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Mechanical Properties
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Abstract—The understanding of internal processes that af-
fect the changes of consistency of soft tissue is a challenging 
problem. An ultrasound-monitoring Petri dish has been de-
signed to monitor the evolution of relevant mechanical param-
eters during engineered tissue formation processes in real time. 
A better understanding of the measured ultrasonic signals re-
quired the use of numerical models of the ultrasound–tissue 
interactions. The extraction of relevant data and its evolu-
tion with sufficient sensitivity and accuracy is addressed by 
applying well-known signal processing techniques to both the 
experimental and numerically predicted measurements. In ad-
dition, a stochastic model-class selection formulation is used to 
rank which of the proposed interaction models are more plau-
sible. The sensitivity of the system is verified by monitoring a 
gelation process.

I. Introduction

The rational principles of continuum mechanics are 
proposed, together with a formal signal processing 

framework, to address the problem of characterizing me-
chanical properties of tissue cultures based on noninvasive 
and nonionizing ultrasonic measurements.

The objectives of this study are to design an ultra-
sound-monitoring Petri dish and to monitor in real time 
the evolution of relevant mechanical parameters during 
engineered tissue formation processes. Many types of un-
certainties involved in the modeling of interaction between 
ultrasonic waves and tissue, such as excitation, material 
viscosity, and material heterogeneity are responsible for 
noise in the output. In this paper, several models of ul-
trasound–tissue interaction are proposed, implemented, 
and contrasted against experimental observations. All as-
sume homogeneous media with varying moduli and en-
ergy-dissipation forms that are expressed as attenuation 
models. High-frequency ultrasound is adopted for excita-
tion and measurement to analyze and interact with small-
scale specimens. The minimization between experimental 
and numerically predicted measurements is addressed by 
solving a probabilistic inverse problem which includes ad-
vanced signal processing techniques.

In the nondestructive evaluation (NDE) community, 
signal processing techniques have played an increasing 
role in recent decades [1]. An essential element in NDE 
systems is the analysis of the captured signal, by means 
of a noise-free parameter extraction, to obtain relevant 
information from the tested specimen. Among the meth-
ods of noise impact minimization, it is worth noting filter-
ing techniques: Rodríguez et al. [2] selected the frequency 
range corresponding to the detected echoes location. Thus, 
by making use of the Wigner-Ville transform, the echoes 
from the crack can be distinguished from the noisy echoes 
generated by the scattered ultrasonic waves through the 
material grains. Bilgutay et al. [3] proposed a transfor-
mation based on filter-bank techniques by applying the 
split spectrum processing (SSP) method to obtain a re-
constructed signal less affected by noise.

The first proposals to solve the deconvolution problem 
in NDE use classical techniques, such as the Wiener fil-
ter, spectral extrapolation, deconvolution of minimal least 
variance, estimation of the least squares [4], or homomor-
phic deconvolution by computation of the cepstrum [5]. 
The cepstrum also has been used as an efficient param-
eterization tool for ultrasonics signals, because the ceps-
tral coefficients involve deconvoluted signal information 
[6]. Higher-order statistics (HOS) enables the developing 
of blind deconvolution techniques, avoiding any prior in-
formation on the signal noise or defect [7]. In some cases, 
the extracted signal parameters can be processed again to 
reduce the dimensionality of the feature vectors, by ap-
plying classical linear discriminant analysis (LDA) [8] or 
principal components analysis (PCA) [9].

Recently, signal processing methods have been increas-
ingly used to provide suitable features extraction from 
biomedical imaging, especially for elastography imaging 
(B-scan), to diagnose pathologies. Ultrasound data were 
captured from postmortem coronary arteries to develop 
RF analysis techniques for the characterization of athero-
sclerotic plaque [10]. A system was proposed by Scheipers 
et al. [11] for prostate diagnostics based on multifeature 
tissue characterization. Their neuro-fuzzy inference sys-
tem combines spectral features and textural features of 
first and second order with clinical variables and mor-
phological descriptors for disease classification. Abeyratne 
and Tang [12] proposed the use of a wavelet-transform-
based technique to estimate the interscatterer distribution 
(ISS) in diagnosing focal diseases of the liver. Maggio et 
al. [13] employed a multi-feature kernel classification mod-
el based on generalized discriminant analysis to support 
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prostate cancer diagnosis. Siebers et al. [14] presented an 
ultrasound based system for computer-aided characteriza-
tion of biological tissue and its application to differential 
diagnosis of parotid gland lesions, based on a supervised 
classification of malignant and benign cases using tissue-
describing features derived from ultrasound RF echo sig-
nals and image data.

However, most of the aforementioned applications deal 
with determination of the presence of damages/patholo-
gies in the evaluated specimen. Hence, the final goal of 
the system is limited to a classification of the states dam-
age/no damage or malignant/benign, respectively. These 
techniques require a huge amount of experimental data 
and an expensive training process, without providing any 
information at the physical level or using knowledge about 
the physiology to aid the decision.

Linear ultrasound techniques have been widely used to 
quantify the elastic properties of tissue, and thus to dif-
ferentiate between normal and diseased tissue. One way to 
measure elastic modulus is quasi-static elastography [15]–
[17], in which the displacement is induced by indentation 
and the strain is computed by a speckle-tracing method. 
The resulting shear wave displacement propagation can 
be ultrasonically tracked through time and the elastic 
modulus of the tested medium calculated. A commercial 
device following the concept by Bercoff et al. [18] was com-
mercialized by Supersonic Imagine as an extended echo-
graphic device. The impulsive force excitation combined 
with ultrasound vibrometry developed by Sandrin et al. 
[19] has been commercialized by Echosens under the name 
of Fibroscan as a liver disorder diagnosis device. Other 
authors have proposed several laboratory-scale imaging 
modalities that provide information about shear elastic 
properties of tissue. Shear waves can be generated within 
tissues using focused, impulsive, acoustic radiation force 
excitations [20]–[22], acoustic remote palpation, sonoelas-
tography, or shear wave dispersion ultrasound vibrometry. 
Shear and compressional moduli of quasi-incompressible 
materials, such as tissue, are a consequence of different 
micro-mechanisms, and therefore have the potential to 
highlight related but different aspects of the physicochem-
ical properties of the tissue.

