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Abstract The purpose of this communication is to present
a novel approach to compute the so called Topological
Sensitivity (TS) of any variable or functional in elasticity
using Boundary Integral Equations (BIE’s), and its use as a
tool for identification of defects, by itself or in conjunction
with zero-order methods, like Genetic Algorithms. The TS
of a cost functional provides a measure of the suscepti-
bility of a defect being at a given location. The main
contributions are summarized in the following points:

� Computation of the TS based on a linearized topological
expansion, using Boundary Integral Equations. The TS
is computed using only information of the non-dam-
aged domain. The calculation is carried out for circular
cavities or straight cracks, but the procedure is
extensible to other kinds of defects.

� It is shown that the topological expansion provides a
very accurate tool for estimating the defect sizes, even
for very large flaws, relative to the domain size.

� Applicability of the TS for identification of defects, by
itself or associated with Genetic Algorithm. This asso-
ciation is very advantageous since the computational
time is dramatically reduced.

Keywords Topological derivative, Two-dimensional
elastostatics, Boundary integral equations, Boundary
element method, Defect identification, Genetic algorithms

1
Introduction
A direct problem can be stated as the calculation of the
response (certain displacements u and stress vectors q) in
a specific body defined by its geometry (domain X and
boundary C), mechanical properties (k), behavior model
(operator L) and boundary conditions (some known val-
ues of u and q). As a counterpart of this, an inverse
problem (IP) is one in which part of the information above
is unknown, for instance part of the geometry, its
mechanical properties, etc, which has to be computed with
the aid of extra information about the response of the
body to a set of known excitations. In this paper the so
called identification inverse problem is dealt with, where

the unknown variable is part of the geometry, actually, the
location and size of internal flaw(s).

When seeking defects or flaws inside a body, any
physical magnitude that propagates within and that
manifests on an accessible part of it might be considered
in order to obtain information about what is happening
inside. In this paper the elastostatic response of a
two-dimensional body is considered, although the ideas
presented here are readily extended to elastodynamics.

In general, an IP is cast as an appropriate optimization
problem for a residual functional which depends on the
difference between the measured data and the computed
ones. The computation of the functional gradient with
respect to the shape parameters has been extensively
studied, to be used in conjunction to standard minimiza-
tion procedures. However in this paper a different
approach is presented which consists in devising a domain
function, the so called Topological Sensitivity (TS), whose
minimum pinpoints the location and size of the sought
flaw. The location of the TS minimum is performed using a
Genetic Algorithm (GA).

The use of GA or Evolutionary Algorithms (EA) in
general, for identification of flaws, within the framework of
Boundary Integral Equation procedures, have been
explored by different authors in the past decade, (Koguchi
and Watabe, 1997; Kowalckzyk et al., 1998; Tanaka and
Nakamura, 1994; Stavroulakis and Antes, 1998b; Stavrou-
lakis and Antes, 1998a; Stavroulakis, 2001). In all these
papers the functional to be optimized is the full residual,
instead of its TS, and therefore the computation is very
costly.

The idea of Topological Sensitivity was first introduced
by Eschenauer et al. (1994) (they called ‘‘bubble method’’),
for compliance minimization in twodimensional elasto-
static problems, and was latter generalized and exploited
for shape inverse problem by Sokolowski and coworkers
(Sokołowski and _zochowski, 1998; Jackowska-Strumiło
et al., 1999; Lewiński and Sokołowski, 1997) for circular
and non-circular flaws. Garreau et al. (2001) developed the
idea for a general arbitrary-shaped flaw in the context of
elastostatics, as well. In those papers an adjoint state
method is employed to obtain the topological derivative
whereas a direct approach fully based in Boundary Integral
Equations (BIE) is presented in this paper. The procedure
can be easily extended to flaws of any shape as is dem-
onstrated extending the idea for crack-like flaws. Fur-
thermore, other than Neumann boundary conditions can
be considered within the flaw or even the creation of
inclusions instead of voids.
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The computation of the TS for an arbitrary functional
using a BIE is presented is this paper for the first time, and
a procedure is devised to greatly enhance the applica-
bility of zero-order methods, as Genetic Algorithms, since
the use of the TS as an internal steps on one hand reduce
the number of design parameters, and on the other,
eliminate the need of computing a distinct direct problem
for each individual (design parameter values) during the
search.

