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Abstract The identification inverse problem is solved here
for flaw detection in anisotropic materials by means of an
innovative approach: the combination of Genetic Algorithm
and the Topological Sensitivity in anisotropic elasticity. The
Topological Sensitivity provides a measure of the susceptibil-
ity of a defect being at a given location. This is based on a lin-
earized topological expansion, applying Boundary Integral
Equations and using solely information of the non-damaged
state. It is proved that the Topological Sensitivity provides an
accurate tool for estimating the location and size of defects.
First, it is shown that the minimum of the residual (cost func-
tion) topological sensitivity pinpoints the location and size
of the actual flaws, and secondly, the minimization of the
residual topological sensitivity is carried out using Genetic
Algorithm. When the Genetic Algorithm is applied to the
residual Topological Sensitivity instead of to the full resid-
ual, the applicability of this method is enhanced since the
computational effort, which is the major drawback of this
type of search methods, is drastically reduced. In this paper,
the formulation for linearly anisotropic elastic media is com-
posed for the case of circular flaws, although the procedure
is extensible to other kinds of defects like elliptical cavities,
elastic or rigid inclusions or cracks.
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1 Introduction

Identification inverse problems are usually tackled consid-
ering the problem as the minimization of a residual func-
tional with respect to selected shape parameters. Here, a
different and novel approach is employed, making use of a
domain function, the so-called Topological Sensitivity (TS).
Eschenauer et al. [2] were the first to develop the idea of TS
for compliance minimization problems. Later, it was general-
ized and exploited for shape inverse problems by Sokołowski
and co-workers [6,10]. Garreau et al. [4] generalized the idea
for an arbitrarily-shaped flaw in elastostatics. The Adjoint
variable method was used in all these works for the compu-
tation of the topological derivative. However, Gallego and
Rus [3] first proposed a different approach, fully based on
a linearized topological expansion using Boundary Integral
Equation (BIE) techniques. It has been proved that the min-
imum of the residual topological sensitivity pinpoints the
location and size of the unknown flaw.

On the other hand, gradient-based minimization proce-
dures are generally used for identification inverse problems,
mainly due to the high computational effort needed for global
methods such as Genetic Algorithm (GA). The use of GA
for identification of flaws within the framework of Boundary
Integral Equation procedures, has been explored by differ-
ent authors in the past decade. Koguchi and Watabe [7],
Kowalckzyk et al. [8], Tanaka and Nakamura [15], Stavro-
ulakis and Antes [13,14], or Stavroulakis [12] represent a
good part of the works. In all these papers the functional to
be optimized is the full residual. Hence, the computation is
very costly. However, the computation of the residual topo-
logical sensitivity involves solely information of the non-
damaged state (NS), and therefore, the location of its mini-
mum using GA drastically reduces the computational cost as
shown in [3].
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The formulation for linearly anisotropic elastic media with
circular flaws is built in this paper, although the procedure is
extensible to other arbitrarily shaped cavities or cracks. The
TS is shown to provide an accurate tool for estimating the
location and size of the defect.

2 Topological sensitivity

The topological derivative of a shape functional can be
defined as the variation of the functional due to creation of a
small hole centered at a given location x0. Formally, given a
shape functional

J : Ω → R (1)

for a given domain Ω , where Br (x0) is a closed ball of radius
r > 0 centered at x0, the topological derivative is defined as

J ∗(x0) = lim
r→0+

J (Ω \ Br (x0)) − J (Ω)

‖Br (x0)‖ (2)

For plane problems, such as those in this study, another
definition comes from the linearized expansion of the func-
tional J in the non-damaged state, around r = 0+

J (r) = J (0+) + r2

2
J ′′(0+) + o(r2) (3)

where, if higher order terms are neglected, J ′′(0+) is equiv-
alent to the topological sensitivity of the cost functional,
J ∗(x0).