Some recent experimental observation may tangentially 
suggest that nonlinear mechanical properties may be a 
key signature to quantify tissue consistency changes, even 
better than just bulk or shear moduli. Barannik et al. [23] 
revealed the mechanical relaxation processes appearing at 
higher frequencies than in the quasi-static regime. The 
appearance of these relaxation dynamics was associated 
with the presence of inhomogeneities in tissue. In recent 
years, numerous models have been developed in the NDE 
community that investigate the possibility of using non-
linear techniques to detect damaged interfaces in solids 
[24], [25] or dynamic nonlinear stress–strain features in 
micro-inhomogeneous materials [26]–[28]. Recently, some 
authors have extended some of these experimental tech-
niques (NRUS, NEWS, etc.) for application to damage 

assessment in cortical bone [29] and to measure acoustic 
nonlinearity in trabecular bone [30].

Despite the widespread use of experimental techniques, 
only a few works have dealt with the model-based recon-
struction of the elastic properties of soft tissue. Among 
them, Moulton et al. [31] solved an inverse boundary value 
problem to determine the unknown material parameters 
for a nonlinear, nonhomogeneous material law, using a p-
version finite element model of the heart. Han et al. [32] 
presented a finite-element-based nonlinear inverse scheme 
to reconstruct the elastic properties of soft tissues sub-
jected to an external compression. Recently, Guo et al. 
[33] developed a novel finite element method-based direct 
method for the material reconstruction in soft tissue elas-
tography.

The proposed system avoids the need of steps such as 
cross-correlation of echographic images, by a more direct 
procedure, hence increasing the precision. It also allows 
the use of a complex propagation model to quantify model 
parameters of interest beyond modulus and attenuation. 
Nonlinear phenomena have not been considered in this 
study, but this is a research topic currently under develop-
ment at our laboratory. This void in the mechanical char-
acterization and interpretation of material defects may be 
overcome by adopting model-based inverse problem strat-
egies. This is the main goal of the present work, which is 
successfully applied for tissue characterization. This ap-
proach allows one to obtain not only the optimal param-
eters in a model class, but also the uncertainty associated 
with the parameter estimates. Some recent developments 
and civil engineering applications of Bayesian model class 
selection have been carefully reviewed by Yuen [34]. The 
model-class selection is formulated following Beck and 
Yuen [35]. Finally, a simple formulation of the joint prob-
ability is proposed, from which either the inverse problem 
or the model-class selection can be derived just by extract-
ing specific marginal probabilities, thus unifying all of the 
approaches.

A model-class selection algorithm is useful to under-
stand unknown propagation models in complex materi-
als such as engineered tissue, which is the specimen this 
device will be used for. With the purpose of validating 
the model-class selection algorithm, a gelation process is 
monitored and analyzed, the behavior of which is con-
trolled and assumed by the majority of the literature to 
be viscoelastic [36]–[38].

II. Methodology

The proposed methodology combines four elements. 1) 
The signal acquisition of the ultrasonic signals obtained 
from the waves’ interaction with a sample of tissue; 2) a 
set of alternative attenuation models that simulate the 
ultrasound–tissue interaction, which is numerically solved 
by the transfer matrix formalism; 3) a stochastic mod-
el-class selection formulation used to rank which of the 
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models parameterization are more plausible; and 4) an 
NDE-oriented signal processing framework that extracts 
relevant features from both the experimental and numeri-
cally predicted signals. The latter is used to reconstruct 
the evolution of the relevant mechanical parameters dur-
ing the culture reaction time.

A. Experimental Setup

A Petri dish with a specifically designed high-frequency 
ultrasonic transmitter and receiver in an angled position 
was manufactured for real-time measurement of mechani-
cal and geometrical properties of thin layers of tissue cul-
ture (of the order of 100 μm). The monitored Petri dish is 
connected to the electronic setup detailed in Fig. 1.

The transmitting and receiving transducers are de-
signed to be in an angled position (45°) to avoid reverbera-
tion echoes inside the parts of the Petri dish plate. The 
transmitted signal is generated as a 1-cycle burst com-
posed by a 20-MHz sine of amplitude that amounts to 5 V 
with a repetition rate of 1000 pulses/s, using an arbitrary 
wave generator (33220, Agilent Technologies Inc., Santa 
Clara, CA). The recording is digitized with a high reso-
lution A/D converter after 40 dB preamplification, for a 
period of 5 μs with a sampling rate of 400 MHz. The gela-
tion process is monitored for half an hour at 5-s intervals, 
resulting in a database of 350 measurements. Each mea-
surement corresponds to the average of 300 captures of the 
signal, providing an effective reduction of noise according 
to the signal-to-noise ratio (25 dB). Only compressional 
waves are generated by the transducers and no mode con-
version waves are measured in the present case, although 
the methodology is extensible to shear or other waves.

