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Multiscale models of cortical bone elasticity require a large number of parameters to describe the

organization and composition of the tissue. We hypothesize that the macro-scale anisotropic elastic
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properties of different bones can be modeled retaining only two variable parameters, and setting the

others to universal values identical for all bones. Cortical bone is regarded as a two-phase composite

material: a dense mineralized matrix (ultrastructure) and a soft phase (pores). The ultrastructure is

assumed to be a homogeneous and transversely isotropic tissue whose elastic properties in different

directions are mutually dependent and can be scaled with a single parameter driving the overall

rigidity. This parameter is taken to be the volume fraction of mineral fha. The pore network is modeled

as an ensemble of water-filled cylinders and described only by the porosity p. The effective macroscopic

elasticity tensor Cijðfha ,pÞ is calculated with a multiscale micromechanics approach starting from

existing models. The modeled stiffness coefficients compare favorably to four literature datasets which

were chosen because they provide the full stiffness tensors of groups of human samples. Since the

physical counterparts of fha and p were unknown for the datasets, their values which allow the best fit

of experimental tensors by the modeled ones were determined by optimization. Optimum values of fha

and p are found to be unique and realistic. These results suggest that a two-parameter model may be

sufficient to model the elasticity of different samples of human femora and tibiae. Such a model would

in particular be useful in large-scale parametric studies of bone mechanical response.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Macroscopic effective elastic coefficients of cortical bone can
be predicted by multiscale models given relative amounts of the
elementary constituents and assumed organizational patterns.
Multiscale models generally require a large number of parameters
to describe the tissue at each scale. For instance, authors have
considered variations of the volume fraction of vascular porosity
(Hellmich et al., 2004b; Baron et al., 2007; Parnell and Grimal,
2009); volume fraction of pores at different scales (Sevostianov
and Kachanov, 2000); relative area of osteonal, interstitial tissue
and resorption cavities (Dong and Guo, 2006); organization
patterns of the mineral (Crolet et al., 2005); patterns of osteonal
lamellae (Crolet et al., 1993; Aoubiza et al., 1996). In addition, the
models usually consider different volume fractions of elementary
constituents. Models with a large number of parameters are
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difficult to validate since several combinations of the parameter
values may result in similar effective elasticity values to be
compared to experiments.

This communication investigates a simple multiscale model of
mature Haversian bone elasticity. We hypothesize that macro-
scale anisotropic properties of different bones can be recovered to
some extent by a model using only two parameters: porosity and
mineral content. Elastic constants of the phases and organiza-
tional patterns are fixed for all bones. The model lends itself to a
comprehensive analysis of the role of each parameter and can be
critically assessed with experimental data.
2. Method

Cortical bone is regarded as a two-phase composite with a transversely

isotropic (TI) mineralized matrix (ultrastructure) pervaded by cylindrical pores

(vascular porosity). The ‘mineral foam matrix with collagen inclusions’ micro-

mechanical model (Hellmich et al., 2004a) is used for the ultrastructure because of

its limited number of variables. It is based on two idealizations: (1) at a length

scale of 100 nm, hydroxyapatite crystals and ultrastructural water with non-

collagenous organic material constitutes a mineral foam; (2) at a length scale of

5 to 10 microns, collagen fibers are embedded into the mineral foam. The stiffness
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of the elementary constituents (collagen, mineral and water) are fixed to some

assumed universal values and their volume fractions denoted fha, fcol, and fw

(respectively) are the only ‘variable’ parameters of the ultrastructure model. Since

fhaþ fcolþ fw ¼ 1 the model in fact has two independent parameters. Raum et al.

(2006) proposed an empirical law (Eq. (10) of that paper) based on experimental

data by Broz et al. (1995) which relates fcol=fw to fha. With the latter relationship,

the number of parameters of the ultrastructure model is reduced to one. Here, we

choose fha, as the independent parameter. This model was first used by Grimal

et al. (2008) to estimate millimeter scale effective properties of cortical bone,

which were in agreement with experimental data.

The volume fraction of the vascular porosity is denoted p. The effective

properties of the representative volume element consisting of the TI matrix

(ultrastructure) pervaded by cylindrical inclusions with a circular cross-section

and volume fraction p (cylinder axes are aligned with the axis of rotational

symmetry of the TI matrix) were calculated with the Mori–Tanaka scheme (Zaoui,

2002). The bulk modulus of pores was set to 2.2 or 10�5 GPa for undrained and

drained pores, respectively, and the shear modulus in both cases was 10�9 GPa.

For the analysis of the model response, the range of parameter values was taken

somewhat larger than the documented range of mineral content (Hellmich et al.,

2004a) and porosity (Bousson et al., 2004): fha A[0.3–0.5] and pA[0–20%].

For an orthotropic material with principal directions aligned with the frame

ðx1 ,x2 ,x3Þ, Cii (i¼ 1 � � �3) denote the longitudinal stiffnesses, Cii (i¼ 4 � � �6Þ denote

the shear moduli and only three non-diagonal terms are different from zero: C12,

C13, C23. With the direction of the long bone axis taken parallel to x3, the material

is TI, which means C11 ¼ C22, C44 ¼ C55, C13 ¼ C23, and C66 ¼ ðC11� C12Þ=2. Finally,

macro-scale effective elastic coefficients depend on two parameters; we write

Cij ¼ Cijðfha ,pÞ. A program to compute the model response is provided as supple-

mentary website material.