2.1 Topological sensitivity boundary integral equation

The objective is to solve an identification inverse problem
using the topological sensitivity of a cost functional. This
functional depends on the variables of the elastostatic prob-
lem: displacements and/or tractions. The formulation used
for its computation starts from the Boundary Integral Equa-
tion (BIE) of the displacements [1], and once the TS of the
boundary variables has been calculated, the TS of the func-
tional can be obtained immediately.

Formally, the problem is defined first in a non-isotropic
homogeneous domain Ω , with boundary Γ , where there is no
defect, i.e., the non-damaged state, subject to some boundary
conditions. The displacements BIE can be written as follows:

ci
k(y)uk(y)+

∫

�

[
qi

k(x; y)uk(x) − ui
k(x; y)qk(x)

]
d�(x) = 0

(4)

where

• uk(x) is the k-th component of the displacement vector in
the non-damaged state at the observation point x.

• qk(x) = σ jk(x)n j (x) is the traction vector in the non-
damaged state, at observation point x. σ jk(x) is the stress
tensor and n j (x) the outward normal.

• ui
k(x; y) is the kth component of the displacement vector

at the observation point x due to a point load applied in
direction i at the collocation point y. ui

k(x; y) is the dis-
placement field of the fundamental solution.

• qi
k(x; y) = σ i

lk(x; y)nl(x) is the traction vector of the fun-
damental solution.

• ci
k(y) is the free term whose value depends on the position

of the collocation point y.

The displacements and tractions of the fundamental solu-
tion for the anisotropic medium can be found in [11],

ui
j(x; y) = 2Re

[
p j1 Ai1 ln (x1 − y1)

+p j2 Ai2 ln (x2 − y2)
]

(5)

qi
j(x; y) = 2Re

[
q j1 Ai1

x1 − y1
(µ1n1 − n2)

+ q j2 Ai2

x2 − y2
(µ2n1 − n2)

]

Ai j , pi j and qi j are functions of the material elastic constants
ai j

1 and xk is the complex variable, xk = x1 + µk x2, being
µk the complex roots of the characteristic Eq. ([9]):

l4(µ) = β11µ
4 − 2β16µ

3 + (β12 + β66)µ
2 − 2β16µ + β22

(6)

where βi j are called reduced elastic constants; for the plane
strain state they are defined as follows βi j = ai j −
(ai3a j3)/a33. Equation (4) is discretized and can be solved
with standard Boundary Element techniques. Then, with the
kinematic equations and Hooke’s law, the rest of the vari-
ables of the problem in the domain Ω and on its boundary Γ

are obtained.
The next step is to consider a modified state that contains

an vanishing flaw, the damaged state. In the same homoge-
neous domain Ω , whose exterior boundary is Γ , and subject
to the same boundary conditions, consider the appearance of a
traction-free cavity centered at point z whose boundary is Γz ,
which surrounds the domain Ωz . The BIE for displacements
in the new state is written as follows, where the boundary has

1 Hooke’s law εi = ai j σ j i, j = 1 . . . 6
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been split into Γ and Γz ,

ci
k(y)ũk(y) +

∫

Γ

[
qi

k(x; y)ũk(x) − ui
k(x; y)q̃k(x)

]
dΓ (x)

+
∫

Γz

[
qi

k(x; y)ũk(x) − ui
k(x; y)q̃k(x)

]
dΓ (x) = 0

(7)

where the tilde over the variables means that their values
are modified due to the appearance of the vanishing flaw.
Equation (7) can be simplified considering several reasons.
First, q̃k = 0 along Γz , since the cavity boundary is traction-
free. Next, the displacements along the defect boundary Γz

can be expressed as the sum of a rigid body motion plus a
movement relative to the center.