2
Topological sensitivity
The topological derivative of a shape functional provides
information about the variation of the functional due to
creation of a small hole centered at a given location x0.
Formally, given a shape functional,

J : X! R ð1Þ
for a given domain X, and denoting by Brðx0Þ a closed ball
of radius r > 0 centered at x0, the topological derivative is
defined as,

J�ðx0Þ ¼ lim
r!0þ

JðXnBrðx0ÞÞ �JðXÞ
kBrðx0Þk

ð2Þ

or alternatively,

�J�ðx0Þ ¼ lim
r!0þ

JðXnBrðx0ÞÞ �JðXÞ
ra

ð3Þ

provided that such limits exist; a is the dimension of the
space, 2 or 3.

For plane problems (a ¼ 2), an equivalent definition
can be obtained introducing the function of the small
parameter r � 0, JðrÞ ¼ JðXnBrðx0ÞÞ, and compute its
expansion around r ¼ 0þ,

JðrÞ ¼ Jð0þÞ þ r2

2
J 00ð0þÞ þ oðr2Þ ð4Þ

Then, J 00ð0þÞ, is equivalent to J �ðx0Þ, save for a multiplicative
constant.

It is important to stress that the topological derivative is
not the shape derivative of a functional with respect to the
size of a void, since the expansion is performed from a
flawless domain.

From this, the Topological Sensitivity of the functional J
is defined as the differential,

dJðx0Þ ¼ �J�ðx0ÞdA ð5Þ
where dA is the size of a small flaw centered at x0.

In this paper, a BIE is developed for the computation of
the TS of tractions and displacements on the boundary C
of an arbitrary domain X subject to whatever boundary
conditions, using only information from the Non-damaged
State (NS). The NS is defined over the same domain,
without flaws, and with the same boundary conditions.
From the TS of the boundary variables is straightforward
to compute the sensitivity of any boundary or domain
variable (stresses, strains, etc) and then of any boundary
or domain functional.

Furthermore, the definition of the Topological Sensi-
tivity can be extended to vanishing flaws of any shape. In

this paper, circular and straight crack-like flaws are
considered.

3
Basic boundary integral equations
In a domain X bounded by C, the displacement integral
equation can be written as (Brebbia and Domı́nguez,
1992):

ci
kðyÞukðyÞ þ

Z

C

qi
kðx; yÞukðxÞ � ui

kðx; yÞqkðxÞ
� �

dCðxÞ ¼ 0

ð6Þ
where ukðxÞ is the kth component of the displacement
vector in the actual state at the observation point x.
qkðxÞ ¼ rjkðxÞnjðxÞ is the stress vector in the actual state at
point x. rjkðxÞ is the stress tensor and nj the outward
normal. ui

kðx; yÞ is the kth component of the displacement
vector at the observation point x due to a point load
applied in direction i at the collocation point y (funda-
mental solution). qi

kðx; yÞ ¼ ri
lkðx; yÞnlðxÞ is the stress

vector of the fundamental solution. ci
k is the free term

whose value depends on the position of the collocation
point. Thus, ci

kðyÞ ¼ di
k (Kronecker delta) if y 2 XnC; if

y 2 C; ci
kðyÞ depends on the angle h subtended by the left

and right tangents at y, and is such that ci
kðyÞ ¼ 1=2di

k
when h ¼ 180� (smooth boundary); ci

kðyÞ ¼ 0 otherwise.
Using boundary collocation and proper discretization

of the ensuing BIE, the former equation can be solved,
providing the unknown displacements and tractions along
the boundary. The displacements at any location within
the domain can be computed using the same equation, as a
post-processing step. Likewise, the stress tensor at any
point y 2 XnC can be evaluated using the corresponding
integral equation, which is obtained from Eq. (6) by
application of the Hooke’s law
rijðyÞ ¼ kdijum;mðyÞ þ lðui;jðyÞ þ uj;iðyÞÞ, leading to,

rijðyÞ þ
Z

C

di
jkðx; yÞqkðxÞ � si

jklðx; yÞnlðxÞukðxÞ
h i

� dCðxÞ ¼ 0 y 2 XnC ð7Þ
where the new kernels are given by,

di
jkðx; yÞ ¼ kdiju

m
k;mðx; yÞ þ lðui

k;jðx; yÞ þ u
j
k;iðx; yÞÞ

si
jklðx; yÞ ¼ kdijr

m
kl;mðx; yÞ þ lðri

kl;jðx; yÞ þ rj
kl;iðx; yÞÞ

Note that the comma in the above kernel definitions stands
for the derivative with respect to the observation point
coordinates.