The materials and the concentration for the gel culture 
were chosen according to Ortega et al. [39]: 92.5% water, 

5% glycerol, and 2.5% agar. To obtain a homogeneous 
solution, water was first heated and then the remaining 
components were added. The final mixture was carefully 
deposited on the dish, resulting in a gel layer of about 
300 μm thickness, and a diameter of 2 cm. At the start 
of the process, the wave velocity in the gel layer is un-
known. Nonetheless, it is well-known that its value is ap-
proximately 1500 m/s, and thus the resulting wavelength 
(75 μm) is compatible with the gel layer thickness. The 
material properties of the Petri dish material [poly(methyl 
methacrylate) (PMMA)] and the gel culture are summa-
rized in Table I.

B. Propagation Models

The experimental system is idealized by a mathemati-
cal model of the propagation and interaction of the trans-
mitted ultrasonic waves with all the parts of the system 
until they are received by the sensor. The relevant ultra-
sonic paths along the Petri dish material (PMMA) and 
the gel culture are illustrated in Fig. 1.

Several models are tested to idealize the removal of 
energy by dissipation or radiation. Three alternative 
damping models are used: 1) viscous, 2) hysteretic, and 
3) proportional to integer time derivatives of the particle 
movement, based on their fractional time derivatives. The 
damping is defined in terms of the wave modulus M, which 
is modified from the undamped modulus M0 to generate 
a dispersive one, which is a frequency-dependent complex 
modulus M *(ω), where ω is the angular frequency if the 
modulus dispersion is represented by its frequency domain. 
The viscous model is defined in terms of the frequency-
dependent loss factor η, obtained as the ratio between loss 
and storage moduli [40]. In this context, a specific view 
of hysteretic damping is taken, in which it is expressed as 

Fig. 1. Schematic diagram of experimental and electronic setup.

TABLE I. Mechanical Properties of Materials. 

Material
Modulus 
[Pa]

Poisson’s 
ratio 

ν
Density 

ρ [kg/m3]
Speed 

cp [m/s]

PMMA E = 2960 ∙ 106 0.43 1180 2673
Gel (initial) Unknown 0.5 1000 Unknown
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a frequency-independent damping [41]. The last model, 
based on fractional time derivatives, leads to a damping 
function that may be expressed as a power law, and thus 
improves curve-fitting properties for relaxation [40], [41]. 
These models are selected according to their performance 
demonstrated in a previous study [42]. The viscoelastic η 
and hysteretic ζ models are defined according to Maia et 
al. [43],

	 M M i* 0( ) = 1ω ωη( )− 	 (1)

and

	 M M i∗ −( ) = 10ω ζ( ),	 (2)

where η and ζ are the viscoelastic and hysteretic damp-
ing coefficients of tissue, respectively. The fractional time 
derivative damping is defined as

	 M M
b i
a i

* 0( ) =
1 ( )
1 ( )

ω
ω
ω

β

α
+
+

.	 (3)

The three models are summarized in Table II, highlight-
ing the combination of the considered parameters, where 
Ktissue denotes the bulk modulus of tissue. The fractional 
derivative constants are defined as a, b, and α = β. Two 
additional parameters zampl and ztime are introduced to 
control the correction of the amplitude and the time-shift 
of the input signal in the culture, which correct effects of 
temperature and other phenomena on the sensors that af-
fect attenuation and delay on the path from the electron-
ics to the arrival of the signal at the culture specimen. The 
input signal s0(t) correction is defined as

	 s t z s t z∗ +( ) = ( )0ampl time .	 (4)

The factor zampl corrects variations of the amplitude and 
phase of the excitation over the reaction process time that 
may be influenced by several simultaneous factors, includ-
ing the temperature. Nonetheless, we assume that these 
factors can be summarized as a whole by introducing a 
phenomenological factor, labeled as ztime.

The mathematical model is approximated by a semi-
analytical model of the wave interactions within multi-
layered materials based on the transfer matrix formalism 
(TMF) [44], describing the ultrasonic waves’ interactions 
between the Petri dish and the culture.

C. Probabilistic Inverse Problem

Reconstructing the values of the model parameters 
(moduli, attenuation parameters, etc.) has a limited 
meaning if one considers the existence of intrinsic noise 

in the measurements, heterogeneity of properties within 
the specimen, and even the fact that the model used to 
idealize its behavior is just an approximation of reality. 
To provide a suitable answer, probabilistic, rather than 
deterministic, values should be provided, which carry in-
formation about the degree of uncertainty and the nature 
of their scattering. This is solved by treating the input 
and known data as uncertain and therefore probabilistic, 
and consequently obtaining the solution model in terms 
of a set of probability density functions (PDF) over each 
model parameter as a combination of their degree of cer-
tainty provided by the measurements on one hand and the 
model on the other.

Following the probabilistic formulation of the model re-
construction inverse problem established by Tarantola 
[45], the solution is not a single-valued set of model pa-
rameters M. On the contrary, the solution is provided by 
probability density functions (PDF) p( )M  of the values of 
the model parameters M within the manifold M of pos-
sible values. The probability density p is assigned the 
meaning of the plausibility of the model values M being 
true. The theory of evidential probability concerns the 
impact of evidence on physical probability. It is motivated 
by two basic ideas [46]: probability assessments should be 
based upon relative frequencies, to the extent that we 
know them, and the assignment of probability to specific 
individual events should be determined by everything that 
is known about that individual event. In particular, the 
probability of a hypothesis H is given the sense of degree 
of support (or plausibility or belief) of H given empirical 
evidence.

In this paper, this formulation is generalized to the case 
in which several model classes C  are candidates to idealize 
the real excitation-observation. Including this variable 
into the inverse problem formulation will allow derivation 
of the model-class selection formulation as a particular 
case of inverse problem.