ũk(x) = u0
k + δūk(x) (8)

Moreover, stresses at a point y interior to the domain
Ω\Ωz , far from the defect, are similar to the ones in the
non-damaged state σi j (z) (up to first order terms). There-
fore, the displacements δūk(x) along the boundary defect Γz

are equal to those in an infinite domain subject to a uniform
remote stress field σi j (z), δu∞

k (x), i.e.,

σ̃i j (y) = σi j (y) + h.o.t. (9)

δūk(x) = δu∞
k (x) + h.o.t. (10)

where h.o.t. stands for higher order terms.
Finally, on the boundary of the cavity,

qi
k(x; y) = σ i

jk(x; y)n j (x) = σ i
jk(z; y)n j (x) + h.o.t. (11)

Taking everything into account and subtracting the
BIE for the non-damaged state, Eq. (4), to the BIE for the
damaged state, Eq. (7), the so-called Topological Sensitiv-
ity Boundary Integral Eq. (TSBIE) is obtained (see [3] for a
more detailed description of the process), namely,

ci
k(y)δuk(y) +

∫

Γ

[
qi

k(x; y)δuk(x) − ui
k(x; y)δqk(x)

]
dΓ (x)

= −σ i
jk(z; y)

∫

Γz

n j (x)δu∞
k (x)dΓ (x) (12)

where δuk(y) and δqk(y) are the topological sensitivities
of displacements and tractions on the boundary due to the
appearance of an infinitesimal arbitrarily shaped flaw at z.

2.2 Topological sensitivity BIE for circular cavities

For the case of defects modeled as circular cavities with
radius δR, traction-free boundaries in an anisotropic medium,
the displacements δu∞

k (x) have analytical expressions that
can be written in the form

δu∞
k = −δRΣklnl (13)

for k, l = 1, 2, where nl is the outward normal to the bound-
ary Γz and (Σkl) is a constant matrix which depends on the
value of σi j (z), the elastic constants ai j and the complex
roots µi . In particular, the component Σ11 is computed as
follows (the value of rest of the components is detailed in the
Appendix),

Σ11 = 1

|µ1 − µ2|2
[
a11(Im(µ1 + µ2)(Im2(µ1)

−2Im(µ1)Im(µ2) + Im2(µ2) + Re2(µ1 − µ2))σ11

+ |µ1 − µ2|2 (σ11 + Re(µ2)σ12

+Im(µ1)Re(µ2)σ12 − Im(µ1)Im(µ2)σ22

+�(µ1)(σ12 + Im(µ2)σ12 + Re(µ2)σ22)))
]

(14)

Finally, if Eq. (13) is substituted into the TSBIE (12), then

ci
k(y)δuk(y) +

∫

Γ

[
qi

k(x; y)δuk(x) − ui
k(x; y)δqk(x)

]
dΓ (x)

= −πδR2 σ i
jk(z; y)Σkl(z)δ jl = −δA σ i

jk(z; y)Σk j (z)

(15)

where δA = πδR2 is the area of the circular cavity.
When the TSBIE (12) is generalized for m circular cavi-

ties centered at a set of points zl , the right hand side of the
Eq. (15) becomes

∑m
l=1

tU i (zl; y)δAl , where δAl is a vector
containing the areas of each of the flaws centered at zl , and
tU i (zl; y) = σ i

jk(z
l; y)Σk j (zl).

2.3 Discretization and solution of topological sensitivity
BIE

In order to solve the TSBIE, standard discretization
techniques based on the Boundary Element Method are
employed, obtaining an algebraic system of equations:

Mδv = t�δA (16)

where δv is a vector with the sensitivities of the corresponding
unknowns variables on the boundary (displacements and/or
tractions); δA is a vector with the areas of the defects and t�

is a matrix n ×m where n is the number of collocation points
and m is the number of defects.
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Since the integral operator of δuk and δqk in Eq. (12) is
equal to the one of uk and qk in Eq. (4), then, the coefficient
matrix M is the same for both problems, and therefore, once
the non-damaged state is discretized and its matrix system
factorized, boundary sensitivities can be obtained by simple
forward-backward substitution. Doing so for each column of
t�, the Topological Jacobian is obtained, defined as,

