Miocene to Pliocene vegetation reconstruction and climate estimates in the Iberian Peninsula from pollen data

Gonzalo Jiménez-Moreno a,⁎, Séverine Fauquette b, Jean-Pierre Suc c

a Departamento de Estratigrafía y Paleontología, Universidad de Granada, Fuente Nueva S/N, 18002, Granada, Spain
b Institut des Sciences de l’Evolution de Montpellier (UMR CNRS 5554), Equipe Paléoenvironnements et Paléoclimats, case courrier 061 Université de Montpellier 2, Place Eugène Bataillon, 34095 Montpellier cedex 05, France
c Laboratoire PaléoEnvironnements et PaléoSphère (UMR CNRS 5125), Université Claude Bernard—Lyon 1, 27–43 boulevard du 11 Novembre, 69622 Villeurbanne Cedex, France

A R T I C L E I N F O

Article history:
Received 30 January 2009
Received in revised form 19 June 2009
Accepted 3 August 2009
Available online 15 August 2009

Keywords:
Miocene
Pliocene
Iberian Peninsula
pollen
vegetation
climate change

A B S T R A C T

Pollen analysis of Miocene and Pliocene sediments from the Iberian Peninsula shows a progressive reduction in plant diversity through time caused by the disappearance of thermophilous and high-water requirement plants. In addition, an increase in warm–temperate (mesothermic), seasonal-adapted “Mediterranean” taxa, high-elevation conifers and herbs (mainly Artemisia) occurred during the Middle and Late Miocene and Pliocene. This has mainly been interpreted as a response of the vegetation to global and regional processes, including climate cooling related to the development of the East Antarctic Ice Sheet and then the onset of the Arctic Ice Sheet, uplift of regional mountains related to the Alpine uplift and the progressive movement of Eurasia towards northern latitudes as a result of the northwards subduction of Africa. The development of steppe-like vegetation in southern Iberia is ancient and probably started during the Oligocene. The onset of a contrasted seasonality in temperature during the Mid-Pliocene superimposed on the pre-existing seasonality in precipitation, the annual length of which increased southward. The Mediterranean climatic rhythm (summer drought) began about 3.4 Ma and caused the individualization of modern Mediterranean ecosystems. Quaternary-type Mediterranean climatic fluctuations started at 2.6 Ma (Gelasian) resulting in repeated steppe vs. forest alternations. A latitudinal climatic gradient between the southern and the northern parts of the Iberian Peninsula existed since the Middle Miocene.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

The Miocene and Pliocene, from 23.03 to 2.558 Ma, is a crucial time-interval, as the climate of the mid-latitude regions evolved from warm conditions during the Miocene to a cooler Pleistocene, i.e. from a greenhouse to an icehouse world. The geographical position of the Iberian Peninsula, between Africa and Eurasia and between Mediterranean and temperate climates, makes this region of great interest for paleobotanic and paleobiogeographic studies. Mainly because of their southern geographical situation, these areas served as a refuge for mostly thermophilous plants that otherwise would have vanished from Eurasia during the Pleistocene glaciations, and today the southern part of the Iberian Peninsula contains Miocene, Pliocene and Pleistocene relics in their present-day flora (Quézel and Médail, 2003; Thompson, 2005). Alpine tectonics was active during the Neogene, producing uplift of the Pyrenees and Betics and the closure of the Betic and Rifian corridors during the Tortonian and Messinian, respectively, which caused the desiccation of the Mediterranean Sea (Messinian Salinity Crisis). Then, important paleogeographical changes also occurred (see below; Rögl, 1998; Meulenkamp and Sissingh, 2003) that may have contributed to the pattern of the modern vegetation.

In the last 30 years an intensive effort has been done in order to reconstruct the vegetation and climate of the Iberian Peninsula during the Miocene and Pliocene and extensive pollen studies, using a botanical approach, contributed to achieve this target (Bessedik, 1984; Diniz, 1984a,b; Suc, 1984; Bessedik, 1985; Suc et al., 1992, 1995a,b; Fauquette et al., 1998a, 1999; Jiménez-Moreno, 2005; Fauquette et al., 2006; Agustí et al., 2006; Fauquette et al., 2007; Jiménez-Moreno and Suc, 2007; Jiménez-Moreno et al., 2007a,b). In this paper, we present a synthesis of pollen data, allowing the vegetation reconstruction and the calculation of climatic parameters for the Iberian Peninsula during the Miocene and Pliocene (Figs. 1 and 2). The deduced temporal climatic variations will be discussed within the frame of latitudinal gradients during the Miocene and Pliocene.

