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As a response to the rampant increase in research activity within reliability in the past few decades, and
to the lack of a conclusive framework for composite applications, this article attempts to identify the
most relevant reliability topics to composite materials and provide a selective review. Available reliability
assessment methods are briefly explained, referenced and compared within an unified formulation.
Recent developments to confer efficiency in computing reliability in large composite structures are also
highlighted. Finally, some general conclusions are derived along with an overview of future directions of
research within reliability of composite materials and their influence on design and optimization.
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1. Introduction

The need to incorporate uncertainties in engineering design has
long been recognized. In contrast to the traditional approach of
using safety coefficients, the probabilistic design allows the esti-
mation of reliability by considering the stochastic variability of
the data for which designs are qualified to have a given reliability
value [1]. The performance is generally evaluated by means of a
variable such as the displacement of a point, the maximum stress,
etc., or by a set of them. Variability in the performance of compos-
ite materials arises mainly from the variability in constituent prop-
erties, fibre distribution, structural geometry, loading conditions
and also manufacturing process. As an orthotropic material, this
variability can lead to a catastrophic failure mainly when inaccu-
racy arises in loading direction or fiber orientation, while the tradi-
tional approach of safety factors could result in a costly and
unnecessary conservatism [2], which is a serious drawback for
making composites competitive and sustainable.

In the recent decades, a large number of articles have been re-
ported to cover probabilistic failure and reliability in composites.
The first contributions were in the form of probabilistic strength
over aircraft applications [3,4]. Shortly later, the b-method by
Hasofer and Lind [5] was applied to laminated plates [6]. Wether-
hold and Ucci [7] evaluated reliability methods used in composites
through an example and Soares [8] made an overview and gave a
perspective about deriving reliability from ply to laminate level.

However, due to the inherent variability in the material behav-
ior, reliability in composites requires that several decisions are
ll rights reserved.
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adopted. The reasons for that are multiple: (1) there are a wide
range of possibles failure functions to adopt, (2) numerous influ-
encing random variables need being incorporated, (3) several reli-
ability methods arise and (4) there are different ways to consider
reliability for a laminate, as shown in Fig. 1.

According to Soares [8], several results have been reported, but
unfortunately, a lack of consensual framework is observed in liter-
ature for the use of methods, failure criteria, statistical description
of mechanical variables and even for conclusions. These, together
with new trends to confer efficiency in reliability calculation re-
quire the need for a thorough and up-to-date review of the litera-
ture in this area.

Hence, as a first step to provide a basis for a discussion about this
claim, the present paper reviews some fundamental concepts of
reliability from an orthotropic material perspective. This work
highlights the results, where connections between reliability and
failure criteria in composites are most striking. It also gives a con-
cise background of reliability methods with special emphasis to
those that already have a fruitful impact on composite applications,
and identify results which evaluate the influence of such variability
in methodology. Section 3 gives a set of examples, where ideas of
reliability in composite laminates have demonstrated advantages
for laminate design and optimization, and identifies areas of
particular potential for further development. In Section 4, some
basic notions of techniques to confer computational efficiency are
recalled. It is also shown how they provide a framework for reliabil-
ity assessment of large structural composites systems. Section 5
briefly concludes.

In Table 1, additional information related to the decision topics
is provided, that helps to derive a perspective of reliability in
composites.
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Fig. 1. Schematic representation of a reliability problem in composites.

Table 1
Reliability bibliography synoptic table. Papers increasingly ordered by date of publication.

Author Failure criteria Methodology Random Vars Main Objetive Level

Yang [3,4] TH Others Lds, strn RBDO Ply
Cederbaum et al. [6] H FORM Lds Reliability Ply
Thomas and Wetherhold [22] Max density energy MCM Strn Reliability Laminate
Kam et al. [23] Max-S, min-S, max-W Others Lds, strn Reliability with damage Laminate
Zhu [83] Non-Interactive FORM Lds, strn Safety factor calibration Ply
Wetherhold and Ucci [7] TH,TW Comparison Lds, strn Reliability-comparision Ply
Murotsu et al. [78] TW AFOSM Lds, str, geo RBDO Laminate
Gurvich and Pipes [63] Baseline based criteria MCM Lds, strn Probabilistic strn Laminate
Kam and Chang [31] Max-S, TW FORM Strn Validation FPF reliability Laminate
Miki et al. [81] TW AFOSM Lds, strn RBDO Laminate
Boyer et al. [30] TH; TW, max-S FORM Lds, strn Safety factor calibration Laminate
Nakayasu and Maekawa [33] Comparision Comparison Lds, strn Reliability-comparison Laminate
Soares [8] TH-TW FORM Lds, strn State of the art Laminate
Philippidis and Lekou [42] TH Analytical Lds, strn Reliability Ply
Gurvich and Pipes [49] TW or any Analytical Lds, strn Reliability Laminate
Richard and Perreux [14] Damage FORM Lds, strn Reliability and RBDO with damage Laminate
Richard and Perreux [15] Damage strain criteria FORM Lds, strn, geo Safety factor calibration Laminate
Lin [34] TW, TH, H, max-S Comparison Lds, strn, geo Reliability Laminate
Conceiçao [104] TW, buckling FORM Lds, strn Reliability, RBDO Laminate
Di Sciuva and Lomario [2] Bucling Comparison Lds, strn, stff, geo Reliability-comparision Laminate
Frangopol and Recek [62] TW MCM Lds Reliability-comparision Laminate
Chen et al. [17] Buckling FORM Lds, strn, stff, geo Reliability Laminate
Onkar et al. [32] TW, H SFEA Lds, strn Reliability Laminate
Lekou and Philippidis [47] T-HN Comparison Lds, strn, stff Compare methods Laminate
Ge et al. [80] TW FORM Strn RBDO Laminate
Carbillet et al. [84] damage FORM Lds, strn, stff, geo Safety factor calibration Laminate
António and Hoffbauer [65] TW FORM Strn, stff RBDO Laminate
Young et al. [76] Other (Fluid-structure interaction failure) FORM Geo RBDO Laminate
Lopes et al. [61] TW Comparison Lds, geo Reliability Laminate
Gomes et al. [123] TW Comparison Lds, strn RBDO Laminate

TW: Tsai-Wu, H: Hasin, TH: Tsai-Hahn, max-S: max. stress, min-S: min. strain, max-W: max. work, Lds: loads, strn: strength, str: stress, geo: geometry, stff: stiffness.
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This work is not only focused on reliability procedures but also
in reliability based design and safety factor calibration, which are
topics where reliability calculation is crucial.

Throughout the paper, methods and techniques to assess reli-
ability from literature are expressed within an unified formulation
which helps this review to be read with independence of the
references.

2. Reliability formulation. Ply level

The essence of the structural reliability problem is the probabil-
ity integral:

Pf ¼
Z

XjgðXÞ60
fXðXÞdðXÞ ð1Þ

where X = {x1, . . . ,xn}T is a vector of random variables that represent
uncertain quantities influencing the state of the structure, fX(X) is
Please cite this article in press as: Chiachio M et al. Reliability in composites –
(2011), doi:10.1016/j.compositesb.2011.10.007
the probability density function (PDF) and g(X) 6 0 denotes a subset
of the outcome space, where failure occurs [9].

For a mathematical analysis, is necessary to describe the failure
domain g(X) 6 0 in an analytical form, which is widely named as
limit state function (LSF). The next Section 2.1 is dedicated to
expose different formulations of the LSF used for reliability in com-
posites. Methods of resolving the integral in Eq. (1) will be com-
mented in Section 2.2.

Both mentioned topics about Eq. (1), together with the discus-
sion about what to consider as random variables, cover almost
all of the literature discussion on composites reliability.
2.1. Concept of failure

Failure criteria used in probabilistic analysis are the same as
used in a deterministic approach, so the accuracy of reliability
analysis is critically dependent on an appropriate criterion for
A selective review and survey of current development. Composites: Part B
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Fig. 2. Schematic representation of FORM/SORM approximations.
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the study conditions. Composite materials display a wide variety of
failure mechanisms as a result of their complex structure and man-
ufacturing processes. So, in literature, a wide spread of possibilities
for LSF have been developed, all apparently valid depending on
each specific problem [10–12]. Recently, a comprehensive review
of failure theories is given by Orifici et al. [13], in which a concise
way to classify them is also proposed according to whether they
are based on strength or fracture mechanics theories, whether they
predict failure in a general sense or are specific to a particular
failure mode and whether they focus on in-plane or inter-laminar
failure. Following this classification, the in-plane general strength
failure criteria ranges almost all the literature in reliability,
although important contributions have also been derived in com-
posites reliability based on other LSF like damage based criteria
[14], crack initiation over pipe surfaces [15,16] and buckling failure
[2,17].

In relation to the scale level, although recent advances in mul-
tiscale failure have been reported [18,19], the body of reliability lit-
erature takes a mesoscale or macroscopic approach to the failure as
the phenomenological model to analytically describe the reliability
of composites.

