variables. The assumed strain ~e11, ~e22 have the same
interpolation scheme as ~e13, ~e23, respectively.

The assumed strains ~e derived from Eq. (34) are used in the present shell element instead of the strains eE of
Eq. (26) obtained from the displacement field. In this study, a eBAS matrix was implemented from assumed
natural strains instead of using the standard eB matrix as shown in Eq. (36).
~emeEb

~es

8><>:
9>=>; ¼

ðeBmÞAS 0

n3
eBb1 n3

eBb2

ðeBs1ÞAS ðeBs2ÞAS

264
375 �u

h

� �
; ð36Þ
where ~em and ~es are assumed membrane and assumed transverse shear strain components.
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Fig. 6. Sampling points for assumed strains of ~e11, ~e13, ~e22, ~e23 and ~e12.



5722 S.-C. Han et al. / International Journal of Solids and Structures 43 (2006) 5713–5735
7. Incremental equation of equilibrium

The generalized Hook�s law at large strain does not represent an approximate material behavior description
because stress-strain relation is non-linear. From the practical point of view, Hook�s law is only applicable to
small strain, which constitutive tensor is constant coefficient. Using small strain assumption, the following
incremental equilibrium equation is obtained.
Z

dðDLeEÞT eCDLeE dV þ
Z

SðDNLeEÞdV ¼ tþDtdW ext �
Z

dðDLeEÞTSdV ; ð37Þ
where superscript t which is generally used as the current configuration is ignored in the above Eq. (37) and
superscript t + Dt is the adjust incremented configuration, t+DtdWext is the external virtual work in t + Dt.

The total tangent stiffness comprises the material stiffness and the geometric stiffness. The linear part of the
Green strain tensor is used to derive the material stiffness matrix and non-linear part of the Green strain tensor
is used to derive the geometric stiffness matrix.
7.1. Material stiffness matrix

If the strain-displacement Eq. (27) is substituted into Eq. (37), the linearized element material stiffness ma-
trix (KL) is obtained.
Z

dðDLeEÞT eCDLeE dV ¼ dDUT

Z eBT eCeB dV
� �

DU ¼ dDUTKLDU. ð38Þ
For laminated composite structures, the stress resultant form which is called the equivalent constitutive
equations as derived in Eq. (33) are used to capture layer effect through the thickness direction. The element
stiffness matrix may be written in a matrix form using the equivalent constitutive equations. Finally the ele-
ment stiffness matrix has 6 · 6 size on the reference-surface of shell element.
½KL� ¼
Z

K11
L K12

L

K21
L K22

L

" #
6�6

dA; ð39Þ
where the sub-matrix of [KL] is shown in Han et al. (2004).

7.2. Geometric stiffness matrix

In order to obtain an accurate geometric stiffness matrix, the stresses should be evaluated accurately. The
accuracy of the computation of stresses for formulation of geometric stiffness matrix is maintained by obtain-
ing the same interpolated strains in the computation of linear stiffness matrix. The stresses are computed at the
integration points based on these strains. Ignoring the second order term n2

3 in Eq. (27), the following relation
is obtained.
fNLeEabg ¼

NLeE11

NLeE22

2NLeE12

2NLeE23

2NLeE13

8>>>>>><>>>>>>:

9>>>>>>=>>>>>>;
¼ 1

2

ouI

on1

0 0

0
ouI

on2

0

ouI

on2

ouI

on1

0

0
ouI

on3

ouI

on2

ouI

on3

0
ouI

on1

266666666666666664

377777777777777775

ouI

on1

ouI

on2

ouI

on3

266666664

377777775 ¼
1

2
QX. ð40Þ
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The each component of displacement gradient can be expressed as follows:
ouI

on1

¼

ou1

on1

ou2

on1

ou3

on1

8>>>>>>>><>>>>>>>>:

9>>>>>>>>=>>>>>>>>;
¼

o

on1

o

on1

o

on1

8>>>>>>>><>>>>>>>>:

9>>>>>>>>=>>>>>>>>;

�u1

�u2

�u3

8>><>>:
9>>=>>;þ n3

o

on1

o

on1

0

8>>>>>><>>>>>>:

9>>>>>>=>>>>>>;
�e1

�e2

�e3

8>><>>:
9>>=>>; ¼ eG1�uI þ n3

eG2�eI . ð41Þ
Similarly the other terms are as follows:
ouI

on2

¼ eG3�uI þ n3
eG4�eI ; ð42Þ

ouI

on3

¼ eG5�eI . ð43Þ
The incremental gradient displacement (X) for non-linear part with Eq. (27) is as follows:
DX ¼

oDu1

on1

oDu2

on1

oDu3

on1

8>>>>>>>><>>>>>>>>:

9>>>>>>>>=>>>>>>>>;
¼

eG1 n3
eG2eG3 n3
eG4

0 eG5

2664
3775 DuI

DeI

( )
¼ eG Du

Dh

( )
¼ eGDU. ð44Þ
Then incremental variation of the non-linear part of Green strain is as follows:
dðDNLeEÞ ¼ dDQeGDU. ð45Þ
Substituting the non-linear part of strain into Eq. (37), the following geometric stiffness matrix is obtained.
Z
SabdðDNLeEÞdV ¼

Z
dðDNLeEÞTSab dV ¼

Z
dDXTDQTSab dV . ð46Þ
The geometric stiffness matrix in the natural coordinate is analytically integrated through the thickness. By
the transformation the natural to the global frame, the element geometric stiffness matrix is obtained on the
global frame with 6 · 6 sub-matrix.
½KG� ¼
Z

K11
G K12

G

K21
G K22

G

" #
6�6

dA; ð47Þ
where the sub-matrix of [KG] is shown in Han et al. (2004). Then the final assembled incremental non-linear
equilibrium equation can be written is
ð½KL� þ ½KG�ÞDu ¼ tþDt �F� F; ð48Þ

where �F and F are the external and internal forces respectively.

The equilibrium equation must be satisfied throughout the complete history of loading and the non-linear
processing will be stopped only when the out of balance forces are negligible within a certain convergence lim-
it. If it is necessary to extend the stability analysis beyond the limit point, i.e. in the so-called postbuckling
range, appropriate solution procedures must be applied. One approach is to use the arc-length control method
in conjunction with the Newton–Raphson method to extend the stability analysis beyond the limit point, by
Crisfield (1981).
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8. Numerical examples

The present nine-node assumed strain shell element is implemented in the extended version of the FEAP
(Zienkiewicz and Taylor (1989, 2000)). In order to validate this present shell element, several numerical exam-
ples are solved to test the performance of the shell element in static analysis. Examples are anisotropic com-
posite materials for the comparisons and further developments. Before proceeding with the following study,
the influence of the finite element mesh is quantified. As a result of the mesh convergence study shown in
Tables 1(a) and 1(b). Full plate is analyzed with various mesh sizes (Fig. 7). The boundary condition is simply
supported and the geometry and material properties are as follow:
Table
Non-d

Mesh

2 · 2
4 · 4
8 · 8
10 · 10

FSDT

a Re

Table
Non-d

Mesh

2 · 2
4 · 4
8 · 8
10 · 10

FSDT

a Re
E1=E2 ¼ 40; G12 ¼ G13 ¼ 0:6E2; G23 ¼ 0:5E2; m12 ¼ 0:25; a=h ¼ 10; a ¼ 10; q ¼ 1:0. ð49Þ

The results are presented in the non-dimensional form using the equation:
�w ¼ w� E2h3

qa4
� 103. ð50Þ
The results using a regular mesh show an excellent correlation to the results given by Reddy (1997).
1(a)
imensional displacement of composite plates (cross-ply)

0/90 0/90/0 0/90/90/0 0/90/0/90

14.077 7.163 6.856 7.057
14.014 6.926 6.690 6.931
14.054 6.919 6.682 6.925
14.059 6.919 6.682 6.925

a 14.069 6.919 6.682 6.926

issner–Mindlin thick-plate theory solution, First order Shear Deformation Theory (Reddy, 1997).