2. Methods for vegetation and climate reconstruction

Pollen identification was accomplished at the finest possible taxonomic level by comparing the Neogene pollen grains with their present-day relatives using modern pollen collections, (un)published pollen atlases and pollen databases. Percentages of pollen taxa were calculated on the total sum of the pollen grains, standard synthetic diagrams (Suc, 1984) were constructed (Fig. 2). In these pollen diagrams, taxa have been arranged into 12 different groups based on...
Ecological requirements (mainly the thermics such as mean annual temperature) of their living nearest representatives (most often at the genus level), with respect to the Nix's (1982) annual temperature) of their living nearest representatives (most ecological requirements (mainly the thermic ones such as mean annual temperature) of their living nearest representatives (most often at the genus level), with respect to the Nix's (1982) classification: megathermic plants (living in areas with a tropical climate); mega-mesothermic plants (living in areas with a subtropical climate); Cathaya, an altitudinal conifer living today in the subtropical zone of China; mesothermic plants (living in areas with a warm–temperate climate); meso-microthermic plants (living in areas with a cool–temperate climate); microthermic plants (living in areas with a cold climate); non-significant elements; Cupressaceae, which may inhabit most of these climatic zones, the pollen of which is impossible to be identified at the genus level; Mediterranean xerophytes (living in areas with a summer drought); herbs and shrubs where plants of various significance are grouped. Such synthetic pollen diagrams provide a macro-visualization of the main changes in the vegetation (see Fig. 2) and allow an easier comparison with reference oxygen isotope curves. This method has been proven to be a very efficient tool for high-resolution land climate reconstructions; for example, characterizing warm–cool alternations related to Milankovitch cycles for both the Miocene (Jiménez-Moreno et al., 2005, 2007b) and the Pliocene (Popescu, 2001, 2006; Popescu et al., 2006a,b).

The climate was quantified using the ‘Climatic Amplitude Method’ developed by Fauquette et al. (1998a,b), which is able to reconstruct the climate of periods for that no analogue exists in the modern pollen floras. This transfer function was applied to all the selected pollen sequences in order to produce comparable and homogenous climate results (Figs. 3–5). Southern European Neogene pollen floras contain a mixture of temperate, warm–temperate and subtropical plants (even some tropical plants during the Miocene), which live today in different and distant parts of the world.

The past climate is estimated by transposing the climatic requirements of the maximum number of modern taxa to the fossil pollen data. This approach relies on the relationship between the relative pollen abundance of each individual taxon and the corresponding present-day climate. Presence/absence limits, as well as abundance thresholds, have been defined for 60 taxa from modern pollen floras and the literature. This method takes into account not only the presence/absence criterion but also pollen percentages to provide more reliable reconstruction. Low abundances of some megathermic and mega-mesothermic taxa (e.g. Microtropis fallax, Avicennia) are meaningful and should be taken into account, as pollen grains of these plants are generally under-represented because they suffer some disadvantage in the transport. Conversely, low abundances of wind-pollinated taxa (e.g. Quercus, Alnus, Corylus) might reflect long-distance transport of these high pollen producers by air and then water. In this case, very low pollen percentages could have a weak significance. With this method, the most probable climate for a past pollen assemblage is estimated as the climatic interval in which the highest number of taxa can exist.

The climatic estimate is presented as an interval and as a ‘most-likely value’, which corresponds to a mean that is weighted according to the size of the climatic intervals of all taxa exceeding their presence/absence and/or abundance thresholds. As the precision of the information obtained from a taxon's climatic interval is inversely related to the breadth of this interval, the weights are greater for taxa with smaller intervals. In this paper, we present reconstructions of two climatic parameters estimated from the pollen data: mean annual temperature (Ta) and mean annual precipitation (Pa). High-latitude/altitude trees were excluded from the reconstruction process. Selection of the trees to be classified as high-latitude/altitude and then exclusion of the quantification process results from numerous pollen studies (e.g. Suc et al., 1995a,b, 1999; Jiménez-Moreno, 2005) that show the Neogene vegetation zonation to follow a similar latitudinal and altitudinal zonation to that observed in present-day Southeastern China (Wang, 1961), where most of the thermophilous taxa that disappeared from Europe during the Neogene are found today. The estimates obtained,
therefore, correspond to the climate at low- to middle-altitude (Fauquette et al., 1998a). Pinus and non-identified Pinaceae (due to poor preservation of these bisaccate pollen grains) have been excluded from the pollen sum of the fossil pollen spectra (Fauquette et al., 1998a, 1999). Pollen grains of these taxa are often over-represented in the sediments because of their high-production and/or overabundance in air and (fluvial and marine) water transport (Heusser, 1988; Cambon et al., 1997; Beaudouin et al., 2007).

The sedimentary sequences have been dated using foraminifera, calcareous nannoplankton, magnetostratigraphy or mammals (Table 1). Although none of the pollen successions covers the entire Miocene–Pliocene time-interval (Fig. 2), they provide a discontinuous but reliable record of vegetation and climate changes in time and space in the Iberian Peninsula.