MtJ = t�. (17)

Hence, the topological sensitivities of the boundary variables
can be computed by,

δv = tJδA (18)

3 Defect identification with the topological sensitivity

As mentioned above, the inverse problem for defect iden-
tification is usually tackled as the minimization of a cost
functional, which represents the difference between the
measured values of a physical magnitude (for instance dis-
placements, tractions or strains) and the computed ones in an
assumed configuration. It will be shown here how the mini-
mum of the TS of the cost functional pinpoints the location
and size of the unknown flaw. This entails a great saving
in computational effort, since, for a given location of the
flaws, the problem can be solved using only the solution
of the non-damaged state. Hence, the flaw discretization is
avoided.

3.1 Defect size estimation

The first step of the proposed strategy is the defect size cal-
culation. The cost functional is defined as f = 1

2 RT R,
where R is the residual vector defined from the discrep-
ancy between a certain experimentally measured magnitude
vexp (displacements and/or tractions), and its value computed
with the assumed model with m flaws centered at zl , R =
vexp − v(A(zl)). Using the topological expansion for the
residual R in a non-damaged state and taking into account
Eq. (18),

R(A(z j )) ∼= vexp − (v(0) + δv) = ∆v − tJ(z j )δA (19)

where ∆v = vexp − v(0) can be computed once the non-
damaged state is solved. Applying the topological expansion
of R to the functional definition, f is approximated by

f = 1

2
RT R ∼= f (0) + δ f

= f (0) + 1

2
δAT tJT tJ δA − δAT tJT ∆v (20)
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Fig. 1 Geometry of benchmark problem

where f (0) = 1
2∆vT ∆v, and δ f is the topological sensitiv-

ity of the cost functional. The optimum sizes of the possible
flaws will be those which minimizes the cost functional TS
(20), i.e.,

δA = (tJT tJ)−1 tJT ∆v (21)

Note that tJT tJ is a small m × m matrix, so its inversion is
computationally inexpensive.

This idea has been validated with a simple benchmark
problem (see Fig. 1). The example consists of a square plate,
2m × 2m, made of an orthotropic material (birch plywood).
The plate, which is subject to the boundary conditions of
the figure, has a centered circular cavity, and its boundary is
discretized into 80 quadratic isoparametric elements.

The experimental data needed to compute the residual R
have been simulated solving the direct problem with a For-
tran code in a damaged plate with a circular cavity modeled
with 48 elements. The problems have been solved for differ-
ent radii r of the flaw, from a small one, r ≈ 10−6 m, to a
large one r ≈ 0.8 m. Note that in the last case the cavity
occupies almost the whole domain.

The real radius has been plotted versus the one obtained
with the topological sensitivity and Eq. (21) in Fig. 2. The
correlation is nearly one to one, with discrepancies only when
flaw almost occupies the whole plate. These errors are due to
the influence of neglected higher order terms in the expan-
sions.

3.2 Location of the defect

Once the defect size has been estimated with Eq. (21), the lin-
earized approximation of the functional is obtained by apply-
ing Eq. (20),
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Fig. 2 Correlation between
estimated and real radius of the
cavity

Ux measurements on the left side of the
plate

Py measurements on the bottom side of
the plate
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Fig. 3 Cost Functional for a
centered circular cavity.
Experimental data: a Ux on left
plate side b Py on bottom plate
side c Ux on left plate side + Py
on bottom plate side
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(c)

f ∼= f (0) + δ f (zl) = (∆v − tJ(zl)δA)T (∆v − tJ(zl)δA)

(22)

The centers of the defects will be located at the points
zl which minimize the value of f , or using the topological
expansion, at the points such that δ! f attains its minimum.