It is worth recalling that the computation of stresses by
Eq. (7) does not entail the solution of a new system of
equations, nor the integration of singular or hypersingular
kernels, and is therefore computationally inexpensive.

3.1
Topological sensitivity boundary integral equation
The Topological Sensitivity Boundary Integral Equation
is computed considering a modified state that contains
an infinitesimal flaw (Damaged State or DS). In an
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homogeneous domain X whose exterior boundary is C,
and subject to arbitrary boundary conditions, consider
the appearance of a stress free cavity centered at point z
whose boundary is Cz, which surrounds the domain Xz,
as shown in Fig. 1.

The standard boundary integral equation given in
Eq. (6) can be applied to this problem, splitting the
boundary integration in two parts, C and Cz:

ci
kðyÞ~ukðyÞ þ

Z

C

qi
kðx; yÞ~ukðxÞ � ui

kðx; yÞ~qkðxÞ
� �

dCðxÞ

þ
Z

Cz

qi
kðx; yÞ~ukðxÞ � ui

kðx; yÞ~qkðxÞ
� �

dCðxÞ ¼ 0

ð8Þ
The tilde over the variables denotes that their values are
modified due to the appearance of the infinitesimal flaw.

Considering the condition ~qk ¼ 0 along Cz, the equation
simplifies into,

ci
kðyÞ~ukðyÞ þ

Z

C

qi
kðx; yÞ~ukðxÞ � ui

kðx; yÞ~qkðxÞ
� �

dCðxÞ

þ
Z

Cz

qi
kðx; yÞ~ukðxÞdCðxÞ ¼ 0 ð9Þ

Now, the displacements on the flaw’s boundary can be
split as,

~ukðxÞ ¼ u0
k þ d�ukðxÞ

where u0
k is a rigid-solid displacement and d�ukðxÞ a

movement relative to the center, due to the local state of
stresses. Then, the integral along Cz transforms into,

Z

Cz

qi
kðx; yÞukðxÞdCðxÞ ¼ u0

k

Z

Cz

qi
kðx; yÞdCðxÞ

þ
Z

Cz

qi
kðx; yÞd�ukðxÞdCðxÞ

¼
Z

Cz

qi
kðx; yÞd�ukðxÞdCðxÞ ð10Þ

since the fundamental solution stresses along a close path
are self-equilibrated.

To first order the stresses at any point inside XnXz, far
from the flaw location, are equal to those of the Primary
State, rijðxÞ, and therefore, the displacements d�ukðxÞ along
the vanishing flaw are equal to those due to a uniform
remote stress field in an infinite plate, as shown in Fig. 2.

More formally,

~rijðxÞ ¼ rijðzÞ þ h:o:t: ð11Þ
for x far from z, where h.o.t stands for higher order terms,
and,

d�ukðxÞ ¼ du1k ðxÞ þ h:o:t: ð12Þ
where du1k ðxÞ represents the solution of the problem given
in Fig. 2, due to the stresses rijðzÞ. Note that expansion in
Eq. (11) holds only in order to compute du1k ðxÞ.

On the other hand, on Cz,

qi
kðx; yÞ ¼ ri

jkðx; yÞnjðxÞ ¼ ri
jkðz; yÞnjðxÞ þ h:o:t: ð13Þ

The integral along the flaw boundary turns therefore into,

Z

Cz

qi
kðx; yÞ~ukðxÞdCðxÞ

¼ ri
jkðz; yÞ

Z

Cz

njðxÞdu1k ðxÞdCðxÞ þ h:o:t: ð14Þ

The ensuing integral implies the solution of a simple
auxiliary problem over an infinite domain.

Subtracting the resulting BIE for the DS to Eq. (9), the
BIE for the NS, the following equation is obtained,

ci
kðyÞdukðyÞ þ

Z

C

qi
kðx; yÞdukðxÞ � ui

kðx; yÞdqkðxÞ
� �

dCðxÞ

¼ �ri
jkðz; yÞ

Z

Cz

njðxÞdu1k ðxÞdCðxÞ ð15Þ

where dukðyÞ and dqkðyÞ are the topological sensitivities of
displacements and tractions on the boundary, due to the
appearance of an infinitesimal arbitrarily shaped flaw at z.

Equation 15 is termed Topological Sensitivity Boundary
Integral Equation (TSBIE).