The literature was reviewed in order to define datasets of macroscopic

measured stiffness constants Ce
ij appropriate to assess the model. These fulfill the

conditions: (1) measurements of cortical bone samples obtained from mature

human subjects; (2) full set of Ce
ij available to describe the material in an orthotropic

or TI framework. We found four datasets referred to as EXP1-4 (Table 1); Ce
ij are

reported in Table 3 with the corresponding modeled Cij for convenience.

Because there is no available dataset to directly compare Cij and Ce
ij for known

values of fha and p, we tested the model according to its ability to fit each

experimental stiffness tensor. A cost function (CF) is defined as

H0ðfha ,p,Ce
Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X̂6

i,j ¼ 1

Ce
ij�Cijðfha ,pÞ

Ce
ij

 !2

vuuut , ð1Þ
Table 1

Experimental data sets (Ce) taken from references Ashman et al. (1984), Yoon and

Katz (1976), Rho (1996) and Taylor et al. (2002) for EXP1-4, respectively. All values

correspond to averages on several bone specimen obtained from one or several

subjects as indicated, except EXP2. Samples from EXP2 were dried (drained pores)

prior to measurements, samples in EXP1, 2, and 3 were measured in moist state

(undrained pores).

EXP1 EXP2 EXP3 EXP4

Specimen (human) 5 femurs 1 femur 8 tibiae 1 femur

Number of samples 60 2 96 10

(material volume)

Pore status moist dry moist moist

Anisotropic framework orthotropic TI orthotropic orthotropic

Fig. 1. Sensitivity of effective macroscopic stiffness to parameter fha for 1% porosity

variation for a reference value at fha¼0.37.
where
P̂

denotes summation over the upper triangular part of the stiffness

matrix. The CF minimizes the error over all the elements of the stiffness tensor.

Other CFs with different weights for each coefficient were tested but they could

not improve the fits. The optimal set of parameters was obtained for each dataset

by solving a minimization problem that consists in finding ðfha ,pÞ such that

H0ðfha ,p,Ce
Þ is a minimum.

The comparison between modeled and experimental elastic properties was

performed for stiffness coefficients and engineering moduli: Young modulus E3

and shear modulus G12. The stiffness tensor was rotated successively around axes

x1, x2, and x3 between 0 and p=2. E3 and G12 were retrieved from the inverted

rotated tensors which yields moduli at different angles with respect to the

material symmetry axes ðx1 ,x2 ,x3Þ.

3. Results

Stiffness coefficients vary between 20% and 70% in the tested
parameter range (Figs. 1 and 2). They decrease with increasing p

and increase with increasing fha. Compared to other coefficients,
C33 depends greatly on fha but weakly on p; C11 is more influenced
by variations in p than fha. Shear coefficients C44 and C66 are
greatly influenced by both parameters. Non-diagonal coefficients
C12 and C13 have relatively small variations.

For the four datasets, the CF had a unique minimum in the
parameter plane. Determined values of p and fha fall within the
range of physiological values (Table 2). A smaller value of the CF is
obtained for EXP2 and the worst fit for EXP3. We observed that
taking the wrong pore status in the model (i.e. undrained pores
while the experimental data was obtained for drained pores, or
the opposite) leads to unphysical values of p and fha (data not
shown). Setting mechanical properties of pores in between the
properties corresponding to drained and undrained also lead to
poor results. This is an indication that the influence of the
hydratation state of the pores was modeled correctly. Macro-
scopic Cij (Table 3) calculated with the optimum parameters
(Table 2) yield the best fit to experimental values.

The angular dependence of Young and shear moduli are plotted
for the best (EXP2, Fig. 3) and the worst (EXP3, Fig. 4) fits. The
discrepancies between experimental and modeled moduli for the
two other datasets are bounded by the discrepancies observed in
these two cases. The model provides an excellent estimation of the
angular variation of the moduli for EXP2. For EXP3, the agreement is
better for Young modulus than shear modulus; for all angles, model
estimation is within less than 20% of the experimental data and
much less for a wide range of angles.
4. Discussion

With two parameters, the model can fit the 5–9 independently
measured stiffness constants of each dataset with relatively good
(left) and 30% porosity (right). Values on the y-axis represent the percentage of



Table 2
Determined values of model parameters which minimize the cost function H0 (Eq. 1).

EXP1 EXP2 EXP3 EXP4

p 11.3 % 7.1 % 13.3 % 2.5 %

fha 0.396 0.423 0.398 0.399

CF 0.4578 0.0925 0.7449 0.5750

Table 3
Coefficients of the stiffness tensor (GPa): experimental values Ce

ij (first line); model

values Cij (second line). Dependent coefficients in TI framework are indicated.