An interesting approach which seems to be a first step to multi-
scale reliability evaluation of composites have been recently re-
ported [20]. In these study, a micro and macro-scale evaluations
of the Tsai-Hill LSF are critically compared in a reliability frame-
work showing good agreement and conclude that reliability
analysis starting from micro level would help benchmarking corre-
sponding macro-level analyses.

In reliability literature, due to the complexity of the failure con-
cept, a step by step approximation to the subject is observed, from
uniaxial tension reliability [4,21] to a more general multiaxial case
in recent years.

In the latter multiaxial case, two main approaches have been
proposed: the interactive and non-interactive, depending on the
stress working or not collectively towards the failure of the ele-
ment [22].

The non-interactive case considers reliability at each stress
direction independently [22] or exclusively the most stressed
direction [23,24], in conjunction to Max Stress, Max Strain or
Max Work criteria as LSF. This approach has not been extensively
used in reliability due to its well-known insecure position for cer-
tain stress combinations [25].

Among the interactive failure criteria, Quadratic Failure Criteria,
are the most used in reliability mainly because a mature knowl-
edge has been achieved in considering quadratic functions as LSF
for reliability [26]. This criteria takes into account the interactions
between different stress components. The LSF for the Quadratic
Failure Criteria in the component orientation for one ply is ex-
pressed by:

gðXÞ ¼ 1� ðFijrirj þ FiriÞ 6 0 ð2Þ

where Fij = Fij(X), Fi = Fi(X) are the strength parameters, ri = ri(X)
the stress in the tensor component i, with i, j = 1, 2, 6 the stress or
strain tensor components [25]; and X = {x1, . . . ,xn}T the random vari-
ables written in matricial notation.

Particularly, the quadratic Tsai’s criterion has been fairly used in
literature motivated by being one of the existing mature theories
[27–29]. The main contributions in reliability have used the Tsai’s
criterion, although not exclusively, as shown in Table 1.

Under such variability of failure criteria to define the LSF, cer-
tain authors [30,31,23,7,32] declined to probe with several poss-
ibles and compare to experimental or reference reliability data
when available. In Nakayasu and Maekawa [33] a quantitative
trade-off for six different failure criteria from the viewpoint of reli-
ability-oriented design of composite materials was carried out.
This work yielded an important conclusion about the need to verify
Please cite this article in press as: Chiachio M et al. Reliability in composites –
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the criterion suitability under specific load combinations, which
also agrees with Lin [34].
2.2. Reliability methods used in composites

Methods used in literature for computation of the probability
integral in Eq. (1), are reviewed in subsequence chapters. To avoid
duplication in the current review but conferring a sufficient con-
ceptual framework, the methods have been presented in a concise
way.
2.2.1. Fast probability integration methods (FPI)
FPI methods rely on approximating the failure surface by a pre-

determined geometric form for which evaluation of the integral is
practical [9].

A most probable point (MPP) is searched during the evaluation,
over which the failure surface is approximated by such geometric
form. The distance between the origin and the MPP corresponds
to the radius b of a n-sphere beside the failure domain and tangent
with it, in the MPP. In literature, this b value is called as Reliability
Index and means the distance from MPP to the origin in units of
standard deviation, as shown in Fig. 2.

In FPI methods, first order reliability methods (FORM) and sec-
ond order reliability methods (SORM) are included.

First order reliability methods. The well known technique FORM
uses a linear approximation of the LSF in the vicinity of the design
point to evaluate the b index [5].

This method requires standard normal non-correlated variables,
so the vector of random variables X must be transformed into stan-
dard non-correlated variables vector U taking,

U ¼ /�1ðFXðXÞÞ ð3Þ

where FX(X) and /�1 are the cumulative distribution function and
the inverse of the standard cumulative distribution function for
the vector of normal variables X, respectively.

The reliability index b is then calculated by:

b ¼ minðU � UTÞ
1
2 ð4Þ

which represents an Euclidean distance between the origin and the
failure function g(U), in the non-correlated normal standard space
U, as shown in Fig. 2.

If any correlation exists in the random variables, a Cholesky
decomposition of the covariance matrix may be used to transform
from the real space to the non-correlated standard space [35]. In
case of non-normal variables, Rackwitz–Fiessler Method [26] can
A selective review and survey of current development. Composites: Part B
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be employed. In case of correlated and non-normal variables, the
Rosenblatt transformation is recommend [36,37].

The value of the density function integrated over the hyper vol-
ume is found to be equal to the standard normal integral (distribu-
tion function) at b, and so, the reliability R can be expressed as,

R ¼ /ðbÞ ð5Þ

while the probability of failure is the complement,

Pf ¼ 1� R ¼ 1� /ðbÞ ¼ /ð�bÞ ð6Þ

Second order reliability methods. To improve the approximation of
the failure surface beyond the level employed in FORM, additional
information about the failure surface is required [9]. The SORM
use the b value in conjunction with the second derivatives of g(X)
at MPP. The method is based on a general quadratic expansion by
expanding the failure surface g(X), into a second order Taylor series
about the MPP. Since the curvatures may have positive, negative
and zero values; parabolic, elliptic, or hyperbolic forms may result.

These methodology requires complicated integrations that re-
strict the applicability in the study of reliability [38]. Two simpler
forms are extensively used in literature for the quadratic approxi-
mation that are relatively simple for use: the rotational paraboloid
and non-central hyphersphere forms based on a predetermined
axis [26].

Since only one curvature is used with the predetermined forms,
a method for determining that one curvature must be selected. For
conservatism, the largest positive curvature j it is used, and hence
the smallest radius of curvature since r = 1/j.

The rotational paraboloid approximation gives,

Pf ¼
Z 1

0
/ b� t

2r

� �
fv2

n�1
ðtÞdt ð7Þ

where fv2
n�1

is the chi-square density function with n degrees of
freedom.

Analogously, the non-central hypersphere approximation gives,

Pf ¼ 1� v2
n;dðr2Þ ð8Þ

where v2
n;dðr2Þ is the non-central chi-squared distribution with non-

centrality parameter d = [r � b]2.

2.2.2. Monte Carlo methods (MCM)
Monte Carlo method is a very simple and accurate approach

mainly used as reference or exact method [9,39,40].
Given the joint probability density function fX(X) of X, then the

failure probability in Eq. (1) can be alternatively written as,

Pf ¼
Z

XjgðXÞ60
fXðXÞdðXÞ ¼

Z
X

I½gðXÞ�fXðXÞdðXÞ ð9Þ

where I[g(X)] is an indicative function defined by:

I½gðXÞ� ¼
1 if gðXÞ 6 0
0 if gðXÞ > 0

�
ð10Þ

Using the indicative function, it is possible to evaluate the prob-
ability integral in Eq. (1) over the whole domain and not only over
the failure domain. This probability integral in Eq. (9) can be viewed
as a mathematical expectation of I[g(X)] with X distributed as fX(X),
and this perspective leads to the direct Monte Carlo method, where
Pf is estimated as a sample average of I[g(X)] over independent and
identically distributed samples of X drawn from the PDF fX(X), as
follows:

Pf ¼ E½I½gðXjÞ�� ’ 1
ns

Xns

j¼1

I½gðXjÞ� ð11Þ

where ns is the number of simulations, Xj the vector of random vari-
ables of the jth sample. The error of this method is only dependent
Please cite this article in press as: Chiachio M et al. Reliability in composites –
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on ns and so it is extremely robust with respect to applications. The
term

Pj
ns

I½gðXjÞ� represents the sum of the number of simulations
(nf) in the failure domain, and so Eq. (11) may be also be written as,

Pf ’
nf

ns
ð12Þ

This method has a serious drawback in cases of small failure
probabilities, by the fact that the total number of required simula-
tions increases drastically. Hence, attention has been focused on
developing more efficient simulation methods.

For the structural reliability problem, the most promising tech-
nique appears to be the importance sampling method (MC-IS) [41].
This method reduces the variance of the estimate by sampling
more frequently from inside the failure domain.

Following the same concept of failure probability as a mathe-
matical expectation, Eq. (9) may be also written as follows:

Pf ¼
Z

XjgðXÞ60
fXðXÞdðXÞ ¼

Z
X

I½gðXÞ�fXðXÞ
hðXÞ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
HðXÞ

hðXÞdðXÞ ¼ E½HðXjÞ� ð13Þ

where H(X) is called the importance sampling quotient and Xj distrib-
uted as h(X). h can be selected to shift and spread the simulations
close to the failure domain. h is assumed to be appropriately chosen
such that H has finite variance under h.

2.2.3. Analytical methods
In order to confer more simplicity in reliability calculations,

some analytical approaches have appeared for composites applica-
tions. Only few of this approaches have been successfully
developed, and in their range of application, they have been demon-
strated good agreement as compared to MCM, taken as a reference.

Edgeworth expansion method (EDW) and Pearson’s empirical dis-
tribution (PRS). In Philippidis and Lekou [42] two analytical ap-
proaches, namely a functional expansion technique and the
introduction of Pearson’s semi-empirical distribution function,
were developed for off-axis UD FRP composites for the general
plane stress. In that work, only strength parameters were consid-
ered as random variables, each following a Weibull distribution.