Several tests were run using the example in Fig. 1, hav-
ing fixed the radius of the actual cavity to r = 0.1m. The
results are shown in next figures where the cost functional,

computed with the linearized expansion and the topological
sensitivity in Eq. (20), is plotted and superimposed on the
real geometry of the domain and location of the flaws (thick
line). The optimum flaw predicted by minimizing the cost
functional TS is represented as well (thin line).

Three cases are shown in Fig. 3, differing in the experi-
mental data used to compute the functional. The actual and
predicted flaws are indistinguishable, which confirms that the
minimum of the cost functional TS pinpoints, not only the
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Fig. 4 Cost Functional
topological expansion in the
domain for a centered circular
cavity with 10% error in the
elastic constants
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Fig. 5 Cost Functional
topological expansion in the
domain for a centered circular
cavity with 5% error in
simulated experimental data
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size, but the presence and location of the cavity. It can be
appreciated that the greater the amount of experimental data,
the more accurately the location of the cavity is identified.
It should be pointed out that the minimum value is attained
at the center, and moreover, it is three orders of magnitude
smaller than its value elsewhere, indicating the location of
the flaw.

To verify the stability of the method, simulated errors are
introduced. First, the elastic constants of the material are
disturbed with a percentage of Gaussian random noise com-
putationally generated. Even with a large amount of noise,
10% of Gaussian error, the minimum of the cost functional,
100 times smaller than elsewhere, pinpoints accurately the
center of the flaw, (Fig. 4). The radius is also well estimated.
Second, an error is introduced in the experimental measure-
ments. Although not as accurate as in previous cases, with a
5% of noise in the data, the minimum of the cost functional
TS is close to the exact position of the center, and the size of
the cavity is well predicted, (Fig. 5).

Finally, a problem with a modeling error is presented. In
this case the real flaw is a centered ellipse whose half-axes are
a = 0.15m and b = 0.1m. The boundary conditions are the
same as in previous applications. The topological sensitiv-
ity is computed considering that the flaw is a circular cavity.

The location and size of the defect is still well predicted (see
Fig. 6). The value of the minimum of the cost functional is
half of the value elsewhere.

4 Genetic algorithms combined with topological
sensitivity

The identification of flaws by Genetic Algorithms using BIE
has been proposed by a number of authors, as mentioned
in the Introduction. The Genetic Algorithms are zero-order
methods, i.e. do not use information about the sensitivity
or gradient of the cost functional with respect to the design
parameters, and are therefore well suited for problems where
this gradient is unavailable, or is expensive to compute.

Most of the authors have employed this type of algorithms
to minimize the full cost functional. Instead of that, it has been
shown above that the minimum of the cost functional topo-
logical sensitivity pinpoints accurately the location and size
of the defect. Since Genetic Algorithms are global zero-order
methods, there is no need to compute the gradient of the func-
tional with respect the unknowns of the problem. This is an
important advantage, but as a counterpart, the computational

123



Comput Mech

Fig. 6 Cost Functional
topological expansion in the
domain for a centered elliptic
cavity
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effort is high, since a large number of direct problems has to
be evaluated and solved.

The use of the cost functional topological sensitivity,
instead of the full functional, drastically reduce this compu-
tational time, since the solution of the problems with flaws is
found using only information of the non-damaged state, and
no flaw discretization is needed. Moreover, the optimum size
is estimated independently once the flaw centers are given,
reducing the number of design parameters, which addition-
ally accelerates the convergence of the GA.

4.1 Description of the genetic algorithms

Within the framework of genetic optimization, the set of
design parameters, or phenotype, is encoded as a chain of
variables, chromosomes. A population of individuals, is as-
sumed.

For the present study, each individual of the population
consists of 2 × m design parameters, which are the coor-
dinates of the defect centers. For each individual a fitness
function defined as e(x) = − log f (x) is computed, where
f (x) is the cost functional topological sensitivity, and x the
design parameters.