Note that the auxiliary problem can be solved using
non-dimensional variables, x� ¼ x=dL, y� ¼ y=dL,
u�1k ¼ du1k =dL, where dL is a characteristic length of the
flaw. Doing that the equation turns into,

Fig. 1. Perturbed domain due to the appearance of a infinitesimal
cavity

Fig. 2. An infinitesimal flaw in an infinite domain subject to a
uniform remote stress field
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ci
kðyÞdukðyÞ þ

Z

C

qi
kðx; yÞdukðxÞ � ui

kðx; yÞdqkðxÞ
� �

dCðxÞ

¼ �dL2ri
jkðz; yÞ

Z

C�z

njðx�Þu�1k ðx�ÞdC�ðx�Þ ð16Þ

The right hand side integral in Eq. (15) can be performed
analytically in the case of simple flaw shapes as is shown in
the next sections.

3.2
Topological sensitivity BIE for circular flaws
In case the flaw is circular the auxiliary problem has
analytical solution. The displacements along the circular
boundary are,

du11 ¼
dR

E
ð3r11 � r22Þ cos hþ 4r12 sin h½ �

du12 ¼
dR

E
ð�r11 þ 3r22Þ sin hþ 4r12 cos h½ �

or,

du11
du12

� �
¼ dR

E

3r11 � r22 4r12

4r12 3r22 � r11

� �
cos h
sin h

� �

ð17Þ
where dR is the radius of the cavity, E the elastic modulus,
and h is the usual polar coordinate.

Since the outward normal on Cz is n ¼ �ðcos h; sin hÞT,
the displacement can be finally written as,

du1k ¼ �dRRklnl ð18Þ
where Rkl is a constant matrix which depends on the value
of rijðzÞ and the elastic modulus.

Then the integral along the flaw boundary can be
performed:Z

Cz

qi
kðx; yÞ~ukðxÞdCðxÞ

¼ �dRri
jkðz; yÞRklðzÞ

Z

Cz

njðxÞnlðxÞdCðxÞ

¼ �pdR2ri
jkðz; yÞRklðzÞdjl

¼ �dA ri
jkðz; yÞRkjðzÞ ð19Þ

where dA ¼ pdR2 is the area of the flaw.
In conclusion, generalizing to M circular cavities

centered at a set of points zj the TSBIE can be written as,

ci
kðyÞdukðyÞ þ

Z

C

qi
kðx; yÞdukðxÞ � ui

kðx; yÞdqkðxÞ
� �

� dCðxÞ ¼
XM

j¼1

tUiðzj; yÞdAj ð20Þ

where,
tUiðzj; yÞ ¼ ri

jkðzj; yÞRkjðzjÞ ð21Þ

and,

ðRkjÞ ¼
1

E

3r11 � r22 4r12

4r12 3r22 � r11

� �
ð22Þ

3.3
Topological sensitivity BIE for straight cracks
A similar expression is obtained when the vanishing flaw is
a crack-like defect. Using a local coordinate system, cen-
tered at the crack, such that the y0 axis is perpendicular to
the crack faces, the solution of the auxiliary problem is,

du011 ¼
2r012ð1� m2Þ

E

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
da2 � x02

p

du012 ¼
2r022ð1� m2Þ

E

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
da2 � x02

p ð23Þ

where da is the half-length of the crack.
Performing the integral along the crack boundary,

Z

Cz

n0jdu01k

� �
dCðxÞ ¼ 2pda2ð1� m2Þ

E

0 0
r012 r022

� �

ð24Þ
is obtained, and transforming this expression to global
coordinates the integral on the flaw leads to,Z

Cz

qi
kðx; yÞ~ukðxÞdCðxÞ ¼ �tUiðz; yÞdA ð25Þ

where,

tUiðzj; yÞ ¼ ri
jkðz; yÞRklðzÞ ð26Þ

and Rkl is given now by the expression,

ðRklÞ¼
2pð1�m2Þ

E

� �r012sinhcoshþr022sinh2 �r022sinhcosh�r012sinh2

�r022sinhcoshþr012cosh2 þr012sinhcosh�r022cosh2

� �

ð27Þ
where, in turn, r0ij is the local stress tensor on the crack
reference system:

r022 ¼
r11 þ r22

2
þ r22 � r11

2
cos 2h� r12 sin 2h ð28Þ

r012 ¼
r22 � r11

2
sin 2hþ r21 sin 2h ð29Þ

and, in this case dA ¼ da2.
It is worth stressing that the equations Eq. (20) and

Eq. (21) are therefore valid both for circular flaws and

Fig. 3. Description of the circular cavity and crack
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cracks, or actually for an arbitrary shaped flaw, using for
each case the corresponding value of dA and Rkl.