The quadratic version of the failure tensor polynomial in the
principal material coordinate system under plane stress condi-
tions, was considered as follows:

gðXÞ ¼ 1� ðFijrirj þ FiriÞ ð14Þ

with X = XT the strength random variables, Fij = Fij(XT), Fi = Fi(XT) the
strength parameters [25] for one ply and ri stress tensor compo-
nents, considered as deterministic values.

The purpose of this two analytical approaches, was to deter-
mine the CDF (Fg) of the failure condition g(X), by which the failure
probability P(g 6 0) can be obtained.

The EDW, that was previously introduced in off-axis composites
for the case of uniaxial tension [43,44], was used to predict the
cumulative probability of complex systems in terms of individual
component moments [45]. The failure function in Eq. (14), was ex-
panded in a multivariable Taylor series in term of central moments
of the random variable, g. This is given by:

FðgÞ ¼ UðgÞ � 1
3!

l3

l3=2
2

U3ðgÞ þ 1
4!

l4

l2
2

U4ðgÞ þ 10
6!

l3

l3=2
2

U6ðgÞ þ . . .

ð15Þ

where lk are the central k-moments of the LSF g and Un(g) is the nth
derivate of the normal CDF U(g).

This method was further developed for the case of a laminate in
a plane stress state considering the strength properties as stochas-
tic variables [46], and in a more recently work [47] by considering
the elastic and thermal properties as random too. In the latter
A selective review and survey of current development. Composites: Part B
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work, it was demonstrated over wind turbine blades, that the sto-
chastic nature of the material elastic properties drastically affects
the failure locus, whereas on the contrary, the effect of the material
thermal properties is minimal within the temperature range met
during operation of wind turbine rotor blades.

In PRS method, the unknown CDF of the failure condition is
alternatively fitted by empirical statistical distributions once the
central moments of g are calculated. As an example in Philippidis
and Lekou [42], the group of distribution families proposed by
Pearson, called as Pearson Families generated as a solution to the
differential Eq. (16) [48], were considered by proper choice of the
parameters k and bi (i = 0, 1, 2).

df ðgÞ
dg
¼ ðg � kÞ

b0 þ b1g þ b2g2 f ðgÞ ð16Þ

The Pearson distribution families include the Normal, Beta
(Pearson Type I), and Gamma Distribution (Pearson Type III). From
Eq. (16), after some detailed algebraic manipulations, the constant
parameters can be expressed in terms of the central moments of
the distribution function.

By using the coordinate transformation k = g � k, Eq. (16) reads:

df ðgÞ
dk
¼ k

B0 þ B1kþ B2k2 f ðgÞ ð17Þ

where Bi are certain algebraic linear combinations of bi and k for
simplicity.

If the roots of the polynomial in the denominator of Eq. (17) are
real and of the opposite sign, the distribution f(g) reduces to Beta
distribution B(p,q), whit parameters p, q found by equating the
Pearson distribution’s moments with that of the failure function.

Finally, for evaluating the cumulative distribution function by
which can be derived the failure probability, was used the next
expression:

1
Bðp; qÞ

Z z

0
zp�1ð1� zÞq�1dz ð18Þ

with (p,q > 0,0 6 z 6 1) and z as a algebraic function of roots of the
polynomial in the denominator of Eq. (17).

In this work, several comparisons between analytical EDW, PRS,
MCM and a semi-determinisitic failure analyses, were made con-
sidering different fibre angle and assumptions for the Tsai-Wu fail-
ure domain. The results obtained with the analytical approaches
were shown to be in excellent agreement with experimental or
Monte Carlo data.

Generalization of LSF. Another relevant result in analytical
methods for reliability in composites comes from Gurvich and
Pipes [49]. A new approach considering the LSF in the form of a
random linear function of products of applied random stresses
is presented, in stead of the traditional consideration of the LSF
as a random non-linear function of the stresses (see Eq. (2)). This
approach allows to obtain exact evaluation of the main statistical
parameters (moments) of the LSF considered as a random
function. The starting point is the consideration of a deterministic
3-D framework of the LSF in a more general formulation as
follows,

gðXÞ ¼ 1�
Y

ij

rij þ
Y
ijkl

rijrkl þ . . .

 !

i; j; k; . . . ¼ x; y; z; . . . ;

ð19Þ

where X ¼
Q

ij;
Q

ijkl;rij;rijkl

� �
; with

Q
ij;
Q

ijkl; . . . the strength
tensors and rij, rijkl, . . . , the tensor of the applied stress state.

The following matrix columns were introduced by the rules,
Please cite this article in press as: Chiachio M et al. Reliability in composites –
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½st � ¼ ½s1; s2; . . . ; sn� ¼ ½rij;rijrkl . . .�

½qt � ¼ ½q1;q2; . . . ;qn� ¼
Y

ij

;
Y
ijkl

. . .

" #
ð20Þ

where sm are components characterizing all necessary combinations
of the stresses in increasing order, qm are the strength characteris-
tics and n is the number of elements in the matrices.

Thus, Eq. (19) may be presented as,

gðXÞ ¼ 1�
Xn

m¼1

qmsm

 !
ð21Þ

which is useful in a probabilistic framework, since this allows one to
consider g as a linear function of random parameters of the problem
as follows:

g ¼ 1� ½~pt �½~s� ¼ 1�
Xn

m¼1

~pm~sm

 !
ð22Þ

In this formulation, the random matrices ½~s�; ½~p� may be deter-
mined by the mean matrices–column ½�s�; ½�p� and the correlation
matrices [Ks], [Kq], respectively; all of them considered as initial
data.

Therefore, basic statistical characteristics of g, such the first two
moments: l1 and l2, can be obtained as,

l1 ¼ 1�
Xn

m¼1

�pm�sm

 !
ð23Þ

l2 ¼
Xn

m0¼1

Xn

m00¼1

fKsm0 ;m00�pm0 �pm00 þ Kpm0 ;m00�sm0�sm00 þ Ksm0 ;m00Kpm0 ;m00 g ð24Þ

where Ksm0 ;m00 ; Kpm0 ;m0 are the correlations between random variables
sm0 ; sm00 and pm0 ; pm00 respectively; with (m0,m00 = 1, . . . ,n).

The possibility of considering all possible correlations between
random variables is an important advantage of this method [49].
Finally, reliability R was proposed to be calculated as a probability
of the condition g(X) 6 0,

R ¼ Pfg 6 0g ¼
Z 0

�1
fgðgÞdg ð25Þ

where fg is the probability density function of g. The only assump-
tion of this approach is connected with a type of distribution g: Nor-
mal, Weibull, Gamma Function, etc. In all of the remaining methods
cited above, reliability calculation requires an assumption regarding
the type of the distributions for strength and/or stress, whereas
Gurvich’s method requires those in the type of distribution g. An
interesting discussion between this analytical method in relation
to the others is done at the end of Gurvich’s work.

2.2.4. Numerical methods
In a numerical scheme, particularly in the context of finite ele-

ment modeling, the stochastic finite element modeling (SFEM) are
receiving special attention for reliability, due to the technological
advances in the available computational power [50]. SFEM involves
finite elements whose properties are random. These new advances
have been carried out in an effort to generate statistics from a re-
sponse vector for each node [51,52].

There are three main variants of SFEM in the literature: (a) the
perturbation approach [53] which is based on a Taylor series
expansion of the response vector, (b) the spectral stochastic finite
element method (SSFEM) [54], where each response quantity is
represented using a series of random Hermite polynomials and
(c) Monte Carlo simulations (MCS) [55–57] based on independent
sampling of the response vector.

In composites applications, Lin [34] used the stochastic finite
element method (SFEM) to predict the reliability of angle-ply
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laminates with different types of buckling failure modes subject to
in-plane edge random loads. This author also provides a compari-
son of different reliability methods and different failure criteria
using (SFEM) to derive for the statistics of the First-Ply-Failure
(FPF) load by mean-centered second-order perturbation technique.
The results were compared with experimental FPF load data of cen-
trally loaded composite plates with different lamination arrange-
ments to study the accuracy of the methods.

Onkar et al. [32] used SFEM by the first order perturbation tech-
niques and studied the form to generate statistics for the failure
load index using Tsai-Wu and Hoffman as failure criterion in ortho-
tropic plates with random material properties and random loads.
In this case, the results were compared with analytical solutions.

Ngah and Young [1] demonstrated an application of SSFEM in a
composite panel subject to random loads and constitutive proper-
ties. Covariance and probability density functions were derived
for different approximation schemes. A comparative study of accu-
racy and computationally effort of SSFEM versus MCS, was also
presented.

Recently, Noh [58] propose a formulation of SFEM based on per-
turbation techniques to determine the response variability in lam-
inate composite plates considering the randomness of material
parameters and different correlation states between them. In a
more recent work [59] the SFEM formulation is derived by
accounting the spatial randomness of Poisson’s ratio [60] for lam-
inated composite plates. Both works, and particularly this latter
proposal, confer efficient ways to obtain the response variability
by which to derive the probabilistic failure of composites.
2.2.5. Comparison between reliability methods
Due to the wide range of reliability approaches and the lack of

results coincidence when they are applied to composites, several
authors have declined to contrast different well accepted reliability
methods to a specific composite application or to check one pro-
posed method to a experimental data. All examples encountered
in literature, use at least MCM as a reference.

