Isotopic evidence of C₄ grasses in southwestern Europe during the Early Oligocene – Middle Miocene


Geology published online 12 November 2010;
doi: 10.1130/G31117.1

Advance online articles have been peer reviewed and accepted for publication but have not yet appeared in the paper journal (edited, typeset versions may be posted when available prior to final publication). Advance online articles are citable and establish publication priority; they are indexed by PubMed from initial publication. Citations to Advance online articles must include the digital object identifier (DOIs) and date of initial publication.

© Geological Society of America
Isotopic evidence of C4 grasses in southwestern Europe during the Early Oligocene–Middle Miocene


1Program in Ecology, Evolution and Conservation, University of Illinois, Urbana, Illinois 61801, USA
2University of Maryland Center for Environmental Science, Appalachian Laboratory, Frostburg, Maryland 21532, USA
3Departamento de Estratigrafía y Paleontología, Universidad de Granada, Granada 18002, Spain
4French Geological Survey Consultant, BRGM (Bureau de Recherche Géologiques et Minières), Avenue de Concrý, 45100 Orléans, France
5Department of Earth and Planetary Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
6Departments of Plant Biology and Geology, University of Illinois, Urbana, Illinois 61801, USA

ABSTRACT

C4 plants are widely successful in the grass-dominated ecosystems of tropical, subtropical, and warm-temperate regions, largely as a result of their ability to limit photorespiration and improve water-use efficiency. A widely held paradigm is that low (<400 ppm) atmospheric CO2 concentrations were an important factor selecting for the origin of C4 plants, although support in geological records is limited. We determined the carbon isotopic composition of 686 individual grass-pollen grains preserved in eight samples of lacustrine and shallow-marine sediments from three basins spanning the Early Oligocene to Middle Miocene in southwestern Europe. Grasses composed <15% of the total abundance of terrestrial pollen grains, and 26%–62% of the grass pollen was from C4 grasses. Thus C4 grasses occurred on the landscape as early as the earliest Oligocene, ~14 m.y. earlier than previous isotopic evidence of first C4 plants and before pCO2 fell during the Oligocene.

EXPLANATION

C4 plants compose only 3% of extant species of flowering plants, yet they account for ~25% of global terrestrial primary productivity, dominate tropical, subtropical, and warm-temperate grasslands, and include important crops and weeds. The success of C4 plants primarily results from enhanced carbon fixation under conditions promoting photorespiration and improved water-use efficiency during drought (Sage, 2004). C4 photosynthesis first arose in the grass family (Poaceae); a lag of millions of years ensued before the subsequent rise of C4 grasses to ecological dominance during the Late Miocene–Pliocene (Edwards et al., 2010). Variability in the timing of this worldwide expansion of C4 grasslands indicates the importance of regional (e.g., climate, fire), rather than global (e.g., pCO2) controls on their spread (Osborne and Beerling, 2006; Tipple and Pagani, 2007). Nevertheless, it remains a prominent hypothesis that declining pCO2 during the Oligocene was a driver and/or precondition for origin of C4 photosynthesis (e.g., Edwards et al., 2010; Sage, 2004). However, support for this supposition from palaeorecords is limited (Tipple and Pagani, 2007).

Detecting C4 grasses within predominantly C3 plant communities in geological records is challenging. Grass pollen is morphologically indistinct below the family level, and thus palynological analysis is unsuitable for distinguishing C3 and C4 grasses. The oldest known grass macrofossil with diagnostic C4 anatomy dates to ca. 13 Ma (MacGinitie, 1962), but the distinct δ13C signature of C4 plants is detected in paleosols and n-alkanes beginning ca. 18 Ma (Tipple and Pagani, 2007), and the earliest likely C4 phytoliths are from ca. 19 Ma (Strömberg, 2005). Molecular phylogenies of Poaceae place the origin of C4 ca. 25–37 Ma, which encompasses a precipitous drop in pCO2 from >1000 to <500 ppm (e.g., Pagani et al., 2005), arguably supporting the C4–pCO2 hypothesis (Bouchenak-Khelladi et al., 2009; Christin et al., 2008; Vicentini et al., 2008). However, this range is too large to definitively attribute C4 origin to declining pCO2. In addition, recently discovered grass phytoliths in Late Cretaceous coprolites (Prasad et al., 2005) suggest a significantly older, Paleocene–Eocene origin (ca. 65–34 Ma), origin of C4 grasses (Vicentini et al., 2008).