4
Numerical solution of the topological
de-rivative boundary integral equation
Using standard discretization techniques the TSBIE is
transformed into an algebraic system of equations,

Mdv ¼ tDdA ð30Þ
Note that the integral operator for duk and dqk in Eq. (15) is
the same that the operator for the NS in Eq. (6), and
therefore, the system matrix M is the same than for the
computation of boundary displacements and tractions of
the Non-damaged State; dv collects the variation values
corresponding to the non prescribed displacements and
stresses on the boundary. tD is a n�m matrix, where n is the
number of collocation points and m is the number of flaws.
To compute this matrix just the values of the Non-damaged
State stress tensor at the location of the flaws are needed.
Therefore, to set the system of equations Eq. (30) there is no
need to discretize any flaw boundary, i.e., only the solution
of the Non-damaged State is necessary; dA is a vector with
the ‘areas’ of the flaws.

Solving M for each column of tD the Topological
Jacobian, tJ, is defined by the equation

MtJ ¼ tD ð31Þ
and therefore, the TS’s of the boundary variables are
computed by,

dv ¼ tJdA ð32Þ
In this paper, isoparametric quadratic elements have been
employed, both for the solution of the Non-damaged State
and the discretization of the Topological Sensitivity BIEs.

5
Identification of flaws using the topological sensitivity
In order to search for unknown flaws inside a domain
using experimental information of the behavior of the
medium, a standard procedure consists in setting a
number of tentative flaws inside the body and compute the
variables (displacement, traction, strain, . . .) at the same
locations where the experimental values are retrieved. The
difference, residual, between the computed values v and
the experimentally measured ones vexp is then minimized
with respect to some geometrical variables, design vari-
ables, which define the location and size of the flaws. Note
that to apply this procedure it is necessary to solve and
discretize the problem with the assumed cavities in each
iteration of the minimization process. The topological
sensitivity provides a mean to dramatically reduce the
computational effort since, for a given location of the
flaws, the problem with flaws can be solved using only the
solution of the Non-damaged State, as shown in the next
subsection.

5.1
Optimum flaw size estimation
Given the position of a number of flaws, a cost functional
can be defined from the residual R ¼ vexp � vðAðzjÞÞ as
f ¼ 1

2 RTR. The following reasoning, however, can be

applied whatever be the cost functional. The topological
expansion for the residual is,

RðAðzjÞÞ ¼ vexp � vðAðzjÞÞ � vexp � vð0Þ � dv

¼ Dv � t JðzjÞdA ð33Þ
where Dv ¼ vexp � vð0Þ is readily computed once the
Non-damaged State is solved. Using this expansion, the
functional f can be approximated by,

f ¼ 1

2
RTR � 1

2
ðDv � tJðzjÞdAÞTðDv � tJðzjÞdAÞ

¼ f ð0Þ þ df ð34Þ
where, f ð0Þ ¼ 1

2 DvTDv, and,

df ¼ 1

2
dATtJTtJdA� dATtJTDv ð35Þ

is the Topological Sensitivity of the cost functional.
The minimum of the approximate functional is attained

for the following flaw sizes,

dA ¼ ðtJTtJÞ�1tJTDv ð36Þ
Note that the matrix to be inverted is small, only m�m,
where m is the number of flaws, just a scalar in case only
one flaw is sought after.

If accurate, these size estimates can be used in con-
junction of any minimization algorithm, providing several
advantages:

� The solution of a direct problem is carried out once for
the whole search, regardless of the number and location
of the flaws. Only the Non-damaged Problem has to be
discretized, and therefore only one system matrix, M,
has to be computed and factored.

� The computational time of each iteration is dramati-
cally reduced in comparison with the solution of
multiple direct problem, since:
– To obtain the topological Jacobian tJ the right hand

side matrix tD in equation Eq. (30) has to be computed,
but this implies just the calculation of the tensors
RjkðzjÞ which basically involves the computation of
the stresses of the NS at points zj. Actually, the whole
stress field could be computed at the start of the algo-
rithm in a fine enough mesh of points, and afterwards
compute the stresses at any location by interpolation.

– Next, the system in Eq. (31) is to be solved, but M is
already factorized and ready for forward and back
substitution, once for each flaw.

� The number of design parameters is reduced since the
optimum dA is computed in an inner step, and only the
center (and angle in the case of cracks) of each flaw are
included within the design variable vector.