1(b)
imensional displacement of composite plates (h/�h/h/�h)

5 15 30 45

7.039 6.287 4.958 4.536
6.740 6.085 4.827 4.429
6.741 6.086 4.825 4.426
6.741 6.086 4.825 4.426

a 6.741 6.086 4.825 4.426

issner–Mindlin thick-plate theory solution, First order Shear Deformation Theory (Reddy, 1997).

10

10

Fig. 7. Meshes for simply supported composite plate.
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In order to validate the FEM code developed for geometrically nonlinear analysis, the load-deflection curve
at center of a laminated composite plate with sixteen layers is computed and compared with the results re-
ported by Saigal et al. (1986) and Lee and Kanok-Nukulchai (1998). The side length of the square plate model
is a = 254 mm, the total thickness of the laminated composite plate is h = 2.114 mm, and all layers have the
same thickness of h/16, respectively. The material properties used are E1 = 13.1 · 104 N/mm2; E2 = E3 =
1.303 · 104 N/mm2; G12 = G13 = 0.641 · 104 N/mm2; G23 = 0.4721 · 104 N/mm2; m12 = m23 = m13 = 0.38 and
the laminate has the fiber angle of ð45�=� 45�=0

�

2=45�=� 45
�
=90

�

2Þs in which the subscript s denotes symmetry.
The plate with all clamped boundary edges is subjected to a uniformly distributed load. The full plate with a
4 · 4 mesh is used in this analysis. For 20 equal load increments, the standard NR method is used in this exam-
ple. Fig. 8 shows good agreement with the solutions reported by Saigal et al. (1986) and Lee and Kanok-Nuk-
ulchai (1998).

The finite element formulation described earlier is now implemented to study the influences of shear and
combination of in-plane shear, compression and lateral loading on the postbuckling analysis of a variety of
laminated composite plates. Fig. 9 shows the dimensions and coordinates of a laminated composite plate
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Fig. 8. Load deflection curve of center deflection.

b

y

z

h

a

iβ

x

Fig. 9. Geometry of laminated composite plates (a = b = 250 mm, h = 2.5 mm).



Table 2
Material properties (GPa)

Material E1 E2 E3 G12 G23 G13 m12 m23 m13

Boron/epoxy 206.9 20.7 20.7 5.2 5.2 5.2 0.3 0.3 0.3
Carbon/epoxy 206.9 5.2 5.2 2.6 2.6 2.6 0.25 0.25 0.25
Glass/epoxy 53.8 17.9 17.9 8.9 8.9 8.9 0.25 0.25 0.25
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analyzed by the aforementioned theories for the materials whose properties are listed in Table 2. Figs. 10 and
11 also show the loading types of a laminated composite plate. Full plate is analyzed with 8 · 8 mesh sizes.
Non-dimensional buckling load, lateral load and parameter are defined as P ¼ Pb2

E2h3, �q ¼ qb4

E2h4 and Ck ¼ qb2

Ph ,
respectively.

8.1. Shear loading

Fig. 12 shows the non-dimensional buckling loads at bifurcation point of unidirectional composite plates
under the positive and negative shears with clamped ends. The results used for comparison are mainly taken
from the work of Zhang and Matthews (1983a,b, 1985). These are based on energy methods using beam eigen-
functions, with the transverse shear deformations ignored. As expected, the results obtained from this study
are in good agreement with those reported by Zhang and Matthews. It can be also observed from the figure
that the critical loads of the composite plate under the negative shear are higher than those of the positive
shear for all fiber angles. This can be explained by the fact that the compression occurred by the negative shear
increases the stiffness in the fiber orientation. Note that the buckling load in the case is heavily dependent on
xx

yy
(a) (b)

Fig. 10. Positive and negative shear loading of a laminated composite plate: (a) positive, (b) negative.

yP

xyP

x

(lateral loading)

q
xP

y

Fig. 11. Shear, compression and lateral loading of a laminated composite plate.
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Fig. 12. Square laminated composite plate with unidirectional lay-up; critical shear load with fiber angle, boron/epoxy, (h)20.
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the fiber orientation. Among these, the buckling load of composite plate with the fiber angle of 45� exhibits the
highest value.