Carbon isotopic analysis of grass-pollen grains provides a novel approach for rigorously detecting C4 grasses among C3 plant biomass (Amundson et al., 1997). Using a spooling-wire microcombustion device interfaced with an isotope ratio mass spectrometer (SWM-IRMS), Nelson et al. (2007) showed that the population distribution of individual pollen grains from known C3 and C4 grasses could be distinguished using a threshold δ13C value. This approach was validated by comparing δ13C-based estimates of C4 grass pollen abundance in lake-sediment surface samples with the abundance of C4 grasses on the surrounding landscape (Nelson et al., 2008). Because this approach does not use an isotope-mixing model, it enables the detection of C4 grasses at lower abundances and higher confidence limits than bulk-phase isotopic approaches. Here we report δ13C analyses of fossil grass-pollen grains extracted from Early Oligocene to Middle Miocene deposits to assess the hypothesis that low pCO2 was required for the origin of C4 grasses.

STUDY SITES AND PALEOENVIRONMENTS

The samples come from three distinct sites in southwestern Europe (Fig. 1). The proportions of different terrestrial pollen types in sediment records from these sites indicate the relative abundances of different plants on the landscape, albeit imperfectly because of differences in pollen production, dispersal, and preservation (Bennett and Willis, 2001). However, we do not attempt to reconstruct temporal variations in C4 grass pollen abundance because of potential basin-specific controls on vegetation composition, lack of contiguous palaeorecords spanning the Oligocene–Miocene, and the small number of samples per site.

Rubíeles de Mora

Four samples come from a 320-m-long core from the Rubíeles de Mora Basin in northeast Spain (40°10′60″N, 0°39′0″W). Mammal assemblages and magnetostratigraphy indicate that these samples date to the Burdigalian–Langhian (ca. 20–15 Ma). During the Early Miocene the basin contained a deep lake with anoxic hypolimnetic waters. Pollen assemblages indicate that in local to regional uplands during the Burdigalian–Langhian the climate was characterized by a 7–9 month dry season, as inferred from abundant xerophytic taxa. Grasses compose 10–15% of the pollen spectra, which together with the xerophytes, suggests an open landscape similar to modern warm steppe or grass-dominated woodland. Similar xerophytic pollen assemblages today occur along the coast of the

© 2010 Geological Society of America. For permission to copy, contact Copyright Permissions, GSA, or editing@geosociety.org. Geology, December 2010; v. 38; no. 12; p. 1091–1094; doi: 10.1130/G31117.1; 3 figures; Data Repository item 2010297.

1,6*E-mails: dmnelson@al.umces.edu; fshu@life.illinois.edu.
MATERIALS AND METHODS

in the pollen spectra indicate marked seasonality of precipitation. Grasses abundant thermophilous taxa and a subtropical climate. Several xerophytes were preserved in anoxic conditions. Pollen and macrofossils indicate Rupelian (ca. 33–32 Ma) and near the Priabonian-Rupelian boundary Paris Basin: palynomorphs indicate that these samples date to the lower exclude carbon-containing chemicals (Nelson et al., 2006). Single grains of grass pollen were isolated from the resulting pollen-water slurry at 200x magnification on a microscope slide, thoroughly rinsed in nano-pure water, and transferred to ~0.4 μL drops of nano-pure water using a micro-manipulator. The grains (and water) were then applied to a SWiM-IRMS using a steel and glass syringe (Nelson et al., 2007, 2008). The number of individual grains of grass pollen applied to the SWiM device ranged from 139 to 222 per sample (see the GSA Data Repository).