C11 C22 C33 C44 C55 C66 C12 C13 C23

EXP1 18.0 20.2 27.6 6.2 5.6 4.5 10.0 10.1 10.7

18.7 ¼C11 26.4 6.3 ¼C44 5.5 7.7 8.2 ¼C13

EXP2 23.4 ¼C11 32.5 8.7 ¼C44 7.2 9.1 9.1 ¼C13

23.2 ¼C11 33.5 8.5 ¼C44 7.4 8.5 9.4 ¼C13

EXP3 19.5 20.2 31.0 5.7 5.2 4.1 11.5 12.7 12.7

18.2 ¼C11 26.3 6.2 ¼C44 5.3 7.6 8.0 ¼C13

EXP4 24.9 26.2 33.3 7.1 6.6 5.7 11.0 13.6 14.0

23.4 ¼C11 30.1 7.8 ¼C44 7.2 9.0 9.8 ¼C13

Fig. 2. Sensitivity of effective macroscopic stiffness to porosity for fha¼0.37 (left) and fha¼0.44 (right). Values on the y-axis represent the percentage of variation for a

reference value at 1% porosity.
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accuracy. This is despite the many idealizations necessary to
derive the model, in particular those leading to the ultrastructure
model: the osteonal structure and small pores (osteocyte lacunae,
canaliculli) are not modeled. The results suggest that a simple
ultrastructure model may be sufficient to model the mineralized
matrix anisotropy. It is likely that similar or better agreement
could be obtained with other micromechanical models than the
one used here (Akkus, 2005; Yoon and Cowin, 2008; Deuerling
et al., 2009; Reisinger et al., 2010).

Except EXP2, all datasets are averages of stiffness values for
several samples, either from different donors or different anato-
mical locations. Accordingly we cannot judge the ability of the
model to predict the inter-sample stiffness variability. We have in
fact tested the ability of the model to account for the ‘average’
anisotropic macroscopic properties of different sample groups
(Table 1). An important limitation of the datasets is that the actual
mineral content and porosity have not been assessed, which
prevents the validation of the values of the determined para-
meters (fha and p). The construction of datasets including stiffness
tensor measurements, porosity and mineral content for the same
samples is necessary to further validate the model.

An original methodology was developed to evaluate the ability
of a model to fit experimental data. By defining a CF and using an
optimization algorithm, it was possible to perform a critical test of
the model. The variation of the CF with parameter values should be
smooth enough for a ‘good’ model. If many local minima exist, the
optimization problem is ill-posed, i.e. the optimization algorithm
could converge to various parameter values. Here, the CF has a
convex behavior so that the minimum is unique.

The parameters fha and p are supposed to represent the actual
mineral content and porosity. It is noteworthy that the determined
values are realistic. fha should be interpreted as the apparent

mineral content of the mineralized matrix rather that the actual
mineral content: it drives the overall matrix stiffness and may
account for other factors than mineral content which also have an
impact on stiffness (osteon type, crystal properties, small pores,
etc.). The range of variation of the average mineral content (in a
millimeter volume) of bone is still a matter of dispute, but it is
established that the latter does not vary greatly (Akkus et al., 2003;
Bergot et al., 2009). Typical values of mineral content are 1.1 g/cc
(Boivin and Meunier, 2002) which, given a mass density of
biological hydroxyapatite of 3 g/cc (Lees, 1987), leads to a volume
fraction of 0.37. This value is close to the determined fha which are
around 0.4 for all datasets. Determined mineral content of EXP2 is
slightly higher which may be due to the fact that the samples were
dried before measurements, which is a known cause of stiffening
(Wolfram et al., 2010). Determined values of p are likely to be
somewhat influenced by the determined values of fha because they
are coupled through the CF. While p should reflect the actual
vascular porosity, it should also be interpreted with care.

The results suggest the feasibility of modeling cortical bone
macroscopic elasticity with only two parameters. This is in
contrast to most of the existing multiscale models. It was well
known that porosity is an important parameter (see, e.g. Dong
and Guo, 2004). The results presented here establish that the
anisotropic and heterogeneous elastic properties of the miner-
alized matrix can be accounted for by an ultrastructure model
with a single parameter (in this study, fha) which scales the matrix
rigidity. The proposed model is too simple to account for minute
changes of tissue composition and organization. With a single
parameter governing matrix anisotropy the model is not appro-
priate to model variations in elastic anisotropy that are indepen-
dent of tissue density (Espinoza Orias et al., 2009). The model
should be useful to build subject-specific bone models at the
organ scale. State-of-the-art subject-specific organ-scale models
use isotropic (Helgason et al., 2008; Duchemin et al., 2008) or
anisotropic (Hellmich et al., 2008) elastic constants derived from
X-ray attenuation data. Our model can be used to simulate the
variations of bone anisotropic elasticity with the mineral content
and porosity and used as input in stochastic simulations (Macocco
et al., 2006; Laz et al., 2007; Santos et al., 2009). Another
application is the regularization of multiparameter cortical bone



Fig. 3. Angular dependence of Young and shear moduli for EXP2 (best fit).

Fig. 4. Angular dependence of Young and shear moduli for EXP3 (worst fit).
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characterization problems using data retrieved in vivo with
ultrasound (Talmant et al., 2009).
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