The simulation is carried out with the following steps:

1. The non-damaged state is solved. The system matrix M
is factorized and the vector ∆v (Eq. 19) is evaluated.

2. A random population of individuals (flaw centers) is
generated.

3. For each individual:
(a) The matrix ∆ (Equation 16) is computed. In order to

evaluate this matrix, the stress tensor at the centers of
the flaws for the ND state is computed.

(b) The topological Jacobian is computed, by back and
forward substitution, solving the system (17).

(c) Optimum flaw sizes (δA) are computed using Eq. (21)
(d) The cost functional topological sensitivity is evalu-

ated, using Eq. (22).

(e) The fitness function for the individual is obtained by
e(x) = − log f (x).

4. Given the fitness of each individual, standard genetic oper-
ators (selection, crossover, mutation) are performed over
the population, rendering a new one.

5. Steps from 3 are repeated until a stopping criteria is
fulfilled.

It should be stressed out that, if minimizing the full cost
funtional instead of its topological sensitivity, step 3 would
entail the full solution of a damaged problem, for each indi-
vidual. This is computationally much more expensive than
the proposed algorithm.

There is a large number of variations and additions to the
three basic genetic operators, but the simplest version is used
in this paper, since the objective is not to test the GA, but the
improvement raised out by its aplication to the topological
sensitivity of the cost functional.

4.2 Numerical applications

To conclude, the whole strategy is going to be test with a
series of applications. The code has been adapted from the
one developed by Haataja [5]. The values of the different
parameters which control the GA are shown in Table 1. With
these parameters, using the algorithm for seeking defects by
itself, would imply solving 200 times 50 = 10, 000 differ-
ent direct problems with cavities. On the contrary, if the cost
functional topological sensitivity is minimized, instead of

Table 1 Genetic algorithm parameters

Number of individuals in population 50

Number of generations 200
Probability of mutation 0.02
Probability of crossover 0.8
Probability of “tournament” 0.7
Scale of mutation 0.1
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the full cost functional, just one problem has to be solved,
the non-damaged state, and each of the 10, 000 analyses
involves just the computation of stresses and forward and
back substitution with the already factorized system matrix
M.

Multiple tests have been undertaken. For all of them, the
studied specimen is a square plate with the same dimensions,
material properties and boundary conditions as the those of
the benchmark example in Fig. 1. Each of the following
figures have two graphics. On the left hand side, the best
individual obtained (thin line) is represented superimposed
to the real flaw (thick line). The graph on the right hand side
shows the evolution of the fitness function along the gen-
erations, of the best individual and the mean of the whole
population.

The first group of tests consisted of a plate with a cir-
cular cavity, with several percentages of Gaussian error in
the measurements, ranging from 0 to 10%. The number of

allowed generations is 50. In all the cases, a good estimation
of the size of the defect is obtained, and the location is well
predicted with errors up to 5% (Fig. 7).

In the second test, the actual cavity is elliptical. As in the
previous cases, tests with exact and noisy experimental data
have been run. Although the exact shape of the actual cav-
ity cannot be attain, the location and size of the flaw is well
approximated even with a 10% of error in the measurements
(see Fig. 8).

A third kind of tests is carried out where the design param-
eters represent two cavities. Hence, the chromosome has four
parameters, two coordinates for each of the two centers. Two-
hundred generations are permitted from now on. In Figs. 9
and 10 three cases are plotted. They differ in the number and
type of measurements taken on the boundary of the plate to
compute the residual R. No error on measurements is con-
sidered. It can be concluded that more experimental data the
better the results, but the choice of where to measure appears
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Fig. 7 Identification of circular cavity, considering 5% error in the experimental data
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Fig. 8 Identification of elliptic cavity, with 10% error in the experimental data

123



Comput Mech

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0 50 100 150 200
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Generation