Following the methods of Nelson et al. (2008), blanks (nano-pure water to which single grains of grass pollen were added and then removed) were analyzed concomitantly with samples from each site. A 2σ threshold of blank CO₂ yields was used to set the minimum size threshold; samples below this threshold were excluded from further analysis. The final δ¹³C data were blank-corrected using isotopic mass balance. A threshold of −19.2‰ was used to distinguish C₄ (more negative) from C₃ grass pollen (more positive), except that in our study we accounted for variations in the threshold value that likely occurred in response to variations in δ¹³C of atmospheric CO₂ (δ¹³C-CO₂) over the Cenozoic (Zachos et al., 2001). Variations in δ¹³C-CO₂ were estimated by assuming long-term isotopic equilibrium between δ¹³C-CO₂ and δ¹³C of marine carbonate (δ¹³C_Car), and offsets of −7‰ (Mora et al., 1996) and −9‰ (Koch et al., 1995) between these pools. The resulting variation in δ¹³C-CO₂ was used to adjust the −19.2‰ threshold (Fig. 2), and to plot errors on estimates of C₄ grass pollen abundance (Fig. 3). Thresholds adjusted using an offset of −7‰ (−9‰) between δ¹³C-CO₂ and δ¹³C_Car ranged from −19.1‰ to −18.4‰ (−21.1‰ to −20.4‰).

RESULTS AND DISCUSSION

The number of grains of grass pollen applied to the wire with peak areas exceeding the 2σ range of blanks ranged from 63 to 100 (see the Data Repository). An average of ~45% of applications were above the minimum size threshold for analysis, which is similar to the percent (47%) obtained from grass pollen in contemporary lake surface sediments (Nelson et al., 2008). Consistent with previous studies (Nelson et al., 2007, 2008), the majority (79%) of δ¹³C data points (Fig. 2) are within or between the typical range of δ¹³C values expected for C₄ (−33‰ to −22‰) and C₃ (−15‰ to −10‰) plants. Values more positive than −33‰, or more positive than −10‰, likely occur because of poor analytical precision and uncertainty in the isotopic composition and variability of the subtracted analytical blanks (Nelson et al., 2007). In addition, samples of pollen from known C₄ (Bromus thominii, B. viomozorius, and Koeleria capensis) and C₃ (Zea mays and Ehrharta erecta var. natalensis) grasses that were treated and analyzed concomitantly with fossil samples yielded accurate classification, on average, 87% of the time for C₄ and 88% of the time for C₃, when using a cutoff threshold of −19.2‰.

The δ¹³C threshold values modified for variations in δ¹³C-CO₂ indicate that the sediment samples contain 26%–62% C₄ grass pollen (Figs. 2 and 3). Artificial mixtures of 50 grains of grass pollen that authentically contained 0% C₄ grass pollen were classified by our methods as containing 0%–20% C₄ pollen, whereas samples of 100 grains were classified as 0%–15% C₄ (2σ, p < 0.05), providing an estimated boundary for the expected rate of false positives (Nelson et al., 2007). Assuming that the false positive rate is comparable for grains from well-preserved sediments, the percentages of C₄ grass pollen in our samples exceed these thresholds.

Diagenesis could influence the measured δ¹³C values of grass pollen, potentially leading to isotopic biases. However, a previous calibration study (Nelson et al., 2008) suggested that early diagenesis of pollen does not significantly influence the measured δ¹³C values of grass pollen. The false detection rate for Oligocene–Miocene sediments is unlikely to be

Red Sea, the shores of the Arabian Peninsula, and in North Africa. Mean annual air temperatures were 18–20 °C (Jiménez-Moreno et al., 2007).

Provence Basin

Two samples come from an ~80-m-long section from the Provence Basin (43°31′N, 5°25′W) in red clays correlated with upper Ludian Formation of the Paris Basin (43°31′N, 5°25′W). The core was dated using mammal, paly- nomorph, and gastropod assemblages, which indicate that these samples date to the Chattian (ca. 26.5–24 Ma). Sedimentary evidence indicates that the deposits were of lacustrine and shallow-marine origin and pre- date to the Chattian (ca. 26.5–24 Ma). Sedimentary evidence indicates that the deposits were of lacustrine and shallow-marine origin and pre- served in anoxic conditions. The pollen assemblages indicate abundant thermophilous plants and a subtropical and/or subarid climate. Grasses compose <10% of the pollen spectra. Today similar pollen assemblages occur in tropical-subtropical America, Africa, and Asia (Châteauneuf and Nury, 1995).