Because an absolute probability cannot be computed, 
statistical inference theory is used to incorporate the a 
priori information about the measured observations O, the 
model parameters M, and the model class C, and the in-
formation of the idealized relationship between them O = 
OM( ) is computed by a numerical model pertaining to a 
model class C. They are defined by the probability densi-
ties to prior (labeled with a superscript 0) data p 0( )O , 
p 0( )M , and p 0( )C , respectively, whereas the additional in-
formation about relationship (labeled with a superscript 
m) between observations and model provided by the mod-
el class C  is given by the PDF pm( , | )O M C . The a poste-
riori probability p( , , )O M C  of the hypothetical model M is 
obtained jointly with the observations O and class C, as

	 p k
p p

( , , ) =
( , , ) ( , , )

( , , )1

0
O M C

O M C O M C
O M C

m

µ ,	 (5)

where µ( , , )O M C  is the noninformative density function 
and k1 is a normalization constant. Some assumptions will 

TABLE II. Combination of Models. 

Tag Size Parameters

1 4 K tissue ζ zampl ztime

2 4 K tissue η zampl ztime

3 6 K tissue a b α = β zampl ztime
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be made at this point. Assuming first that O, M, and C  
are independent a priori allows splitting of the joint prior 
information p 0( , , )O M C  = p p p0 0 0( ) ( ) ( )O M C  and the uni-
form distribution µ( , , )O M C  = µ µ µ( ) ( ) ( )O M C . Second, the 
probabilistic model can be represented by a computation 
of O depending on M, which yields pm( , , )O M C  = 
p p pm m m( | , ) ( , ) ( )O M C M C C . Third, the model is not as-
sumed to provide conditional information between model 
and class, i.e., pm( , )M C  = µ( )M , pm( )C  = µ( )C , are nonin-
formative. This simplifies the expression to

	 p k
p p p pm

( , , ) =
( ) ( ) ( ) ( | , )

( )1

0 0 0
O M C

O M C O M C
Oµ .	 (6)

The posterior probability of the model M is obtained from 
the joint probability p( , , )O M C  by extracting the marginal 
probability p

i
( ) =M C C  for all possible observations O ∈ 

O ⇒ p i
0( = )C C  = 1, given that the model class Ci  ∈ C is 

assumed to be true,

	

p p

k
p p p

i
i

( ) ( , , )

( ) ( ) ( | , )
( )

= =

2

0 0

M O M C O C

O M O M C
O

O

C C C C
=

=

∫ ∫

∫

O

O

d d

d
m

µ ..
	 (7)

As a fourth simplification, we assume no prior information 
about the model p 0( )M , which is therefore represented by 
the noninformative distribution p 0( )M  = µ( )M , which can 
in turn be dropped in the case that Jeffreys parameters 
are adopted,

	 p k p p
i

( ) = ( ) ( | , )= 3
0M O O M C OC C

O∫
m d ,	 (8)

where k3 is a normalization constant that replaces the 
dropped uniform distributions, and is needed for p

i
( ) =M C C  

to fulfill the theorem of total probability 
M∫ p i

( ) =M MC C d  
= 1.

Fifth, the observations are assumed to follow a Gauss-
ian distribution O ~ N O( [ ], )E Cexp exp  with a mean that is 
the mean of the experimental observations O exp, and a 
covariance matrix C exp that stands for the measurement 
noise. Sixth and last, the observations are assumed to be 
a Gaussian process O ~ N OM( ( ), )C num  centered at the 
numerically computed ones E[ ]O num  = OM( ) with covari-
ance matrix C num.

The probabilistic observations O are, in our case, a vec-
tor of functions of time O = oi(t) at every measuring time 
t ∈ [0, T] and repetition i ∈ [1…Ni], and the aforemen-
tioned assumptions are valid for every instant t and sensor 
i. Considering that the compound probability of the infor-
mation from all sensors and time instants is the product 
of that of each one individually, and that this product is 
equivalent to a summation within the exponentiation (be-
cause an integration along the continuous time can be 

seen as a summation over every infinitesimal dt), the 
Gaussian distribution allows for an explicit expression of 
the probability densities,

	 J O c c O t
i j

N

i ij ij j
t

Ti

( ) =
1
2

, =1

1

=0
M ∑∫ + −( ) ,exp num d 	 (9)

where Ok = (o tk( , )M  − o tk
exp( )), ∀k = i, j. The term J( )M  

corresponds to a misfit function between model and obser-
vations,

	 p k e
i

J( ) == 4
( )M C C
M− ,	 (10)

and the constant k4 is derived from the theorem of total 
probability applied over all possible models M, which is 
integrated by quasi-Monte Carlo using a Sobol sequence 
with 218 points. The best-fitting model is found by mini-
mizing J( )M  instead of maximizing p( )M  because

	 ˆ { } { }.M M M
M

C C
M

M
= ( ) = = ( )= 4

( )argmax argminp k e J
i

J− 			

		  (11)

The probabilistic nature of the reconstruction is partly 
motivated by the fact that the model itself may not nec-
essarily reproduce the experimental setup, but is just an 
approximation. It will be shown that if several models 
are candidates based on different hypotheses about the 
system, the probabilistic formulation of the inverse prob-
lem will be able to provide information to rank the hy-
potheses. The fundamental idea is that if the model-class 
(based on the candidate hypothesis) is considered as an 
uncertain discrete variable, its probability can eventually 
be extracted as a marginal probability from (6). The prob-
ability of each model-class will therefore have the sense 
of degree of certainty of being true in the sense that the 
probabilistic conjunction of certainty provided by the ex-
perimental measurements and model are coherent.

Let model class C  ∈ C denote an idealized mathemati-
cal model hypothesized to simulate the experimental sys-
tem, whereas model M denotes the set of physical param-
eters upon which the model-class depends. Different 
model classes can be formulated and hypothesized to ide-
alize the experimental system, and each of them can be 
used to solve the probabilistic inverse problem, yielding 
different values of model parameters but also physically 
different sets of parameters. To select among the infinitely 
many possible model classes that can be defined, a proba-
bilistic criteria can be defined based on their compatibility 
between prior information about observations O, model 
parameters M, and model class C, and probabilistic model 
information [35].