F
itn

es
s 

fu
nc

tio
n

Best
Average

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

Fig. 9 Identification of two circular cavities, with exact measurements of Px on the right hand side of the plate and Ux on the left hand side of the
plate
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Fig. 10 Identification of two circular cavities, with exact measurements of Uy on the top side of the plate and Ux on the left hand side of the plate
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Fig. 11 Identification of two circular cavities, with exact measurements of Px on the right hand side of the plate, Ux on the left hand side of the
plate, and Py at the bottom side

to be relevant. The case displayed in Fig. 9, just predicts
one of the cavities. Figure 10 shows the best fit between
predicted and real cavities, where the measurements taken
are displacements Uy at the top side of the plate and Ux on

the left hand side of the plate. Instead, in Fig. 11, tractions
are measured on two sides of the plate, plus displacements
in just one; in this case, the best individual fitness is lower
than in Fig. 10.
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Fig. 12 Identification of two circular cavities, with 2% error in the measurements of Uy at the top side of the plate and Ux on the left hand side of
the plate
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Fig. 13 Identification of a circular cavity, allowing the existence of two circular cavities, measurements on the four sides of the plate
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Fig. 14 Identification of an elliptic cavity, starting from two circular cavities, with measurements on the four sides of the plate

Finally, Fig. 12 presents the results when seeking two cav-
ities, adding 2% of noise to the measurements. One of the
cavities is found accurately, while the approximation of the
second one is acceptable.

Figure 13 shows the case of a single actual defect, but
coding two defects in each chromosome. The result of the

algorithm is that both cavities converge to the real
one.

Finally, the results when two cavities are coded, but the
actual defect is an elliptic cavity, are displayed in Fig. 14.
Exact measurements on the four sides of the plates have been
considered. The location and size are well estimated.
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5 Conclusions

This paper confirms the efficiency of a novel strategy for iden-
tification inverse problem resolution in anisotropic materials.
It combines the computation of the topological sensitivity of
the cost functional with a zero order minimization algorithm.
The formulation is here developed for the anisotropic case
and the results of several tests verify its validity.

The TS by itself is a promising tool for identification of
defects, since it provides an accurate estimate of the flaw
size and its location, using only information of the flawless
problem. First, the numerical results show an almost per-
fect correlation between the predicted and real radius of the
cavity for a wide range of sizes. Then, it is demonstrated
that the minimum of the topological sensitivity of the cost
functional pinpoints the center of the defect, even if errors
in the material properties of the model are considered, and
noise is introduced into the experimental data measured on
the boundary.

The major benefit of the TS comes when it is employed in
conjunction with Genetic Algorithms. The disadvantages of
zero-order minimization algorithms related to computational
time disappear, since just the non-damaged state is solved
by the BEM. Numerous applications have been performed
under different conditions such as: number of actual defects,

Σ12 = a16σ11(0.5 |µ1 − µ2|2 + Im2(µ1) − 2Im(µ1)Im(µ2) + Im2(µ2) + Re2(µ1) − 2Re(µ1)Re(µ2) + Re2(µ2))

|µ1 − µ2|2

+ |µ1 − µ2|2 (a12σ12 + 0.5(a66σ12 + a26σ22)) + a11(−Re3(µ1)σ11 + Re2(µ1)Re(µ2)σ11 + Re(µ1)Re2(µ2)σ11

|µ1 − µ2|2

+ −Re3(µ2)σ11 − Im2(µ1)Re(µ1 + µ2)σ11 − Im2(µ2)Re(µ1 + µ2)σ11 − |µ1 − µ2|2 Re(µ1)Re(µ2)σ12

|µ1 − µ2|2

+ |µ1 − µ2|2 Im(µ2)(σ12 + Re(µ1)σ22) + Im(µ1)(Im(µ2)(2Re(µ1)σ11 + 2Re(µ2)σ11 + |µ1 − µ2|2 σ12)

|µ1 − µ2|2

+ |µ1 − µ2|2 (σ12 + Re(µ2)σ22)))

|µ1 − µ2|2 (1)