In Ucci [38] the FPI methods and MCM was presented, and a
comparison between them was done considering both Tsai-Wu
and Tsai-Hill as failure criteria in different loading levels and ply
angles. A sensitivity study was done to evaluate the influence of
each stochastic variable in the reliability calculation.

The comparisons were performed over three main fields: accu-
racy, conservatism and computational speed.

For accuracy, FPI was observed to derive satisfactory accuracy in
cases of low stresses and moderate fibre angle (it is pointed out the
interval 30–40�), when preferably using Tsai-Wu as failure criteria.
In extremely low or high orientation angles, near 0� and 90�, planar
FPI were seem to be quite accurate.

When studied the conservatism, the report concluded the need
to consider the curvature in the MPP. Particularly, for planar FPI,
independently of the accuracy, the conservatism would be depend
upon the curvature is safe or unsafe.

In computational speed, this work does not give substantial
conclusions as compared to others [61] cited in Section 4. How-
ever, an interesting result about computational cost as compared
to MCM was implicitly derived through reduction of variables to
be sampled in MC-IS by a sensitivity analyses, by the fact that
depending on each specific case, the bulk of the reliability value de-
pends upon several localized stochastic variables.

That conclusion was later explicitly pointed out by Di Sciuva
and Lomario [2], who compared FORM methods with MCM and
explicitly pointed out for Directional Cosines, using important fac-
tors, as an efficient method to reduce the stochastic variables to be
sampled in MCM without significant less of accuracy. In this work,
a laminated composite flat plate loaded by compressive distributed
Please cite this article in press as: Chiachio M et al. Reliability in composites –
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forces acting in its mid-plane was studied, with the LSF defined
analytically for buckling load.

The results showed acceptable level of accuracy when FORM
methods were used in this specific case, in which the buckling
LSF fits well to linear. Directional Cosines were pointed out to be
efficient for this calculation.

In Lin [34] three different methods, MCM, FORM and first-order
second moment method, were used to calculate the reliability and
compared to experimental FPF of centrally loaded laminated com-
posite plates with different lay-ups.

In the first-order second moment method, the SFEM was used
to derive for the statistics of the FPF load from those of the baseline
random variables. The LSF and baseline for load values, were also
took as variables for comparison. As conclusion, this work also
pointed out to FORM together with Tsai-Wu for obtaining reason-
ably good result. However according to [7], this conclusion may be
erroneous with different tensional ranges and fiber orientations
than used for the study.

In [47] the EDW previously introduced by Philippidis [42], was
compared to MCM and FORM with Tsai-Hahn as failure function
for FPF noting that the EDW estimation overrate the structural load
carrying capacity of the laminated plate.
3. Reliability and design of composites laminates

Since a laminate can be viewed as a mechanical set of plies,
whole laminate reliability may consider systems reliability.

An accurate evaluation of laminate reliability is essential
almost all in those areas, where reliability determines the final
composite design, like reliability based design and safety factor
calibration, which are designing tools fully used in research
and industry.

3.1. Laminate reliability

In composites, Soares [8] presented an overview of methods
used for laminates and pointed out two main approaches: the
bounding and system reliability formulation [22]. The former
establishes an interval in which relies the actual reliability, while
in system reliability is considered the progressive failure process.
The vast majority of authors use bounding formulation for lami-
nate failure consideration in reliability subject. Most of them, for
simplification in a safe position, propose lower bound reliability
with FPF as LSF, which implies the ply considered as failure unit.
For this reason and to provide a basis for a discussion about this
claim, its timely to consider the subject again in the form of funda-
mental concepts.

3.1.1. Bounding formulation
The starting point for such bounding formulation is the defi-

nition of the unit of failure as the unit statistically homogeneous
for the failure. Two such units have been proposed: the ply units
and modal units [22]. The first one assumes that individual plies
are the failure units while the modal failure units allow the
recognition of three potential modes of failure within each
ply: longitudinal, transverse and shear; resulting in 3n failure
units for an n-ply laminate. Obviously that last failure unit
implies non interaction between longitudinal, transverse and
shear effects which assumes non-interactive failure, exposed in
Section 2.1.

The upper bound reliability limit, considers that ultimate failure
of the laminate will not occur until every individual unit had failed.
Thus, the probability of failure for the laminate is given by the
product of probabilities of failure for the individual units. In terms
of reliabilities, this gives the following expressions:
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RUply ¼ 1�
Yn

i¼1

ð1� RiÞ Non-Interactive ð26aÞ

RUmodal ¼ 1�
Yn

i¼1

Y
j¼1;2;6

Rij Interactive ð26bÞ

where Ri is the reliability of ith ply, and Rij is the reliability of the jth
mode of layer i.

As lower bound reliability, a series system formulation is pro-
posed, so that the failure of the whole laminate is subject to the
failure of the weakest unit. In reliability terms,

RLply ¼
Yn

i¼1

Ri Non-Interactive ð27aÞ

RLmodal ¼
Yn

i¼1

Y
j¼1;2;6

Rij Interactive ð27bÞ

whit the same meaning for Ri and Rij as described above.
The most representative works that belong to bounding ap-

proach are cited by Soares [8] review. Those up to Soares [8] are
nextly introduced in which interesting conclusions about compos-
ites design are also highlighted.

Kam and Chang [31] used experimental distributions of FPF load
for validation of different types of baselines probability density
functions on the bounding failure probability over centrally loaded
graphite-epoxy laminated composite plates with different lamina-
tion arrangements. The failure data were compared with those ob-
tained analytically with a F.E.A for stress calculations, in both
interactive and non-interactive failure criteria. Results showed
that, in general, differences between the experimental and theory
are small (less than 12%) irrespective to the types of probability
distributions used for modeling the lamina strength parameters
and FPF load.

More recently, Frangopol and Recek [62] presented a bench-
mark study of laminate failure probability by MCM considering
random loads with Tsai-Wu as failure criterion. Two main cases
were studied: uniaxial loaded single-layer laminate plate of graph-
ite/epoxy and two layers laminate plate of glass epoxy, each one
subjected to uniaxial and biaxial tension. In such two cases, the
material strength parameters were considered as deterministic,
and stresses as lognormal distributed random variables since no
information on the type of distribution for principal stresses was
available for this study.

As a first conclusion of these work, the importance of the mean
value of the principal stress, specially in tension–tension case, was
shown and the low influence of coefficient of correlation between
principal stresses on the probability of failure, was also highlighted.

Another important conclusion was pointed out about the effects
on reliability of additional layers in a composite laminate. In pres-
ence of new layers, the plate does not necessarily increases the
reliability but it’s depends on the fibre orientation and its thickness
ratios. The special case of two orthogonal layers was studied,
showing that the weakest more stressed lamina approximately
determines the whole reliability, which implicitly supports the
weakest link hypothesis in this specific case.

Others results encountered up to Soares [8] review also use the
bounding approach for system reliability calculation in composites,
particularly FPF [30,14,34,32,61,47]; which are commented in
more suitable chapters of this review.

3.1.2. System reliability formulation
In system reliability formulation, the approach consists in

considering the step by step failure process of the laminate. The
bounding formulation just described, does not attempt to
represent the whole collapse process of the laminate. Indeed, such
approach establishes an interval in which relies the desired
Please cite this article in press as: Chiachio M et al. Reliability in composites –
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reliability value. Although an attempt to precisely describe proba-
bilistic failure of a laminate would be really impacting and neces-
sary, the methodology of system reliability has been shortly
explored in literature.

In Yang and Ma [4] was derived the full quantity loading meth-
od for reliability analysis of a composite structural system with
consideration of stiffness degradation process of set of whole plies.

Gurvich and Pipes [63] also utilized a mesoscale approach for
progressive failure of composite laminates with both in plane
and bending loads which call attention the search for computa-
tional efficiency by agreeing individual plies into sublaminates as
whole units for the step-by-step failure. This author also made a
comparative study contrasted with experimental data considering
step-by-step failure process over weakest link assumption, and
concluded the weakest link assumption lead to lower failure re-
sults with increasing the material strength scatter.

Wu and Robinson [64] proposed a micromechanical approach in
which the laminate is treated as a mechanical system and ac-
counted local load sharing and sizing effects.

In system reliability, the scale of the approach influences the
reliability, so exploring multiscale probabilistic failure seems to
be an interesting way to derive a robust framework for progressive
failure of composites. Recent works about uncertainty quantifica-
tion at different scales [18–20] and propagation of uncertainties
from micro-to-macroscale [65] in composites, provide a basis for
this claim.