The ability to easily include several simultaneous flaws
gives the possibility of searching an undefined number of
defects by allowing for a number of flaws in excess, and
letting the non existing flaws vanish by themselves.

5.2
Verification of optimum flaw size estimation
To verify the validity of the first order topological
approximation of the residual for optimum flaw size

158



estimation, two simple benchmark problems are pre-
sented. In both cases a 2� 2 square domain under non-
symmetric boundary conditions is considered. The flaw is
a centered circular cavity with radius R in the first case,
and a centered crack with half-length a in the second, as
shown in Fig. 4.

The bottom edge is fixed, and a parabolic load is applied
along the right side of magnitude ðtx; tyÞ ¼ ð1; 1Þ on its
center and (0,0) on the corners. The ‘‘experimental’’
measurements are the displacements along the same right
vertical edge.

The boundary is discretized by four quadratic elements
per edge. The experimental values are simulated, and are
actually computed solving the problem with the real flaw,
although this step is obviously unnecessary in case real
experimental measures are available.

The problems have been solved for different sizes of the
flaw, from a very small one, R or a � 10�8 to a very large
one R or a � 0:8. Note that in this last case the cavity
occupies almost the whole domain, or in the case of the
crack, it almost divides the domain in two parts.

In Fig. 5 the estimated size of the flaw (dR for the cavity
to the left, and da for the crack to the right) is represented
versus the real one (R or a). There is a perfect one to one
correlation. The differences appear only for very small
sizes, due to numerical errors, and very large ones, due to
the importance of higher order terms in the topological
expansion.

It is shown then, that the topological expansion
provides a extremely good estimation of the flaw size
for a very large range of sizes. This fact points to the

possibility of using this tool for a wider class of problems
in the mechanics of solids with defects, since it can reduce
the computational time for solving problems with a large
number of flaws.

5.3
Verification of the topological sensitivity accuracy
In this paragraph, the full cost functional is compared to
its topological sensitivity in order to assess the validity of
the proposed approximation. To do so, both the functional
and its sensitivity are computed for different positions of a
cavity in the benchmark problem shown in Fig. 4. For the
computation of the cost functional the simulated experi-
ment has a centered cavity of radius (R ¼ 0; 1). The cavity
is located at points along a centered horizontal line
(y ¼ 0:0). For the radius, two alternatives are considered:
for the first one the radius is fixed at 0.15 for all positions
of the cavity, while for the second one the radius at each
position is the optimum predicted by the approach
proposed in the preceding subsection.

In Fig. 6 the cost functional and its topological sensi-
tivity are shown vs. the x position of the center of the
cavity, for the first case. The figure shows that the topo-
logical sensitivity is a very good approximation of the full
cost functional. The disagreement is larger the closer is the
cavity to the right hand side of the plate. This is due to the
fact that the closer is the cavity to the edge, the less ac-
cuarate is the hypothesis about the stress field of a cavity
in an infinite domain. Nevertheless, note that both curves
are very similar and that their minima coincide.

In Fig. 7 both the cost functional and its sensitivity are
shown for the second case, where the radius of the cavity
at each position is computed optimizing the topological
sensitivity. The predicted radius is represented as well. In
this case the curves are practically indistinguishable for
most of the range. The discrepancy for positions close to
the left edge are again due to the loss of accuracy of the
infinite domain stress field hypothesis.

Note however that close to the right edge the error is
now very small, since in this case the radius of the cavity is
smaller than in the first case and therefore the errors due
to the linear topological approximation are negligible.

The inlet in the figure shows a zoom of the curves close
to the center (x ¼ 0:0) to provide a better appreciation of
the agreement between the cost functional and its
sensitivity.

Fig. 4. Geometry of benchmark problems for a circular cavity (a)
and a crack (b)

Fig. 5. Correlation of estimated and
real flaw size: (a) circular cavity,
(b) crack
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5.4
Location of flaws by minimization of the linearized
cost functional
At any locations zj within the domain the optimum size of
the flaws can be estimated to first topological order as
shown in the preceding Sect. 5.2. If the actual linearized
cost functional is then computed by,

f ð0Þ þ df ðzjÞ ¼ ðDv �t JðzjÞdAÞTðDv �t JðzjÞdAÞ
ð37Þ

the most probable location of the flaw(s) would be the
value(s) of zj such that df attains its minimum value.

Four applications are run to test the validity of this idea.
The exterior domain and boundary conditions are those
shown in Fig. 4.