Σ21 = 0.5a16 |µ1 − µ2|2 |µ1|2 |µ2|2 σ11 + |µ1 − µ2|2 (0.5a66 |µ1|2 |µ2|2 σ12 + a12 |µ1|2 |µ2|2 σ12

|µ1 − µ2|2 |µ1|2 |µ2|2

+ a26(0.5 |µ1|2 |µ2|2 + |µ1|2 |µ2|2)σ22) + a22(|µ1|2 (Im(µ2)(Re(µ1) − 2Re(µ2)) + Im(µ1)Re(µ2))σ11

|µ1 − µ2|2 |µ1|2 |µ2|2

+ |µ2|2 (Im(µ2)Re(µ1) + Im(µ1) − 2(Re(µ1) + Re(µ2)))σ11 + |µ1 − µ2|2 (Im(µ1)(Im(µ2) + |µ2|2)σ12

|µ1 − µ2|2 |µ1|2 |µ2|2

+ Im2(µ1)(Im(µ2)σ12 − Re(µ2)σ22) + Re(µ1)(Im(µ2)Re(µ1)σ12 − Im2(µ2)σ22 − Re(µ2)(σ12 + Re(µ1 + µ2))σ22)))))

|µ1 − µ2|2 |µ1|2 |µ2|2
(2)

number of coded defects, kind and location of measurements,
noise in the measurements, shape, size and location of the
actual defect(s). The algorithm has converged to acceptable
solutions under severe conditions. Some important issues
should be considered in order to attain a good solution, which
are the amount of experimental data, type of data, boundary
where the data is collected, and size of the actual flaw.

A drawback of this algorithm in its present form is its lim-
itation to circular shape defects. However, this limit can be
overcome using available elastic solutions for other shapes
such as elliptical cavities, cracks, elliptical inclusions, rigid
inclusions, etc [9].

For more complex shapes a two-step approach can be
devised. In the first step, a global search is performed us-
ing the present algorithm; in the second step the shape of the
located defects is refined increasing the shape parameters and
carrying out a local minimization of the full cost functional
using a standard gradient-based algorithm. In this case, the
defects found by TS-GA are plugged as an initial guess into
a gradient-based algorithm.

Appendix: Analytical expressions to compute
the displacements in an infinite anisotropic
domain with an uniform stress state
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Σ22 = a12 |µ1|2 |µ2|2 (|µ1 − µ2|2 − Im2(µ1) + 2Im(µ1)Im(µ2) − Im2(µ2) − Re2(µ1) + 2Re(µ1)Re(µ2) − Re2(µ2)) + σ11

|µ1 − µ2|2 |µ1|2 |µ2|2

+ |µ1 − µ2|2 (a26 |µ1|2 |µ2|2 − a16 |µ1|2 |µ2|2)σ12 + a22(|µ1|2 (−Im(µ1)Im(µ2) + Im2(µ2) + Re(µ1 − µ2)Re(µ2))σ11

|µ1 − µ2|2 |µ1|2 |µ2|2

+ |µ2|2 (Im2(µ1)σ11 − Im(µ1)Im(µ2)σ11 − Re2(µ1)σ11 + Re(µ1)Re(µ2)σ11 + |µ1 − µ2|2 |µ1|2 σ22)

|µ1 − µ2|2 |µ1|2 |µ2|2

+ |µ1 − µ2|2 (Im2(µ2)(Re(µ1)σ12 + Im(µ1)σ22) + Im(µ2)(Re(µ1)σ12 + Im2(µ1)σ22 + Re2(µ1)σ22)

|µ1 − µ2|2 |µ1|2 |µ2|2

+ Re(µ2)(Im2(µ1)σ12 + Re(µ1)Re(µ1 + µ2)σ12 + Im(µ1)(σ12 + Re(µ2)σ22)))))

|µ1 − µ2|2 |µ1|2 |µ2|2 (3)
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