3.2. Reliability based design

Due to the well-known high specific stiffness, strength and cor-
rosion resistance, composite laminates are often selected for high-
responsibility structural applications like aircraft, automobile,
machinery and marine. Nowadays new applications in all-compos-
ite bridges [66], off-shore and civil engineering are emerging
[67–69]. In these applications requiring big amount of composites
materials, design optimization plays an important role through
providing tools to rationally select the best over a wide range of
choices in enhancing the structure’s performance [70–73]. Over
such named conventional optimization problem, the probabilistic
optimum design is an increasing issue, in which how to obtain
the best laminate structure under a reliability constraint or how
to get the maximum reliability under the constraint of structure
cost is the key question. This problem is called the Reliability Based
Design Optimization (RBDO) [74], in which an accurate calculation
of reliability is crucial in final composite design, as follows in next
equation:

minX;p FðlX;pÞ s:t :

bðX;pÞ 6 bt

pl
6 p 6 pu

ð28Þ

where btis the target reliability index, p 2 Rn is a vector of deter-
ministic design variables and lX is the realization of the vector of
random design variables X 2 Rm. F(lX, p) is the function describing
the structural performance, which is usually considered a structural
weight or cost function; although some recent works have also con-
sidered others like frequency response [75], structural efficiency
[76] or even statistical robustness [77].

The first efforts to apply RBDO in laminate design, derived re-
sults that clearly remark the difference between deterministic
and probabilistic designs [21,78].

An open question remains about which random variables X to
be considered into the optimization problem, specifically those in
relation to laminate design like fiber orientation, ply ratios, lami-
nate arrangement, etc. In Eamon and Rais-Rohani [79], a probabi-
listic sensitivity analysis was derived to determine the influence
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of uncertainty in each candidate variable on b. Other related works
have declined to include these variables as uncertain parameters
into the optimization problem [14,80]. In Miki et al. [81], a
simultaneous optimization of fiber angles and ply ratios was cor-
roborated, which concords with Frangopol and Recek [62]. The
cross-ply configuration was pointed out to be optimal or near opti-
mal for the case, where does not exist uncertainty in shear stress.

The above cited works consider the formulation of the reliabil-
ity-based optimum under a hard constraint, in the sense that
constraints are clearly specified and if the solution is outside the
constraint range, even if the deviation is very little, an unaccept-
able solution is derived. A recent approach that complements this
work is the soft constraint RBDO, by which fuzzy reliability
optimum models are established. This method provides with an
especially useful tool in designing optimum laminated composites,
owing to the fact that due to its complex manufacture process, a
laminate can be influenced by many factors including probabilistic
variables and also fuzzy ones [82].

3.3. Reliability based safety factors

Because of possible lack of statistical data from the strength of
materials used and the applied loads, design concepts based on tra-
ditionally safety factors have also been studied. In this approach,
the effects E of actions on a structure and the resistance S to these
effects, verify a criterion in the form:

E <
S
c

ð29Þ

Several authors made a direct comparison between probabilis-
tic and safety factor based deterministic design [78,81,47], where
important differences in failure prediction, sometimes in a inse-
cure position, are highlighted.

One successful approach to minimize that differences leads to
obtain safety factor from probabilistic previous calibration, which
is frequently named reliability based safety factor.

Zhu [83] proposed a first approach to reliability based safety
factor for aircraft composite structures and a method was pre-
sented to compare such safety factor to those used in metallic air-
craft design.

Boyer et al. [30] presented a method of safety factor calibration
from the probabilistic method to achieve a specific reliability level.
In this work, an interesting discussion about sensitivity of safety
factors with stochastic parameters, was also carried out.

Richard and Perreux [15] utilized the same concept as describe
above for safety factor calibration, but in a damaged elasto-visco-
plastic model for composites in a thermodynamic framework for
long term applications over a pipe for fluid transportation.

An extension of this work for strongly non-linear behavior
caused by damage, was done by Carbillet et al. [84] who also took
into account for possible correlations between the different vari-
ables and spatial variability of material properties for a [0�,90�]S

composite plate, showing up an important effect on safety factor
calibration.
4. Computational efficiency

The structural integrity analysis of composite structures based
on probabilistic concepts is a time consuming process unless
inaccuracy FPI methods were employed, and the problem can be
exacerbated by the convergence difficulties associated to the
non-linearity or complex non explicit LSF. Other methods
employing simulation procedures, such as MCM or MC-IS, may
have a prohibitive computational cost in large structural systems
even if the structural evaluation is accelerated by a vectorized
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manner, by techniques such as Neumann Series Expansion
[85,52] or by reducing the stochastic variables to be sampled, as
previously mentioned [2,7].

In literature, there have been advised two efficient ways to re-
duce the computational cost: (a) by using new efficient reliability
algorithms and (b) by reducing the effort of evaluation the LSF.
In the former, new reliability algorithms have proved to save great
amount of computation time. Special attention require SUBSET
Simulation [86] and 2SMART algorithms [87], which confer large
efficiency as compared to crude MCM, overall for small failure
probabilities and high dimension problems [88]. Nowadays they
appear integrated on a OpenSees computational platform called
FERUM, as acronym of Finite Element Reliability using Matlab�

[89], that is a high versatile reliability tool. Unfortunately, these
algorithms have not been sufficiently exploited in composites.

In relation to the second approaches, the Response Surface
Method (RSM), and more recently, Artificial Neuronal Networks
(ANN), have also emerged as feasible alternatives.

Evolutionary strategies like Genetic Algorithms (GA) are also
computation techniques fully employed nowadays in reliability
although their well-known high computational cost, which con-
trasts with the aim of this chapter. However, the existence of mul-
tiple design points MPP in the LSF, especially when linking
reliability and optimal design, makes necessary the employ GA.
The next chapters are dedicated to application of this techniques
in composites reliability.

4.1. Response Surface Methods (RSM)

In response surface methods, the LSF is substituted or sampled
to improve the computational effort. The principle consists in the
substitution of the real LSF by approximate simple functions or
sampled data, at the neighborhood of the design points, where
their contribution to the total failure probability is more important
[90]. As a consequence, the computational cost can be reduced
with respect to the cost required when the full LSF is used or when
it is necessary to evaluate the LSF by Finite Element Method (FEM)
runs.

When the LSF is substituted by simple functions, generally by
explicit polynomial expressions, the method is called Polynomial
Based Response Surface Method or simply RSM. Those that the
LSF is approximated with training sampling data in contrast to
the last one, are called Artificial Neuronal Network (ANN)-based
response surface methods [24].

4.1.1. Polynomial based response surface
In the original conceptual form of the response surface tech-

nique, polynomials are used to approximate real LSF. So an impor-
tant requirement for the LSF is to be smooth around the area of
interest. In order to obtain the response surface, some regression
analysis (for instance the Least Square Method) must be accom-
plished. As states in Gomes and Awruch [85], the main point re-
sides into adjust the polynomials to the LSF using the sample
points, by using some of the several fitting techniques such as (a)
the central composite design [91,92], (b) the fractional factorial de-
sign [93], (c) the random design, (d) the partially balanced incom-
plete box design [94] and (e) Bucher and Bourgund’s [95] proposal.

With this method, the LSF is assimilated as follows:

gðXÞ ¼ aþ
Xn

i¼1

bixi þ
Xn

i¼1

cix2
i ð30Þ

with a, bi and ci the polynomial constants to be calculated.
As a consequence of Eq. (30), only 2n + 1 samples must be taken

along the coordinates axes of each variable at a distance xi = Ui(±h),
where Ui is the probabilistic transformation of the variable xi from
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the real space to the non-correlated Gaussian space, with h being
an arbitrary factor.

In composites, Chen et al. [17] derived the longitudinal ultimate
compressive strength of a composite stiffened ship’s hull, by a
polynomial type with quadratic terms RSM.

The reliability analysis was carried out by FORM, and interest-
ing conclusions about ship hull compression dimensioning was de-
rived with the help of a sensitivity analyses.

In the same way, but in an effort to confer computational effi-
ciency in a RBDO problem, Young et al. [76] have recently proposed
the polynomial RSM by regression analysis in a complex LSF with
Eulerian fluid interaction of a Hexcel (IM7-8552) CFRP marine pro-
peller. A FORM was used to evaluate the influence of uncertainties in
material and load parameters and thus to optimize the design
parameters, obtaining in this case high accuracy contrasted to MCM.

4.1.2. ANN based response surface
As described in previous sections, when reliability analysis is

applied to a complicated structural system, the responses of the
structure need to be calculated by sophisticated numerical meth-
ods. In those cases, sampling the LSF by a trained ANN in substitu-
tion of MCM or direct FEA sampling points, is achieved conferring
large efficiency [96]. ANN-based response surface emerges in reli-
ability applications to solve the main limitation of polynomial-
based response surface methods about the need to increase the
number of deterministic analysis when the number of random
variables is high, thus making them no as efficient as desirable
[24]. Several authors have compared between both methods,
showing that the ANN-based response surface method is more effi-
cient than polynomial-based response surface method [85].

ANN are computational models based in parallel distributed
processing with interesting properties such as the ability to learn,
to generalize, to classify and to organize data. There are two main
models developed for different specific computational tasks:

those with a supervised training and networks without a super-
vised training. Networks may be also divided in feed forward, feed-
back architectures and a combination of both architectures. In
reliability, Perceptron Multilayer Neural Networks and Neural Net-
works with Radial Basis Functions are mostly used. Both types of
Networks have a supervised training, feed forward architecture
and are universal tools for function approximation. To avoid dupli-
cation in literature, a concise introduction of ANN in reliability,
done by Hosni Elhewy et al. [24], is recommended. More details
about different aspects of Neural Networks are given in the work
of Haykin [97].