Fig. 13 shows central deflections of square composite plates under the increased shear loads after initial
buckling. The boron/epoxy composites are used and all edges of the plate are simply supported. For a plate
with four numbers of alternate layers, the postbuckling paths show similar trends regardless of the fiber angles
and direction of the applied shears. However, it can be observed that the induced deflection amplitude of the
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Fig. 13. Shear loading–central deflection relations of square boron/epoxy plates; different fiber angles.
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[30/�30/�30/30] laminate is significantly higher than that of [15/�15/�15/15]. Even for the same fiber orien-
tation, the difference becomes more dramatic for the case of different number of layers (two and four layers)
shown in Fig. 14. This observation provides us with a clue that it could be better to use large number of alter-
nate layers in designing a lay-up sequence especially when the negative shear is applied. In this case, big ply
angles and large number of layers result in better rigidity against shear loading.

In Fig. 15, it is shown that the center deflection of anti-symmetric laminated composite plates subjected to
the pure shear loading for the different fiber angles. It may be noticed that the load-deflection curve of com-
posite plate with the fiber angle of [45/�45/45/�45] exhibits the higher value than others by 10 � 30%.
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Fig. 14. Variation of central deflection with applied shear of carbon/epoxy plates; anti-symmetric lay-up.
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8.2. Combination of in-plane shear and lateral loading

Fig. 16 shows the variation of central deflection of the [45/�45/�45/45] composite plate under the combi-
nation of in-plane shear and lateral loading (Ck 5 0). The edges of the laminated composite plates are
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Fig. 16. Variation of central deflection with loading of square carbon/epoxy plates; symmetric lay-up, under the combination of in-plane
shear and lateral loading.

0 1 2 3 4

0

100

200

300

N
o

n
-d

im
en

si
o

n
al

  B
u

ck
lin

g
  L

o
ad

Negative  shear

45/-45/45/-45/45/-45/45/-45

45/-45/45/-45

45/-45

Center  Deflection (W/h)

Fig. 17. Variation of central deflection with loading of square carbon/epoxy plates; anti-symmetric lay-up, under the combination of in-
plane shear and lateral loading (Ck = 1.0).
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considered to be loosely clamped that in-plane stresses are zero but deflection and rotation are restrained on
the boundaries. As the parameter Ck increases, the deflections of the plate increase. It is predictable because it
is expected that an increased lateral loading ratio results in larger deflection for increased buckling load. For
the same ply orientation, Fig. 17 shows the influence of number of layers on the load-central deflection of
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Fig. 18. Variation of central deflection with loading of square carbon/epoxy plates; asymmetric lay-up, under the combination of in-plane
shear and lateral loading (Ck = 1.0).
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plates under the combination of in-plane shear and lateral loading (Ck = 1.0). For the fiber angle of 45�, the
central deflections for the four and eight number of layers are close to each other. On the other hand, the in-
duced deflection for the two numbers of layers is extremely higher than others. It may be also noted that the
directions of applied shear are negligible due to anti-symmetric lay-up sequences. By contrast, for the
asymmetric case shown in Fig. 18, the load-central deflection curves are significantly different for different
0.0 0.5 1.0 1.5 2.0 2.5