In the first two tests there is no modeling nor experi-
mental error. The first one corresponds to a centered
circular flaw with radius R ¼ 0:1, and the second to a
centered crack with half-length a ¼ 0:1.

In Fig. 8 the topological sensitivity of the cost functional
is shown, superimposed to the geometry of the domain

and location of the flaws. The minimum of the Topological
Sensitivity exactly pinpoints the presence, location and
size of the cavity. It has to be mentioned that the minimum
value, attained at the center, is three orders of magnitude
larger than its value elsewhere, in absolute value, clearly
discriminating the location of the flaw.

Likewise, in Fig. 9, the value of the topological sensi-
tivity of the cost functional is shown, for the case of a
centered crack. The result is extremely good, since the
value of the linear cost functional detects and localizes the
defect unequivocally. The minimum value, at the center, is
now even greater than in the previous case.

In the third application, the problem is again the square
with a centered circular cavity, but now the simulated
experimental values are altered with a 10% error. These
experimental errors affect the computation of the esti-
mated size of the flaw through Eq. (36), and then to the
topological sensitivity of the cost functional.

The value of the topological sensitivity of the cost
functional is shown in Fig. 10. Even with a large error as
the one considered, the value of the TS again pinpoints
clearly the presence and position of the flaw. The

Fig. 6. Comparison of full cost functional vs. topological
sensitivity: constant radius R ¼ 0:15

Fig. 7. Comparison of full cost functional vs. topological
sensitivity: optimum radius

Fig. 8. Cost functional topological sensitivity in the domain
for a centered circular cavity

Fig. 9. Cost functional topological sensitivity in the domain
for a centered crack
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minimum is not as sharp as in the no-error case, and it is
not exactly at the center, but nevertheless its value is two
order of magnitude larger that elsewhere, and its location
is very close to the center. Note that besides this extreme
value close to the center, there is a crest-like local extreme,
but whose value is 1.5 times lower than the global one, in
absolute value.

Finally, a problem with a modeling error is presented.
In this case the real flaw is a centered ellipse whose semi-
axis are a ¼ 0:15 and b ¼ 0:1. The boundary conditions
are like in previous applications, fixed at the bottom edge,
and parabolic load at the right one. The topological sen-
sitivity is computed considering that the sought flaw is a
circular cavity. It can be expected, therefore, that the
predictions will not be as good as in previous cases.

In Fig. 11 the value of the topological sensitivity is
shown. Again, this value detect unequivocally the presence
of a flaw. Its location is not pinpointed as precisely as in
the other cases, but nevertheless, the extreme of the
linearized cost functional is very close to the center.

It has to be born in mind that the expression of the
topological sensitivity for elliptical shape flaws can be

readily computed. Using such expression it is expected
that the location of the flaw would be exactly found, as in
the case of circular flaws and cracks.

6
Search of defects by an evolutionary algorithm-topological
sensitivity approach
The identification of flaws by Evolutionary Algorithm
using BIE have been proposed by a number of authors, as
mentioned in the Introduction.

The Evolutionary Algorithms are zero-order methods,
i.e. do not use information about the sensitivity or gradi-
ent of the functional with respect to the design parameters,
and are therefore well suited for problems where this
gradient is unavailable, or it is very expensive to compute.
The main advantage of these methods is that are global, i.e.
explore the whole range of variation of the design vari-
ables, but the disadvantage is the large computing time
required, since the cost functional has to be evaluated a
very large number of times, in comparison with first or
higher order minimization approaches.

The use of the topological sensitivity, however, can cut
this computational time to a fraction, since the solution of
the problems with flaws is found using the optimum size
estimate, as shown in the preceding sections.

Within the framework of genetic optimization, the set of
design parameters or ‘‘phenotype’’, is encoded as a chain
of variables, ‘‘chromosomes’’. A population of test flaws,
‘‘individuals’’, is assumed. For each individual, a fitness
function has to be computed. In this case the fitness is
defined as eðxÞ ¼ � log f , so the bigger the error the lower
the fitness.

Several steps are implemented for the simulation: first
there is a ‘‘selection’’ step where individuals with better
fitness are given a higher probability to reproduce. Second
a ‘‘crossover’’ operator permits parts of the encoding
string of the individual parents to be exchanged within the
reproduction step. Finally, in the ‘‘mutation’’ step, arbi-
trary parts of the information are changed at random
during the creation of the new generation. There is a large
number of variations and additions to these basic
evolutionary steps, but the simplest version is used in this
paper, since the objective is not to test the Evolutionary
Algorithms for flaw detection, but the improvement raised
by their combination with the topological expansion flaw
size estimation.