In composites, ANNs have been used in a wide range of applica-
tions like fatigue life prediction, dynamic mechanical properties,
processing optimization, numerical modeling, damage detection,
delamination, among others [98–101]. But only few works have
been encountered in reliability applications for composites, pre-
cisely, where the computational efficiency of using ANNs can be
fully amortized.

Recently, Lopes et al. [61] use artificial neural network (ANN) to
generate sample data for the LSF (Tsai-Wu) in stead of FEA, in
which high computational efficiency is demonstrated, particularly
for low failure probability values regardless the method employed
for reliability evaluation. In this work were used two ANN for com-
parison: the Multilayer Perceptron Network and the Radial Basis
Network. The results demonstrated that only 0.02% of MCM using
FE as reference CPU time is required for reliability calculation
employing an ANN with high accuracy.

4.2. Genetics algorithms

The (GA) are heuristic algorithms based on the rules of Darwin’s
principle of natural selection to improve a population of solutions
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by reproduction and selection operations [102], that are specially
useful for mathematical optimization processes. In reliability cal-
culations, due to the need to search a minimum distance in the
standard normal space of random variables, an optimization prob-
lem is defined for which GA are a feasible tool [103].

The failure probability is obtained through a natural selection
process following a search path until failure is reached. The main
advantage of GA as compared with FPI methods, is that it does
not involve the difficulties of computing the derivatives of LSF with
respect to the random variables with the added benefit of identify-
ing global optimum values of the LSF [104].

The design variables, usually restricted to discrete values, are
coded as genes using binary or integer numbers through a variable
codification and grouped together in chromosomes strings that
represent an individual [105]. Almeida and Awruch [106] have re-
cently provided a variable codification method for composite
applications with special emphasis in composite structures optimi-
zation and in [70,71] for those cases when the stacking sequence is
also involved into the problem definition.

In literature, new modifications to the original form are contin-
uously appearing to improve the algorithm efficiency [107–109].
Among them the hybrid GA, which use complementary techniques
to improve the genetic search [110,111], are specially useful for
complex reliability problems [112–116].

GA are particularly advantageous when linking reliability and
design optimization of composites due to the existence of discon-
tinuities in the derivates of LSF and also for the possible presence of
multiple MPP [117]. Gen and Yun [105] provide a survey of GA-
based approach for various reliability optimization problems
including examples of the hybrid GA approach.

In composites, Conceiçao [104] proposed a formulation for the
simultaneous solution of the reliability index evaluation and the
optimization of composites structures with geometrically non-lin-
earties. This formulation was derived based on a proposed hierar-
chical genetic algorithm (HGA), that is a particular case of parallel
genetic algorithm [118] using a network of interconnected sub-
populations with independent evolution.

In Ge et al. [80], the Particle Swarm Optimization (PSO) algo-
rithm is utilized to search for the optimal solutions of a RBDO prob-
lem of composite laminates. Together with GA, PSO is a type of
population-based evolutionary algorithms with the main differ-
ence that PSO retains memory of known good solutions as the
search for better generations continues. Hence, PSO has a higher
speed of convergence than traditional GA [119,120], although GA
determines values more accurately than does the PSO algorithm
[121,122].

More recently, Gomes et al. [123] addresses the problem of
RBDO using GA for the composite optimization process and two
types of ANN to sample the LSF: Multilayer Perceptron and Radial
Basis ANN. This methodology demonstrates that is possible to ob-
tain large computational time savings without loss of accuracy,
even when dealing with non-linear behavior in large composite
structures.
5. Concluding remarks

In the past few decades, numerous studies have been conducted
on the reliability of composite materials and the corresponding
applications. The inherent statistical scatter in the material proper-
ties together with their complex mechanical performance, makes
reliability in composites a matter of decisions.

Methods, assumptions and applications of reliability of compos-
ites have been reviewed to confer a perspectival framework that
helps to adopt these decisions. Both traditional approaches and
new trends in reliability computation have been exposed.
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The following general concluding remarks are extracted:

� In contrast to the deterministic approaches, probabilistic failure
and reliability in composites have demonstrated a prolific
framework over a design viewpoint to make composites com-
petitive, sustainable and secure.
� Due to the large number of variables involved in the mechanical

description of composites as compared to traditional materials,
importance measures related to input parameters become a
necessary exercise to derive an adequate reliability result. Par-
ticularly important is the influence of stiffness randomness
description over reliability based design, as recent results dem-
onstrate. Those cases in which stochastic description of certain
mechanical variables are not available or incomplete, statistical
uncertainty analysis by incorporation available prior or interval
probability [124,80] are prolific ways to carry out the problem.
� Several works remark the convenience of studying the suitabil-

ity of reliability method over the failure criterion chosen for a
specific situation and compare to experimental or reference
reliability data when available. Certain stress levels and fiber
orientations require a specific reliability method to ensure accu-
racy. In case of utilization of safety factors in stead of a reliabil-
ity method, a reliability based calibration may warrant good
results.
� More research effort is need about the progressive failure of

composite laminates and its relationship with reliability, in
order to help optimizing composite design in a probabilistic
framework. In this scenario, the consideration of other failure
modes than fracture, like stiffness and/or strength reduction
by mechanical damage and delamination, is also necessary. This
framework would help to derive a reliability formulation over
the lifetime of composites.
� Large composite structures require efficient techniques for reli-

ability computation. Recent studies have proved Artificial Neu-
ronal Networks (ANN’s) as an advantageous technique. Genetic
Algorithms (GA) are also relevant tools for those cases, where
reliability is inside on a complex design optimization problem.
New reliability algorithms available on OpenSees computation
platforms like FERUM, should also be explored in composite
reliability. These new algorithms together with ANN’s for LSF
evaluation, is a suggestion that may drastically reduce the com-
putational cost for large composite structures systems and pro-
vide sufficient accuracy for small probabilities cases.

Acknowledgements

The authors thank the Ministerio de Educación of Spain, for the
FPU grants AP-2009-2390 and AP-2009-4641 which support this
work.

References

[1] Ngah M, Young A. Application of the spectral stochastic finite element
method for performance prediction of composite structures. Compos Struct
2007;78(3):447–56.

[2] Di Sciuva M, Lomario D. A comparison between Monte Carlo and FORMs in
calculating the reliability of a composite structure. Compos Struct
2003;59(1):155–62.

[3] Yang L. Reliability of composite laminates. Mech Struct Mach 1988;16(4):
523–36.

[4] Yang L, Ma Z. A method of reliability analysis and enumeration of significant
failure modes for a composite structural system. Comput Struct 1989;33(2):
337–44.

[5] Hasofer A, Lind N. Exact and invariant second-moment code format. J Eng
Mech Div 1974;100(1):111–21.

[6] Cederbaum I et al. Reliability of laminated plates via the first-order second-
moment method. Compos Struct 1990;15(2):161–7.

[7] Wetherhold R, Ucci A. Probability methods for the fracture of composite
materials. Compos Struct 1994;28(1):113–9.
Please cite this article in press as: Chiachio M et al. Reliability in composites –
(2011), doi:10.1016/j.compositesb.2011.10.007
[8] Soares C. Reliability of components in composite materials. Reliab Eng Syst
Safe 1997;55(2):171–7.

[9] Ditlevsen O, Madsen H. Structural reliability methods, vol. 315, 1996.
[10] Soden PD, Kaddour AS, Hinton MJ. Recommendations for designers and

researchers resulting from the world-wide failure exercise. Compos Sci
Technol 2004;64(3–4):589–604.

[11] Hinton MJ, Kaddour AS, Soden PD. A further assessment of the predictive
capabilities of current failure theories for composites laminates: comparison
with experimental evidence. Compos Sci Technol 2004;64(3–4):549–88.

[12] Kaddour AS, Hinton MJ, Soden PD. A comparison of the predictive capabilities
of current failure theories for composite laminates. Compos Sci Technol
2004;64(3–4):449–76.

[13] Orifici A, Herszberg I, Thomson R. Compos Struct 2008;86(1–3):194–210.
[14] Richard F, Perreux D. A reliability method for optimization of [+u, �u]n fiber

reinforced composite pipes. Reliab Eng Syst Safe 2000;68(1):53–9.
[15] Richard F, Perreux D. The safety-factor calibration of laminates for long-term

applications: behavior model and reliability method. Compos Sci Technol
2001;61(14):2087–94.

[16] Rousseau J, Perreux D. An experimental and theoretical study of the
processing method influence on the performances of a composite structure:
case of filament winding, Ph.D. Thesis, Universit de Besanon, Besanon, France
(Universit de Soutenance), 1997.

[17] Chen N, Sun H, Guedes Soares C. Reliability analysis of a ship hull in
composite material. Compos Struct 2003;62(1):59–66.

[18] Sriramula S, Chryssanthopoulos MK. Quantification of uncertainty modelling
in stochastic analysis of FRP composites. Compos Part A: Appl Sci Manuf
2009;40(11):1673–84.