Paris Basin

Two samples come from the Paris Basin: one from the Caillasse d’Orgemont Formation in the Bois d’Autumne quarry (49°00′N, 2°51′W) and one from the Mezieres S 55A well in the Brenne area (46°44′20″N, 1°17′70″W) in red clays correlated with upper Ludian Formation of the Paris Basin: palynomorphs indicate that these samples date to the lower Rupelian (ca. 33–32 Ma) and near the Priabonian-Rupelian boundary (ca. 34–33 Ma), respectively. These lacustrine to shallow-marine sediments were preserved in anoxic conditions. Pollen and macrofossils indicate abundant thermophilous taxa and a subtropical climate. Several xerophytes in the pollen spectra indicate marked seasonality of precipitation. Grasses compose ~10% of the pollen spectra, typical of modern landscapes in tropical-subtropical America, Africa, and Asia (Châteauneuf, 1980).

MATERIALS AND METHODS

We extracted pollen from 10–30 cm³ of sediment using standard techniques (including an acid treatment to remove carbonate) modified to exclude carbon-containing chemicals (Nelson et al., 2006). Single grains of grass pollen were isolated from the resulting pollen-water slurry at

Figure 1. Sample localities: 1—Rubielos de Mora Basin (15–20 Ma); 2—Provence Basin (24–26.5 Ma); 3—Paris Basin (32–34 Ma). Shading indicates modern abundances of C₄ grasses in grass floras (from Sage et al., 1999).

GSA Data Repository item 2010297, table of detailed sample information, is available online at www.geosociety.org/pubs/ft2010.htm, or on request from editing@geosociety.org or Documents Secretary, GSA, P.O. Box 9140, Boulder, CO 80301, USA.
significantly different, because the sporopollenin exine of pollen grains is highly resistant to physical and chemical alteration (van Bergen et al., 1993); although pollen grains are susceptible to oxidation, the sediments used in our study were preserved in anoxic conditions. Neither the sediments nor the pollen grains show signs of strong diagenetic alteration. Regardless, Jahren (2004) showed that pollen treated with 30% hydrogen peroxide for 24 h was <0.5‰ different in δ13C than untreated pollen.

There are possible environmental influences on the threshold value (−19.2‰) used to distinguish C4 from C3 grass pollen that exceed the adjustments for variations in δ13C-CO2. Large changes in pCO2, such as occurred during the Oligocene (Fig. 3), might affect the threshold by altering the ratio of intercellular to atmospheric CO2 and thus the isotopic composition of C4 plants. However, variations in pCO2 over the range that occurred during the Oligocene–Miocene do not significantly influence plant δ13C values (e.g., Arens et al., 2000). Another possible influence is semiarid climatic conditions in southwestern Europe during the Oligocene–Middle Miocene (e.g., Jiménez-Moreno et al., 2007). Under conditions of low water availability, δ13C values of C4 plants have been observed to shift by as much as +3‰ (e.g., Ehleringer and Cooper, 1988). Thus a threshold δ13C value that does not account for aridity could potentially cause misclassification of C4 grass pollen grains as C3. To investigate the potential effect of aridity, we shifted the threshold values for distinguishing C4 and C3 grass pollen by 3‰ in the positive direction. After this shift, our estimates for C4 grass pollen abundance for 5 of the 8 samples, including 3 of the 4 Oligocene samples, remain above a conservative analytical error of 20‰ misclassification (see the Data Repository).

Because the existence of C4 grass pollen in our samples cannot be explained by diagenesis and/or environmental influences on threshold values, our data provide unequivocal evidence for C4 grasses in southwestern Europe by the Early Oligocene. This conclusion is in accord with those from recent molecular results (e.g., Vicentini et al., 2008) indicating that C4 grasses originated earlier than has been deduced from previous geochemical approaches.