Each individual consists in 2�m design parameters,
the coordinates of the center of the m flaws. Note that the
size of the flaw is computed by the topological expansion,
and it is therefore removed from the design variable set,
reducing the number of unknowns. In the case of cracks, the
angle with respect to the x-axis is included as a design
parameter.

6.1
Numerical applications for flaw identification
by genetic algorithm-topological sensitivity
A simple genetic algorithm has been coded and plugged
into the topological sensitivity. The code has been adapted
from the one developed by Haataja (2000). The parameters
used for all the genetic algorithm runs are,

Fig. 10. Cost functional topological sensitivity in the domain for
a centered circular cavity, considering a 10% error in the
simulated error

Fig. 11. Cost functional topological sensitivity in the domain
for a centered elliptical cavity. The sensitivity is computed
assuming a circular flaw
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In the first two problem, an unique flaw is sought after,
a centered circular cavity or a crack. In both cases the
algorithm finds exactly the location and size of the flaw.
The best individual, superimposed to the real flaw, and
evolution of the process is shown in figures Fig. 12 and 13,
for the cavity and crack, respectively. To attain conver-
gence about 30 iterations are needed, in the case of the
circular cavity, and 100 in the case of the crack. This is due
to the fact that there is an extra design parameter, crack
angle, in this last case.

Using standard Genetic Algorithm, 100 iterations with
30 individuals per generation entails the solution of
100� 30 ¼ 30:000 distinct direct problems. On the
contrary, using the Topological Sensitivity only the Non-
damaged State, i.e. the domain with no flaw has to be
solved, and each of this 30.000 analysis involves just a
forward and back substitution with the factorized system
matrix.

The results for a problem with two equal circular cav-
ities are shown in Fig. 14. The best individual is repre-
sented to the left, superimposed to the real flaws, and the
evolution of the process to the right. To obtain these
results, extra simulated experimental measures have been

provided: besides the displacements along the right edge,
the displacements at the top edge have been included.

In the final application, a centered circular cavity is to
be found. However two cavities are considered in the
search. In Fig. 15 the best individual and the evolution of
the process are shown, to the right and to the left,
respectively.

Note that one of the flaws coincides with the actual flaw,
while the other one has almost collapsed. Actually, dif-
ferent individuals with similar high fitness consists in a
correct centered cavity and a very small flaw randomly
located.

7
Conclusions
The Topological Sensitivity (TS) gives the first order var-
iation in the response due to the presence of an infini-
tesimal flaw. In this paper a Boundary Integral Equation
for the computation of the TS has been developed, and
fully completed for the cases of circular cavities or crack-
like defects.

The TS is a very promising tool for identification of
defects since it has been shown that provides a very
accurate estimate of the flaw size, using only information
of the flawless problem, or Non-damaged State (NS).
Actually, the computation of the TS at a given location,
just requires the computation of the stresses of the NS, at
this point, plus a forward-backward substitution in the NS
system of equations.

Furthermore, the TS of the cost functional directly
pinpoints the presence, location and size of the defects,
and it can be used directly as an identification tool. The

Number of individuals in population 30
Number of generations 100
Probability of mutation 0.02
Probability of crossover 0.8
Tournament probability 0.7
Scale for mutations 0.1
Gens Real-coded

Fig. 12. GA-TS identification
of a centered cavity

Fig. 13. GA-TS identification
of a centered crack
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value of the TS is very stable as has been proved in cases
with experimental or modeling errors.

In conjunction to zero-order methods as Genetic
Algorithm, the use of the TS can greatly enhanced their
range of applicability, since the GA-TS approach cuts to a
fraction the computational time required. The combined
GA-TS method has the following characteristics:

� A unique direct problem computation is needed for the
whole search since no discretization or direct solution is
needed for the flaws. The direct problem has moreover
no flaw.

� The computation of the Topological Sensitivity is based
on the already factorized system matrix of the direct
problem and on a cheap computation of stresses at the
location of the sought defect.

� The size of the flaws is computed by a very accurate
linear estimate within the iteration step, reducing
significantly the number of parameters. This stabilizes
and accelerates the search further.

The ability to obtain the TS for several simultaneous flaws
opens large possibilities for the use of this tool for other
problems within the mechanics of solids with defects.
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Fig. 14. GA-TS identification
of two circular cavities

Fig. 15. GA-TS identification
of a centered circular cavities.
The individuals consist in two
cavities
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