[19] Laurin F, Carrre N, Maire J-F. A multiscale progressive failure approach for
composite laminates based on thermodynamical viscoelastic and damage
models. Compos Part A: Appl Sci Manuf 2007;38(1):198–209.

[20] Shaw A, Sriramula S, Gosling PD, Chryssanthopoulos MK. A critical reliability
evaluation of fibre reinforced composite materials based on probabilistic
micro and macro-mechanical analysis. Compos Part B: Eng
2010;41(6):446–53.

[21] Yang L, Ma Z. Optimum design based on reliability for a composite structural
system. Comput Struct 1990;36(5):785–90.

[22] Thomas D, Wetherhold R. Reliability analysis of continuous fiber composite
laminates. Compos Struct 1991;17(4):277–93.

[23] Kam T, Lin S, Hsiao K. Reliability analysis of nonlinear laminated composite
plate structures. Compos Struct 1993;25(1-4):503–10. ISSN:0263-822.

[24] Hosni Elhewy A, Mesbahi E, Pu Y. Reliability analysis of structures using
neural network method. Probabilist Eng Mech 2006;21(1):44–53.

[25] Tsai SW. Strength and life of composites, composites design group, aero &
astro. CA (USA): Dept. Stanford University; 2008.

[26] Fiessler B, Rackwitz R, Neumann H. Quadratic limit states in structural
reliability. J Eng Mech Div 1979;105(4):661–76.

[27] Hinton MJ, Kaddour AS, Soden PD. A comparison of the predictive capabilities
of current failure theories for composite laminates, judged against
experimental evidence. Compos Sci Technol 2002;62(12–13):1725–97.

[28] Hinton MJ, Kaddour AS, Soden PD. Evaluation of failure prediction in
composite laminates: background to part B of the exercise. Compos Sci
Technol 2002;62(12–13):1481–8.

[29] Hinton MJ, Kaddour AS, Soden PD. Evaluation of failure prediction in
composite laminates: background to part C of the exercise. Compos Sci
Technol 2004;64(3–4):321–7.

[30] Boyer C, Béakou A, Lemaire M. Design of a composite structure to achieve a
specified reliability level. Reliab Eng Syst Safe 1997;56(3):273–83.
ISSN:0951-832.

[31] Kam T, Chang E. Reliability formulation for composite laminates subjected to
first-ply failure. Compos Struct 1997;38(1–4):447–52.

[32] Onkar A, Upadhyay C, Yadav D. Probabilistic failure of laminated composite
plates using the stochastic finite element method. Compos Struct 2007;77(1):
79–91.

[33] Nakayasu H, Maekawa Z. A comparative study of failure criteria in
probabilistic fields and stochastic failure envelopes of composite materials.
Reliab Eng Syst Safe 1997;56(3):209–20.

[34] Lin S. Reliability predictions of laminated composite plates with random
system parameters. Probabilist Eng Mech 2000;15(4):327–38.

[35] Shinozuka M. Basic analysis of structural safety. J Struct Eng 1983;109(3):
721–40.

[36] Rosenblatt M. Remarks on a multivariate transformation. Ann Math Stat
1952;23(3):470–2.

[37] Hohenbichler M, Rackwitz R. Non-normal dependent vectors in structural
safety. J Eng Mech Div 1981;107(6):1227–38.

[38] Ucci A. Probability techniques for reliability analysis of composite materials,
Master’s thesis, New York (Buffalo): State University; 1992.

[39] Hurd C. A note on early Monte Carlo competitions and scientific meetings.
Ann Hist Comput 1985;7:141–55.

[40] Meteopolis N, Ulam S. The Monte Carlo method. J Am Stat Ass 1949;44(247):
335–41.

[41] Harbitz A. An efficient sampling method for probability of failure calculation.
Struct Safe 1986;3(2):109–15.

[42] Philippidis T, Lekou D. Probabilistic failure prediction for FRP composites.
Compos Sci Technol 1998;58(12):1973–82.

[43] Wetherhold R. Reliability calculations for strength of a fibrous composite
under multiaxial loading. J Compos Mater 1981;15(3):240.
A selective review and survey of current development. Composites: Part B

http://dx.doi.org/10.1016/j.compositesb.2011.10.007


M. Chiachio et al. / Composites: Part B xxx (2011) xxx–xxx 11
[44] Cramér H. Mathematical methods of statistics. USA: Princeton University
Press; 1971.

[45] Hahn G, Shapiro S. Statistical models in engineering. New York (NY,
USA): John Wiley & Sons; 1994.

[46] Philippidis T, Lekou D. A probabilistic approach to failure prediction of FRP
laminated composites. Mech Adv Mater Struct 1998;5(4):371–82.

[47] Lekou D, Philippidis T. Mechanical property variability in FRP laminates and
its effect on failure prediction. Compos Part B: Eng 2008;39(7–8):1247–56.

[48] Kendall M, Stuart A, Ord J. Kendall’s advanced theory of statistics. New York
(NY, USA): Oxford University Press, Inc.; 1987.

[49] Gurvich M, Pipes R. Reliability of composites in a random stress state. Compos
Sci Technol 1998;58(6):871–81.

[50] Stefanou G. The stochastic finite element method: past, present and future.
Comput Methods Appl Mech Eng 2009;198(9–12):1031–51.

[51] Crestaux T et al. Polynomial chaos expansion for sensitivity analysis. Reliab
Eng Syst Safe 2009;94(7):1161–72.

[52] Papadopoulos V, Papadrakakis M. Stochastic finite element-based reliability
analysis of space frames. Probabilist Eng Mech 1998;13(1):53–65.

[53] Kleiber M. The stochastic finite element method, 1992.
[54] Ghanem R, Spanos P. Stochastic finite elements: a spectral approach, 1991.
[55] Spanos P, Kontsos A. A multiscale Monte Carlo finite element method for

determining properties of polymer nanocomposites. Probabilist Eng Mech
2008:456–70.

[56] Guoliang J, Lilt C, Jiamei D. Monte Carlo finite element method of structure
reliability analysis. Reliab Eng Syst Safe 1993;40(1):77–83.

[57] Van Vinckenroy G. The use of Monte Carlo techniques in statistical finite
element methods for the determination of the structural behavior of
composite materials structural components. Compos Struct 1995;32(1–
4):247–53.

[58] Noh H-C. Stochastic finite element analysis of composites plates considering
spatial randomness of material properties and their correlations. Steel
Compos Struct 2011;11(2):115–30.

[59] Noh H-C, Park T. Response variability of laminate composite plates due to
spatially random material parameter. Comput Methods Appl Mech Eng
2011;200:2397–406.

[60] Noh H-C. A formulation for stochastic finite element analysis of plate
structures with uncertain Poisson’s ratio. Comput Methods Appl Mech Eng
2011;193:4857–73.

[61] Lopes P, Gomes H, Awruch A. Reliability analysis of laminated composite
structures using finite elements and neural networks. Compos Struct
2009;92(7):1603–13.

[62] Frangopol D, Recek S. Reliability of fiber-reinforced composite laminate
plates. Probabilist Eng Mech 2003;18(2):119–37.

[63] Gurvich M, Pipes R. Probabilistic analysis of multi-step failure process of a
laminated composite in bending. Compos Sci Technol 1995;55(4):413–21.

[64] Wu E, Robinson C. Computational micro-mechanics for probabilistic failure of
fiber composites in tension. Compos Sci Technol 1997;58(9):1421–32.

[65] António CC, Hoffbauer LN. From local to global importance measures of
uncertainty propagation in composite structures. Compos Struct
2008;85(3):213–25.

[66] Keller T. Use of fibre reinforced polymers in bridge construction. Structural
Engineering Documents No7, Technical report, IABSE-AIPC-IVBH, 2003.

[67] Karbhari VM, Zhao L. Use of composites for 21st century civil infrastructure.
Methods 2000;185:433–54.

[68] Hollaway LC. The evolution of and the way forward for advanced polymer
composites in the civil infrastructure. Constr Build Mater 2003;17:365–78.

[69] Pendhari S, Kant T, Desai Y. Application of polymer composites in civil
construction: a general review. Compos Struct 2008;84(2):114–24.

[70] Ghiasi H, Pasini D, Lessard L. Optimum stacking sequence design of composite
materials. Part I: Constant stiffness design. Compos Struct 2009;90(1):
1–11.

[71] Ghiasi H, Fayazbakhsh K, Pasini D, Lessard L. Optimum stacking sequence
design of composite materials. Part II: Variable stiffness design. Compos
Struct 2010;93(1):1–13.

[72] Lopez R, Luersen M, Cursi E. Optimization of laminated composites
considering different failure criteria. Compos Part B: Eng 2009;40(8):731–40.

[73] Iuspa L, Ruocco E. Optimum topological design of simply supported
composite stiffened panels via genetic algorithms. Comput Struct
2008;86(17–18):1718–37.

[74] Valdebenito Ma, Schuëller GI. A survey on approaches for reliability-based
optimization. Struct Multidiscip Optim 2010;42(5):645–63.

[75] Hao W, Ying Y, Yujia L. Reliability based optimization of composite laminates
for frequency constraint. Chinese J Aeronaut 2008;21(4):320–7.