The goal is to find the probability p( )C , understood as a 
measure of plausibility of a model class C  [47]. It can be 
derived as the marginal probability of the posterior prob-
ability p( , , )O M C  defined in (6),
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p p

k p
p p p

( ) = ( , , )

= ( )
( ) ( ) ( | , )

( )1
0

0 0

C O M C M O

C
O M O M C

O
M

O M

O M

∫ ∫

∫ ∫

d d

d
m

µ dd .O
			

		  (12)

The plausibility of a residue definition given a measure-
ment domain and model class Ci  in the sense of matching 
between model and experimental observations can be 
computed by introducing the residue space R ∈ R, and 
deriving the corresponding marginal probability as

	

p p

k
p p p

i

i

( ) = ( , , , )

=
( ) ( ) ( | , , )

=

1

0 0

R R O M C M O

O M O R M C

C C
O M

O M

∫ ∫

∫ ∫

d d

m
�

µ(( )O M Od d ,
			

		  (13)

where the constant �k1 = k p p1
0 0( ) ( )C R . Once p( )C  and p( )R  

are computed for every class and every residue, their val-
ues allow ranking of the models according to how compat-
ible they are with the observations. This also allows us to 
find a correct trade-off between model simplicity and fit-
ting to observations.

The minimization of p( )M  for monitoring the evolution 
of the culture is carried out by two sequential algorithms. 
When an initial guess is not available, which is the case at 
the beginning of the process, genetic algorithms are used 
as a full-range random search technique [48]. Because the 
change between consecutive measurements of the process 
is expected to be small, the Broyden–Fletcher–Goldfarb–
Shanno (BFGS) algorithm is used as a local search based 
on Hessian update [49], assisted by finite differentiation 
and line search.

In the case that the model parameters m are Jeffreys 
constants [50], they are replaced by unitary logarithmic 
parameters m,

	 m m em m
m mm m m= 0 1 0ln( ),/ 	 (14)

which map the dimensional parameters mm from the pref-
erential range mm ∈ [ , ]0 1m mm m  to a nondimensional Jeffreys 
parameter range m ∈ [0, 1]. This further stabilizes the 
search algorithms. In this case, the noninformative distri-
bution µ( )M  can simply be replaced by a constant.

D. NDE-Oriented Signal Processing

This section will provide a suitable representation of 
the ultrasonic signals, appropriate for tissue reaction pro-
cess identification. The signals are first preprocessed, by 
means of a temporal windowing. Then, different param-
eterization approaches can be applied and the obtained 
spectral parameters are usually transformed to provide a 
more uncorrelated and dimensionally reduced representa-
tion. As a result of the applied analysis, each signal can 
be represented by a feature vector containing the analysis 

parameters. Finally, some methods are defined to improve 
the calculation of the discrepancy between the experimen-
tal and numerically predicted feature vectors.

1) Preprocessing: After acquisition, the signals have 
been downsampled at a sampling frequency of 40 MHz, 
to reduce part of the noise and focus on the frequency 
range of interest. Second, a normalization with respect to 
the peak amplitude has been applied, considering that the 
system must be insensitive to changes in signal amplitude. 
Finally, the signals have been multiplied by a Hamming 
window. Because ultrasonic signals are finite by nature, 
the window is used primarily to weight the signal samples 
over time, and thus to show off the signal echoes [51].

2) Feature Extraction and Spectral Domain: The pro-
posed methodology includes a nonparametric technique 
approach that directly estimates the spectrum features 
from the signal itself, providing a sufficiently accurate 
representation for many types of signals in many different 
applications [52], whereas in NDE systems, the pursued 
information is hidden in a complex signal. Spectral analy-
sis is performed by determining the magnitude spectrum 
of the detected signals, which is easily obtained by apply-
ing the discrete Fourier transform (DFT).

3) Homomorphic Transformations: Among the homo-
morphic transformations, the basic idea of the cepstrum 
consists of converting a convolution into a sum [53] and, 
thus, to obtain a decorrelated representation of the sig-
nals. The cepstrum of a discrete signal s(n), whose corre-
sponding spectrum is denoted by S( )ω , is defined as the 
inverse Fourier transform of the logarithmic spectrum:

	 ˆ log log .c n S S d( ) = [ ( ( ))] =
1
2 ( ( ))1F−

−∫ω π ω ω
π

π
	 (15)

Alternatively, a real cepstrum can be obtained by consid-
ering the magnitude spectrum S( )ω  as

	 c n S( ) =
1
2 ( ( ) )π ω ω

π

π

−∫ log .d 	 (16)

In practice, the real cepstrum can be easily obtained by 
applying the fast Fourier transform (FFT) as

	 c n s n( ) = [ ( ( ( )) )]IFFT log FFT ,	 (17)

where IFFT denotes the inverse fast Fourier transform. 
In this case, the real cepstrum is usually called cepstrum 
FFT. In an algebraic sense, the associated complex ceps-
trum could be obtained similarly. However, computing the 
complex cepstrum is usually cumbersome because of the 
unwrapping of the digital phase. In the cepstral domain, 
because of the harmonic nature of the ultrasonic signals, 
the wave components appear as equidistant peaks at high-
er quefrencies, rightly separated by a value that corre-
sponds to the fundamental period of the analyzed signal 



bochud and rus: probabilistic inverse problem to characterize mechanical properties 1449

echoes [54]. Thus, this cepstral representation allows to 
decompose the spectrum in its two main characteristics: 
The spectral envelope and the fine spectrum.

