On polynomials satisfying a special $R_{I I}$ type recurrence formula

A. Sri Ranga

Departamento de Matemática Aplicada, IBILCE, UNESP - Universidade Estadual Paulista, SP, Brazil
Email: ranga@ibilce.unesp.br
We consider the sequence of polynomials $\left\{P_{n}\right\}_{n \geq 0}$ satisfying the recurrence formula

$$
P_{n+1}(x)=\left(x-c_{n+1}\right) P_{n}(x)-d_{n+1}\left(x^{2}+1\right) P_{n-1}(x), \quad n \geq 1,
$$

with $P_{0}(x)=1, P_{1}(x)=x-c_{1}$, where $\left\{c_{n}\right\}_{n \geq 1}$ is a real sequence and $\left\{d_{n+1}\right\}_{n \geq 1}$ is a positive chain sequence. The above recurrence formula can be classified as belongs to the class of recurrence formulas known as $R_{I I}$ type recurrence formulas. It turns out that the polynomials P_{n} are characteristic polynomials associated with certain generalized eigenvalue problems involving two tri-diagonal matrices. Even though the zeros of P_{n} are simple and lie on the real line, with our $R_{I I}$ type recurrence formula one can always associate a positive measure on the unit circle. The orthogonality properties satisfied by the polynomials P_{n} with respect to this measure is also studied. Examples are given to justify the results.