[76] Young Y, Baker J, Motley M. Reliability-based design and optimization of
adaptive marine structures. Compos Struct 2010;92(2):244–53.

[77] António C, Hoffbauer L. An approach for reliability-based robust design
optimization of angle-ply composites. Compos Struct 2009;90(1):53–9.

[78] Murotsu Y, Miki M, Shao S. Reliability design of fiber reinforced composites.
Struct Safe 1994;15(1–2):35–49.

[79] Eamon CD, Rais-Rohani M. Integrated reliability and sizing optimization of a
large composite structure. Mar Struct 2009;22(2):315–34.

[80] Ge R, Chen J, Wei J. Reliability-based design of composites under the mixed
uncertainties and the optimization algorithm. Acta Mech Solida Sinica
2008;21(1):19–27.

[81] Miki M, Murotsu Y, Tanaka T, Shao S. Reliability-based optimization of fibrous
laminated composites. Reliab Eng Syst Safe 1997;56(3):285–90.
Please cite this article in press as: Chiachio M et al. Reliability in composites –
(2011), doi:10.1016/j.compositesb.2011.10.007
[82] Junhong W. Fuzzy reliability-based optimum design. Acta Mech Solida Sinica
2006;19(3):255–63.

[83] Zhu T. A reliability-based safety factor for aircraft composite Structures.
Comput Struct 1993;48(4):745–8.

[84] Carbillet S, Richard F, Boubakar L. Reliability indicator for layered composites
with strongly non-linear behavior. Compos Sci Technol 2009;69(1):81–7.

[85] Gomes H, Awruch A. Comparison of response surface and neural network
with other methods for structural reliability analysis. Struct Safe
2004;26(1):49–67.

[86] Au S, Ching J, Beck J. Application of subset simulation methods to reliability
benchmark problems. Struct Safe 2007;29(3):183–93.

[87] Hurtado JE. Filtered importance sampling with support vector margin: a
powerful method for structural reliability analysis. Struct Safe
2007;29(1):2–15.

[88] Au S, Beck JL. Estimation of small failure probabilities in high dimensions by
subset simulation. Probabilist Eng Mech 2001;16(4):263–77.

[89] Kiureghian AD. Structural reliability software at the University of California,
Berkeley. Struct Safe 2006;28:44–67.

[90] Meyers R, Khuri A, Carter Jr W. Response surface methodology: 1966–1988.
Technometrics 1989;31(2):137–57.

[91] Box G, Behnken D. Some new three level designs for the study of quantitative
variables. Technometrics 1960;2(4):455–75.

[92] Faravelli L. Response-surface approach for reliability analysis. J Eng Mech
1989;115:27–63.

[93] Kaufman M, Balabanov V, Giunta A, Grossman B, Mason W, Burgee S, et al.
Variable-complexity response surface approximations for wing structural
weight in HSCT design. Comput Mech 1996;18(2):112–26.

[94] Hinkelman K. Design and analysis of experiments. New York (NY, USA): John
Wiley & Sons; 1994.

[95] Bucher U et al. A fast and efficient response surface approach for structural
reliability problems. Struct Safe 1990;7(1):57–66.

[96] Shao S, Murotsu Y. Structural reliability analysis using a Neural Network.
JSME Int J, Ser A 1997;40(3):242–6.

[97] Haykin S. Neural networks: a comprehensive foundation 1999. New Jersey
(USA): Printice Hall; 1999.

[98] Vassilopoulos A, Georgopoulos E, Dionysopoulos V. Artificial neural networks
in spectrum fatigue life prediction of composite materials. Int J Fatigue
2007;29(1):20–9.

[99] Lefik M, Boso D, Schrefler B. Artificial Neural Networks in numerical
modelling of composites. Comput Methods Appl Mechan Eng 2009;198(21–
26):1785–804.

[100] El Kadi H. Modeling the mechanical behavior of fiber-reinforced polymeric
composite materials using artificial neural networks – a review. Compos
Struct 2006;73(1):1–23.

[101] Zhang Z, Friedrich K. Artificial neural networks applied to polymer
composites: a review. Compos Sci Technol 2003;63(14):2029–44.

[102] Goldberg D. Genetic algorithms in search, optimization, and machine
learning. Addison-Wesley Professional; 1989.

[103] Shao S, Murotsu Y. Approach to failure mode analysis of large structures.
Probabilist Eng Mech 1999;14(1-2):169–77.

[104] Conceiçao C. A hierarchical genetic algorithm for reliability based design of
geometrically non-linear composite structures. Compos Struct
2001;54(1):37–47.

[105] Gen M, Yun Y. Soft computing approach for reliability optimization: state-of-
the-art survey. Reliab Eng Syst Safe 2006;91(9):1008–26.

[106] Almeida F, Awruch A. Design optimization of composite laminated structures
using genetic algorithms and finite element analysis. Compos Struct
2009;88(3):443–54.

[107] Park C, Lee W, Han W, Vautrin A. Improved genetic algorithm for
multidisciplinary optimization of composite laminates. Comput Struct
2008;86(19–20):1894–903.

[108] Wang J, Ghosn M. Linkage-shredding genetic algorithm for reliability
assessment of structural systems. Struct Safe 2005;27(1):49–72.

[109] Deng L, Ghosn M, Shao S. Shredding genetic algorithm for reliability analysis
of structural systems. Struct Safe 2005;27:113–31.

[110] Lee C, Yun Y, Gen M. Reliability optimization design for complex systems by
hybrid GA with fuzzy logic control and local search, IEICE transactions on
fundamentals of electronics. Commun Comput Sci 2002;85(4):880–91.

[111] Renders J, Flasse S. Hybrid methods using genetic algorithms for global
optimization. IEEE Trans Syst, Man, Cybern. Part B: Cybern 1996;26(2):
243–58.

[112] Cheng J. Hybrid genetic algorithms for structural reliability analysis. Comput
Struct 2007;85(19–20):1524–33.

[113] Lee C, Gen M, Kuo W. Reliability optimization design using a hybridized
genetic algorithm with a neural-network technique, IEICE transactions on
fundamentals of electronics. Commun Comput Sci 2001;84(2):627–37.

[114] Lee C, Gen M, Tsujimura Y. Reliability optimization design using hybrid NN-
GA with fuzzy logic controller, IEICE transactions on fundamentals of
electronics. Commun Comput Sci 2002;85(2):432–46.

[115] Yun Y, Gen M, Seo S. Various hybrid methods based on genetic algorithm
with fuzzy logic controller. J Intell Manuf 2003;14(3):401–19.

[116] Wang J, Ghosn M. Hybrid data mining/genetic shredding algorithm for
reliability assessment of structural systems. J Struct Eng 2006;132:1451–61.

[117] Conceição António C. Optimisation of geometrically non-linear composite
structures based on load–displacement control. Compos Struct
1999;46(4):345–56.
A selective review and survey of current development. Composites: Part B

http://dx.doi.org/10.1016/j.compositesb.2011.10.007


12 M. Chiachio et al. / Composites: Part B xxx (2011) xxx–xxx
[118] Stender J. Parallel genetic algorithms: theory and applications, frontiers in
artificial intelligence and applications, 1992.

[119] Perez R, Behdinan K. Particle swarm approach for structural design
optimization. Comput Struct 2007;85(19–20):1579–88.

[120] Elegbede C. Structural reliability assessment based on particles swarm
optimization. Struct Safe 2005;27(2):171–86.

[121] Elbeltagi E, Hegazy T, Grierson D. Comparison among five evolutionary-based
optimization algorithms. Adv Eng Inform 2005;19(1):43–53.
Please cite this article in press as: Chiachio M et al. Reliability in composites –
(2011), doi:10.1016/j.compositesb.2011.10.007
[122] Jones KO. Comparison of genetic algorithm and particle swarm optimization.
In: International conference on computer systems and technologies,
CompSysTech2005, 2005.

[123] Gomes HM, Awruch AM, Lopes PAM. Reliability based optimization of
laminated composite structures using genetic algorithms and Artifical Neural
Networks. Struct Safe 2011;33:186–95.

[124] Augustin T, Hable R. On the impact of robust statistics on imprecise
probability models: a review. Struct Safe 2010;32(6):358–65.
A selective review and survey of current development. Composites: Part B

http://dx.doi.org/10.1016/j.compositesb.2011.10.007

	Reliability in composites – A selective review and survey of current development
	1 Introduction
	2 Reliability formulation. Ply level
	2.1 Concept of failure
	2.2 Reliability methods used in composites
	2.2.1 Fast probability integration methods (FPI)
	2.2.2 Monte Carlo methods (MCM)
	2.2.3 Analytical methods
	2.2.4 Numerical methods
	2.2.5 Comparison between reliability methods


	3 Reliability and design of composites laminates
	3.1 Laminate reliability
	3.1.1 Bounding formulation
	3.1.2 System reliability formulation

	3.2 Reliability based design
	3.3 Reliability based safety factors

	4 Computational efficiency
	4.1 Response Surface Methods (RSM)
	4.1.1 Polynomial based response surface
	4.1.2 ANN based response surface

	4.2 Genetics algorithms

	5 Concluding remarks
	Acknowledgements
	References