4) Dimensionality Reduction:

It can be useful to restrict the number of cepstral coef-
ficients, by applying a window to rule out lower and/or 
higher quefrencies. This process is called liftering, and is 
applied as

	 �c n c n w n( ) = ( ) ( ),	 (18)

where n = 1, …, L. Several windowing schemes can be 
directly derived from the rectangular window in the ceps-
tral-domain. This study focuses on short-pass liftering 
[54], which corresponds to a smoothing of the spectrum, 
preserving its spectral envelope while removing the fine 
spectrum information. Although it has been less studied, 
it is interesting to point out that the application of lifter-
ing on the complex cepstrum allows observation of the ef-
fects of removing quefrencies on the recovered signal in the 
time-domain. Moreover, applying windows different from 
the rectangular one allows weighting of the cepstral coef-
ficients depending on their discriminative performance.

E. Discrepancy Between the Experimental  
and Numerical Feature Vectors

The residue definitions used in the probabilistic inverse 
problem are generalized to the vectors obtained from the 
feature extraction. Thus, the residue is defined as a likeli-
hood measure between two feature vectors. The classical 
residue r0 has been defined as

	 r s s px
0 = − ( ),	 (19)

where sx and s(p) denote the vectors obtained from the 
features extraction, corresponding to the experimental and 
numerically predicted signals, respectively. Some enhance-
ments are proposed by defining weighted residues. First, 
a weighted residue is defined which includes the variance 
of the measurements sx over the temporal evolution of the 
reaction process. Thus, the goodness of fit of the model 
predictions to the experimental values is assessed with the 
weighted least squares criterion [55]:

	 r s s s px x
1 = −( ( )).	 (20)

Additionally, a weighted residue is defined which includes 
the variance of the measurements sRx  over the reaction 
time of the process:

	 r
s s p
s

x

R
x2 =
− ( )

.
�

	 (21)

Finally, a weighted residue is defined, including both of 
the aforementioned variances:

	 r s s p
s
s

x
x

R
x3 = ( )− ( ) .
�

	 (22)

Note that the variance s of the coefficients from the ex-
perimental signals amounts to a value close to zero when 
the corresponding signal intensity is low. Thus, a slightly 
biased variance value �s is used in the residue definitions by 
making use of the root mean square of the variance s, in 
order to avoid that the residue tends to infinity:

	 �s s sx x
n
x= 0.1

1
( )

=0

2+ ∑L
n

L

	 (23)

Eq. (20)–(22) allow 1) reduction of the uncertainties 
resulting from measurements noise by assuming statistical 
independence of the errors and 2) enhancement of parts of 
the signals that may contain information about the reac-
tion process. In a probabilistic sense, residue definitions 
that take into account variance information can be under-
stand as a prior knowledge of the measurements’ quality 
and/or evolution of the reaction process. Thus, they may 
enhance the interpretation of the gelation process.

Fig. 2. Signal sample: (top) sequence of signals without specimen, (bot-
tom) signal with specimen registered every 250 s.
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III. Results

The signals recorded by the ultrasound-monitored Petri 
dish every 250 s are shown in Fig. 2, with and without the 
specimen. No clear evolution is detectable by bare visual 
inspection of the signals. The recorded signals are mainly 
composed of three different waveforms (simplified paths 
of Fig. 1), namely, 1) the wave front that propagates only 
through the PMMA layer (labeled as u1), 2) a wave that 
crosses both the PMMA layer and the specimen (labeled 
as u2), and 3) a wave echo produced by the former wave 
after crossing the specimen twice (labeled as u3).

It is noteworthy that when the specimen is in place, the 
majority of the excitation signal (registered without speci-
men for calibration) is transmitted instead of reflected. 
Because the wavelength in gel is compatible with the layer 
thickness, the individual echoes generated by the multiple 
reflections inside the gel layer can be analyzed separately 
by signal processing.

A. Signal Simulation

The transfer matrix formalism is used to generate sam-
ple signals, after calibrating the estimated parameters us-
ing the inverse problem, for the first signal (initial evolu-
tion time). Time-domain signals and magnitude spectra 
are shown in Figs. 3 to 6 for the viscous model (case 2) 
at the initial time of the reaction process, respectively. In 
the lower figures, an analysis window (Hamming) has been 
applied to the signals and classical and weighted residue 
definitions are considered, denoted r0 and r3, respectively.

A significant ability to simulate the system can be 
observed visually. The influence of the signal windowing 
yields the following observations for the magnitude spec-
trum (Figs. 5 and 6): The envelope, which corresponds 
to the redundant character of the signal, remains almost 
unchanged. In contrast, the fine spectrum presents accen-
tuated peakiness because of the enhanced echoes of the 
time-domain signals. In the time-domain, the classical res-

Fig. 3. Example of fitting of experimental and simulated observations: 
viscous model, time domain, residue r0.

Fig. 4. Example of fitting of experimental and simulated observations: 
viscous model, time domain, residue r3.

Fig. 5. Example of fitting of experimental and simulated observations: 
viscous model, magnitude spectrum, residue r0.

Fig. 6. Example of fitting of experimental and simulated observations: 
viscous model, magnitude spectrum, residue r3.
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idue r0 is strongly correlated with the signals themselves 
(Fig. 3), highlighting higher amplitude where the signals 
energy is higher. However, the weighted residue r3 allows 
removal of some variability resulting from the measure-
ment uncertainties (Fig. 4). Additionally, it enhances the 
parts of the signal containing information about the reac-

tion process (here, mainly the wave front), while allowing 
removal of the parts which are invariant to the process 
evolution (scattering parts). In the frequency domain, the 
weighted residue allows removal of the frequency range 
that is insensitive to the reaction process, or is erroneous 
because of measurement noise. Thus, the resulting mag-

Fig. 7. Posterior probability of the model: slice along two parameters, 
viscous model, time domain, residue r0.