The likely greater proportions of C4 grasses during the Oligocene–Middle Miocene than at present in southwestern Europe (Fig. 1) imply that temperatures and/or moisture availability were favorable for C4 plants. Consistent with this notion, the closest modern analogs of Oligocene–Middle Miocene pollen assemblages from southwestern Europe are from regions where today C4 grasses dominate grass floras (e.g., northern Egypt and the northern Sinai Peninsula) and where climates are warmer and lacking the seasonal Mediterranean climates that became established in Europe during the Pliocene (Suc, 1984). Climate reconstructions from central Europe indicate that mean annual temperatures were lower in the Late Eocene–Early Oligocene than in the Late Oligocene (Mosbrugger et al., 2005). However, the lower annual temperatures during the Late Eocene–Early Oligocene resulted from colder winters, and warm-month (i.e., growing season) temperatures remained >25 °C during the Eocene—

Figure 2. Histograms of δ13C values of grass pollen samples analyzed for this study. Black lines represent proportion of each sample within 1‰ bins. Vertical dashed lines signify thresholds (TH) for distinguishing C4 from C3 grass pollen using –8‰ offset between δ13C-CO2 and δ13Cmc (−8‰ being average of offsets indicated by Mora et al. [1996] and Koch et al. [1995]; mc—marine carbonate). VPDB—Vienna PeeDee belemnite.

Figure 3. C4 grass pollen abundances in this study as percent of total grass pollen using thresholds from Figure 2. Error bars on estimates of C4 grass pollen abundance indicate uncertainty in offset between δ13C-CO2 and δ13Cmc (−7‰ to −9‰, as described in text; mc—marine carbonate). Error bars on ages indicate dating uncertainties. Also shown is pCO2 (Pagani et al., 2005; gray curve) record. Light gray rectangle represents approximate timing of expansion of C4 grasslands in many regions of the world (Tipple and Pagani, 2007) and darker gray rectangle represents molecular clock range for C4 grass origin (Bouchenak-Khelladi et al., 2009; Christin et al., 2008; Vicentini et al., 2008). L. Eoc.—Late Eocene; E. Oligo.—Early Oligocene; L. Oligo.—Late Oligocene; M. Mio.—Middle Miocene. References for oldest C4 grass macrofossil, oldest δ13C evidence of C4, and oldest C4 phytoliths include MacGinitie (1962), Tipple and Pagani (2007), and Strömberg (2005), respectively.
Middle Miocene (Mosbrugger et al., 2005), consistent with temperature inferences from pollen assemblages at our sites (e.g., Jiménez-Moreno et al., 2007). Thus subtropical to warm-temperate conditions during the Oligocene–Middle Miocene in western Europe may have promoted photorespiration in C₃ plants and conferred a competitive advantage to C₄ grasses despite high pCO₂. Aridity may also have favored C₃ grasses. Vegetation reconstructions at our sites suggest semiarid climates (e.g., Jiménez-Moreno et al., 2007), as does increased hypsodonty in the teeth of terrestrial plant-eating mammals after 18 Ma in southwestern Europe (Fortelius et al., 2002).

A recent vegetation-climate modeling study (Lunt et al., 2007) that estimated the worldwide distribution of C₃ grasses found a high relative extent and abundance of C₃ grasses during the Late Oligocene, despite simulated pCO₂ up to 838 ppm. Lunt et al. (2007) suggested that the competitive advantage that high temperatures confer to C₃ grasses outweighs the competitive advantage of high pCO₂ for C₄ grasses. Our data support this conclusion by showing that C₃ grasses existed before pCO₂ dropped below 800 ppm (Fig. 3). The evidence refutes the idea that low pCO₂ (Fortelius et al., 2002).

Vegetation reconstructions at our sites suggest semiarid climates (e.g., Jiménez-Moreno et al., 2007), as does increased hypsodonty in the teeth of terrestrial plant-eating mammals after 18 Ma in southwestern Europe (Fortelius et al., 2002).

Vegetation reconstructions at our sites suggest semiarid climates (e.g., Jiménez-Moreno et al., 2007), as does increased hypsodonty in the teeth of terrestrial plant-eating mammals after 18 Ma in southwestern Europe (Fortelius et al., 2002).