Center  Deflection (W/h)
3.0

0

20

40

60

80

100
No

n-
di

m
en

si
on

al
 B

uc
kl

in
g 

 L
oa

d

75/-75/-75/75

60/-60/-60/60

45/-45/-45/45

30/-30/-30/30

15/-15/-15/15

Negative Shear

Fig. 20. Variation of central deflection with loading of square boron/epoxy plates; symmetric lay-up, under the combination of in-plane
shear and lateral loading (Ck = 1.0).
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Fig. 21. Variation of central deflection with loading of square carbon/epoxy plates; anti-symmetric lay-up, under the combination of in-
plane shear, compression and lateral loading (Ck = 1.0, Px + Pxy + q).
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directions of the shear. Moreover, Fig. 19 shows the dramatic variation of central deflection with loading of
square symmetric laminates made of different materials (Boron/Epoxy and Glass/Epoxy). Fig. 20 shows the
center deflection of symmetric laminated composite plates subjected to the in-plane shear and lateral loading
for the different fiber angles. As expected, the load-deflection curve of composite plate with the fiber angle of
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Fig. 22. Variation of central deflection with loading of square carbon/epoxy plates; under the combination of in-plane shear, compression
and lateral loading (Ck = 1.0, Px + Pxy + q).
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[45/�45/�45/45] exhibits the highest value. However, the difference decreases when compared with the case of
shear loading as shown in Fig. 15. From Fig. 21, we can also observe similar trend for the fiber angles of [0/90]
and [45/�45]. From the observations, it may be noticed that the coupling effects of in-plane shear and lateral
loading makes deleterious contributions to the buckling loads of composite plates for the different fiber angles.

Fig. 22 shows the difference of behaviors between anti-symmetric orthotropy and angle-ply laminates
made of same material (Carbon/Epoxy). It can be observed from the figures that the buckling load of
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Fig. 24. Variation of central deflection with loading of square carbon/epoxy plates; symmetric lay-up (45/�45/�45/45), under the
combination of in-plane shear, biaxial compression and lateral loading (Ck = 1.0).
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[45/�45/�45/45] laminate is higher than the others. We can also notice that the buckling load for angle-ply
laminates is higher than that of orthotropic laminates. For the fiber angle of 45�, Fig. 23 shows buckling loads
of the plate subjected to action of in-plane compressive loads (Px and Py), shear load (Pxy), and lateral load
(q). It can be also observed from the figures that the buckling load of [45/�45/�45/45] laminate is higher than
the case of [45/�45/45/�45]. The parametric case studies reveal the importance of lay-up sequences for effi-
cient and economic design of composite plates under the combined loading.

Figs. 24 and 25 show the buckling loads of [45/�45/�45/45] laminates subjected to different kinds of load-
ing. The Fig. 24 shows how the deflection at the center of the plates varies with increasing shear and in-plane
compressive loads after bifurcation point. Also, it can be seen that there are two postbuckling paths for each
plate when the lateral loads are included. In Fig. 25, the effect of the applied shear directions in the plate with
in-plane compressive and lateral loads is shown. These behaviors lead us to a conclusion that the influence of
applied shear directions played a role in increasing or decreasing buckling loads.

9. Summary and conclusion

An intuitive prediction of the geometrically nonlinear behavior of laminated composite structures under
combined loads is difficult because of their complexity and the combined effect of anisotropy, nonlinear geom-
etry, and load condition. In this study, the postbuckling characteristics are analyzed by considering various
parameters. The advanced finite element nonlinear analysis based on the Element-based Largrangian formu-
lation shows the significance of stacking sequences and loading conditions for composite plates. From the
parametric case studies, we find the following key observations in designing laminated composite structures.

1. The critical buckling loads of the composite plate under the negative shear are higher than those of the posi-
tive shear for all fiber angles. The buckling load in the case is heavily dependent on the fiber orientation.
For shear loading, it is desirable to use fiber angle of 45�.

2. Even for the same fiber orientation, the difference of buckling loads becomes more dramatic for the case of
different number of layers. In this case, big ply angles and large number of layers result in better rigidity
against shear loading.

3. For plates subjected to the pure shear loading and the combination of in-plane shear and lateral loading,
the directions of applied shear are negligible due to anti-symmetric lay-up sequences. By contrast, for the
symmetric and the asymmetric case, the load-central deflection curves are significantly different for different
directions of the shear.

4. We find that the buckling load for angle-ply laminates with fiber angle of 45� subjected to the combined
loading is higher than that of orthotropic laminates. However, it may be noted that the influence of the
combined loading on buckling loads for different fiber angles is smaller than that of single negative shear
loading. In addition, the influence of applied shear directions increased or decreased the buckling loads of
laminated composite plates with the combination of in-plane shear, compression and lateral loading.

The results of this study may serve as benchmark for future guidelines in designing laminated composite
plates under the combination of in-plane shear, compression and lateral loading. But our parametric study
is only an example and more studies should be carried out for individual cases.
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