Fig. 8. Posterior probability of the model: slice along two parameters, 
viscous model, time domain, residue r3.

Fig. 9. Posterior probability of the model: slice along two parameters, 
viscous model, magnitude spectrum, residue r0.

Fig. 10. Posterior probability of the model: slice along two parameters, 
viscous model, magnitude spectrum, residue r3.

Fig. 11. Posterior probability of the model: slice along two parameters, 
viscous model, real cepstrum, residue r0.

Fig. 12. Posterior probability of the model: slice along two parameters, 
viscous model, real cepstrum, residue r3.
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nitude spectra of Fig. 6 show enhanced process informa-
tion at certain frequencies, in contrast to the magnitude 
spectrum of Fig. 5.

B. Posterior Probability of the Model

The probability density function is computed for the 
viscous attenuation model, and some relevant samples 
issued from the results obtained in the previous section 
are shown in Figs. 7 to 10. Because the PDF is a multi-
dimensional function, without loss of generality, only a 
slice along two parameters is represented, namely the bulk 
modulus of the tissue and the viscous damping coefficient.

The inspection of these plots reveals several local 
minima—valleys in the probability density function and 
variations of several orders of magnitude from good to 
bad model parameters. This implies a bad conditioning 

of the reconstruction inverse problem and justifies the use 
of advanced search algorithms such as genetic algorithms. 
Nonetheless, the use of a weighted residue definition en-
hances the slope of these local minima, and thus speeds up 
the convergence of the search algorithm. It is noteworthy 
that the other attenuation models present similar trends. 
Additionally, some irrelevant samples resulting from the 
cepstral analysis are illustrated in Figs. 11 and 12.

The inspection of the plots obtained from the cepstral 
analysis reveals many local minima that approximately 
have the same values, leading to an ill-conditioned solu-
tion space.

C. Model Class Plausibility

The posterior probability p( )C  of every proposed model 
class C  ∈ C is computed by quasi Monte Carlo integration 

TABLE III. Plausibility of Model Classes, Time Domain. 

Windowing Residue Model class 1 2 3

w0 r0 p( )C  [%] 31.55 32.39 36.06
Occam [−log10] 2.24 4.10 1.90
Certainty [log10] 0.11 0.75 0.37

r1 p( )C  [%] 33.33 33.33 33.33
Occam [−log10] 8.11 7.93 11.93
Certainty [log10] 1.69 1.66 1.97

r3 p( )C  [%] 15.53 63.10 21.37
Occam [−log10] 7.34 9.95 14.78
Certainty [log10] 2.23 2.74 2.97

w1 r0 p( )C  [%] 32.45 32.99 34.57
Occam [−log10] 7.14 6.50 7.44
Certainty [log10] 1.40 1.16 1.02

r1 p( )C  [%] 33.33 33.33 33.33
Occam [−log10] 7.93 7.90 13.08
Certainty [log10] 1.83 1.95 ∞

r3 p( )C  [%] 34.81 31.57 33.62
Occam [−log10] 4.25 6.17 8.72
Certainty [log10] 1.39 1.79 1.45

TABLE IV. Plausibility of Model Classes, Magnitude Spectrum. 

Windowing Residue Model class 1 2 3

w0 r0 p( )C  [%] 29.79 29.39 40.82
Occam [−log10] 0.09 −0.42 −5.17
Certainty [log10] 0.40 0.38 0.71

r1 p( )C  [%] 49.94 50.06 —
Occam [−log10] 7.71 8.82 —
Certainty [log10] 1.52 1.63 —

r3 p( )C  [%] 0.02 56.47 43.51
Occam [−log10] 4.84 5.88 22.37
Certainty [log10] 1.93 1.89 4.10

w1 r0 p( )C  [%] 26.90 26.11 46.99
Occam [−log10] 2.47 1.82 −8.55
Certainty [log10] 0.08 0.08 −1.57

r1 p( )C  [%] 49.98 50.02 —
Occam [−log10] 8.68 7.81 —
Certainty [log10] 1.80 1.49 —

r3 p( )C  [%] 31.98 44.95 23.07
Occam [−log10] 5.11 4.77 16.15
Certainty [log10] 1.61 1.54 2.85
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using 218 Sobol sampling points. Additionally, the estima-
tion of Occam’s factor, as well as the certainty metric σ 
are summarized in Tables III, IV, and V for time-domain 
signals, magnitude spectra, and real cepstra, respectively.

The most plausible model class is shown to be 2, involv-
ing Ktissue, viscoelastic damping, and temperature and 
amplitude corrections. It is closely followed by class 1 
(hysteretic damping), whereas class 3 does not provide 
results for all proposed signal processing techniques. The 
magnitude spectrum computed with weighted residue def-
initions r1 and r3 show significantly higher posterior prob-
ability p( )C  than the other domains of representation. The 
real cepstrum provides bad results as well for the posterior 
probability, which is consistent with the observations in 
the previous section. This evidence further supports the 
validity of the probabilistic formulation. Hence, the ob-
tained equiprobable values demonstrate its insensitivity 
with respect to the selected model classes.

The posterior probability p( )R  of every consistent resi-
due definition R ∈ R is computed according to the poste-
rior probability p( )C . Tables VI and VII summarize the 
obtained values, together with the Occam’s factor estima-
tion and certainty metric, for hysteretic and viscous damp-
ing, respectively.

The most plausible residue definition appears to be r1, 
which involves the inclusion of some prior information on 
the variance of the measurements over the temporal evolu-
tion of the reaction process, when the inverse problem is 
achieved in the frequency domain. This ranking remains 

consistent independently of the model class. Signal win-
dowing has a little influence on the improvement of re-
sults.

D. Monitoring of Evolution

The evolution of the relevant reconstructed mechanical 
parameters during the reaction process is shown in Figs. 
13 and 14 for the most relevant model class and residue 
definitions, respectively. The value of the reconstructed 
bulk modulus at the beginning of the process approxi-
mately amounts to 2.385 GPa. Under the hypothesis that 
the gel layer is already in the gelation zone [38] at the 
initial process time (for such a thin specimen, the gel 
starts to gelify almost instantaneously), we suppose that 
the loss and storage moduli at the initial and end process 
times approximate those proposed by Wang et al. [38], 
namely G0′′ = 1200 Pa, G0′ = 80 Pa, and G end′′  = 1800 Pa, 
G end′  = 140 Pa, respectively. By making use of the formula 
[41]

	 c
K G

p =
4
3+( )
ρ ,	 (24)

the wave velocity is found to be 1544 m/s at the initial 
time of the process. The latter is close to the value giv-
en by other authors for similar materials, among them 
Norisuye et al. [37]. Additionally, Norisuye et al. suggest 
that the wave velocity suffers a reduction of around 3% 

TABLE V. Plausibility of Model Classes, Real Cepstrum. 

Windowing Residue Model class 1 2 3

w0 r0 p( )C  [%] 33.33 33.33 33.34
Occam [−log10] 1.99 2.91 2.67
Certainty [log10] 0.53 0.45 0.08

r1 p( )C  [%] 33.33 33.33 33.34
Occam [−log10] 8.23 8.51 10.95
Certainty [log10] 2.38 2.42 1.94

r3 p( )C  [%] 33.33 33.33 33.34
Occam [−log10] 0.21 2.21 3.28
Certainty [log10] 0.12 0.31 0.32

TABLE VI. Plausibility of Residue Definitions, Time-Domain. 

Model Window Residue r0 r1 r2 r3

1 w0 p( )R  [%] 22.27 26.57 0 0
Occam 2.24 8.11 −22.96 −7.34
Certainty 0.11 1.68 −6.30 −2.23

w1 p( )R  [%] 24.56 26.57 0 0
Occam 7.14 7.93 −19.54 −4.25
Certainty 1.40 1.83 −5.40 −1.39

2 w0 p( )R  [%] 22.64 26.31 0 0
Occam 4.10 7.93 −23.77 −9.95
Certainty 0.74 1.66 −6.25 −2.74

w1 p( )C  [%] 24.72 26.31 0 0
Occam 6.50 7.90 −20.30 −6.17
Certainty 1.16 1.95 −5.38 −1.79
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over the reaction process. Thus, the bulk modulus at the 
end of the process is found to be 2.272 GPa (diminution 
of 5%), and is in agreement with the value obtained with 
the proposed formalism.

Some parameter evolutions reconstructed using resi-
dues and models with low plausibility (not shown in this 
paper for brevity) show larger scattering and instabilities, 
consistent with the results in the two previous subsec-
tions. These observations further support the validity of 
the formulation and conclusions.

IV. Conclusion

A numerical method to determine the elastic and dy-
namic energy dissipation properties during a gelation pro-
cess has been developed by combining the solution of a 
probabilistic inverse problem with signal processing tech-
niques, applying genetic algorithms to minimize a cost 
function, and using a semi-analytical model of the interac-
tion between ultrasonic waves and tissue.

The proposed model-class and residue selection and 
their underlying class plausibility have enabled ranking of 
both the models and the suitable residue definitions ac-
cording to their compatibility with the observations. The 
resulting trade-off between model simplicity and fitting 
to observations has demonstrated that the viscous damp-

ing models, combined with some prior information on the 
measurements variance over the reaction process evolu-
tion, are feasible to characterize the complex evolution of 
the process.

The reconstructed model parameters highlight the fol-
lowing statements. For the viscoelastic models, the bulk 
modulus consistently decreases with increasing damping 
coefficient. Therefore, both parameters may be associated 
to the same phenomena, but a careful interpretation has 
not been carried out at this time. The evolution of the 
model parameters has a stronger slope during the first 
200 to 300 s of the reaction process, and remains almost 
constant afterward. This trend validates the observations 
done in situ, in which the gelation occurred during the 
first 3 to 5 minutes. Consequently, the proposed meth-
odology demonstrates the capability to discriminate the 
process during its early solidification phase. For a bet-
ter understanding of ultrasonic tissue monitoring, in vitro 
studies on real tissue combined with histological studies 
may be conducted.
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TABLE VII. Plausibility of Residue Definitions, Magnitude Spectrum. 

Model Window Residue r0 r1 r2 r3

1 w0 p( )R  [%] 5.87 38.87 0 0
Occam 0.09 7.71 −14.49 −4.84
Certainty −0.40 1.52 −3.98 −1.93

w1 p( )R  [%] 15.64 39.61 0 0
Occam 2.47 8.68 −11.81 −5.11
Certainty 0.08 1.80 −3.40 −1.61

2 w0 p( )R  [%] 5.82 39.12 0 0
Occam −0.42 8.82 −14.87 −5.88
Certainty −0.38 1.63 −4.00 −1.89

w1 p( )C  [%] 15.25 39.81 0 0
Occam 1.82 7.81 −12.02 −4.77
Certainty 0.08 1.49 −3.35 −1.55

Fig. 13. Evolution of model parameters during reaction: viscoelastic 
model, time domain, classical residue, without signal windowing.

Fig. 14. Evolution of model parameters during reaction: viscoelastic 
model, magnitude spectrum, weighted residue, signal windowing.
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