3. Neogene flora and vegetation

3.1. Plant diversity

Even if some parts of the Iberian Peninsula are characterized today by a very diverse flora and are main refuge areas of thermophilous plants (Quézel and Médail, 2003), a richer and more diverse flora (at the family and genus level) has been identified for the Miocene and Pliocene that consisted of plants today growing in different
geographic areas (the most significant of them are pointed out in bold characters):

1. Tropical and subtropical Africa, America and Asia (Avicennia, Bombax, Caesalpiniaeae, Euphorbiaceae, Engelhardia, Platyccaryia, Rubiaceae, Rutaceae, Symplocos, Taxodiaceae, Hamamelidaeae, Myriica, Sapotaceae and Vitaceae);
2. Warm–temperate latitudes of the Northern Hemisphere (Acer, Alnus, Betula, Cupressaceae, Fagus, Populus, deciduous Quercus and Salix);
3. Mediterranean region (Olea, Phillyrea, Ceratonia, evergreen Quercus).

3.2. Vegetation organization

The vegetation was characterized by a complex mosaic due to its dependency on several factors (water availability, characteristics of the soils, orientation of relief slopes, etc.) that were superimposed to a latitudinal–altitudinal organization. The most important factor, as of today, was the latitude, controlling both temperature and precipitation. In addition, the vegetation was organized in altitudinal belts, and if we compare the Neogene vegetation reconstructed in this area with today's mean annual temperature (Ta) for Málaga (next to Andalucía G1 and Alborán A1) is 17.5 °C; for Gor is ca. 14 °C and for La Rierussa ca. 16 °C. Mean annual precipitation (Pa) for Málaga is ca. 600 mm; for Gor ca. 450 mm and for La Rierussa ca. 550 mm.

![Fig. 3. Location of selected studied sites covering the Middle Miocene in the Iberian Peninsula and their climatic estimates in the palaeogeographical framework of the early Serravallian (from Rögl, 1998). Pollen localities (Jiménez-Moreno, 2005): (1) Andalucía G1; (2) Alborán A1; (3) Gor and (4) La Rierussa. Two rough vegetational domains can be recognized in the Iberian Peninsula at that time (A and B). Modified from Jiménez-Moreno and Suc (2007). Note that today's mean annual temperature (Ta) for Málaga (next to Andalucía G1 and Alborán A1) is 17.5 °C; for Gor is ca. 14 °C and for La Rierussa ca. 16 °C. Mean annual precipitation (Pa) for Málaga is ca. 600 mm; for Gor ca. 450 mm and for La Rierussa ca. 550 mm.](image-url)
An aspect of this organization of the vegetation needs some comments. The present-day southern Iberian Peninsula steppe vegetation has been often considered to have an anthropic origin, i.e. to be very recent. The evidence of the ancient status of this open vegetation structure, introduced some interrogation within the phytogeographic framework about this modern steppe (see Quézel and Médail, 2003: p. 95): which part is to be allocated to primitive steppes and to the recent anthropozoogenic activities, respectively? Our results, documenting a large development of “warm steppes” in southeastern Iberia, already in the earliest Miocene, are a serious argument (considering also their continuity throughout the Pliocene) supporting the importance of the primitive steppes with respect to their modern distribution. An open vegetation structure composed of herbs and shrubs adapted to dry and warm conditions existed in the southernmost Europe and Northern Africa during the earliest Miocene and probably during the Oligocene, probably being an indicator of the onset of the development of the Sahara Desert (Swezey, 2009). The plants that contributed to such open vegetation changed through time up to its present-day constitution, being still dominated by the subdesertic taxa.

4. Vegetation dynamics

4.1. Burdigalian–Langhian

The regular occurrence and abundance of thermophilous species typical of the lowest altitudinal belts described above and the relative scarcity of altitudinal elements (Fig. 2) characterized the vegetation in the Iberian Peninsula at this time.

The southern part of the Iberian Peninsula (localities: Andalucía G1, Alborán A1, Andalucía A1, Gor; Figs. 2 and 3) was characterized by vegetation dominated by herbs (mostly Poaceae) and shrubs, which were probably under-represented in the pollen records (Favre et al., 2008). A mangrove with Avicennia and saline bearing elements such as Amaranthaceae–Chenopodiaceae, Ephedra, Plumbaginaceae, Caryophyllaceae, Plantago and Tamari, inhabited coastal environments. Today, this kind of impoverished mangrove represents the northernmost limit of mangroves and occurs under arid or semi-arid conditions as in the Red Sea and Persian Gulf (White, 1983; Audru et al., 1987). Pollen spectra are also characterized by the abundance of subdesertic elements, such as Nitraria, Lygeum, Prosopis, Neurada, and Calligonum indicating very dry and warm conditions, as these taxa are found today in North Africa under hyper-arid conditions (Saharan elements, with Neurada and Calligonum indicating dunes). Thermophilous (i.e. megathermic and mega-mesothermic) plants such as Taxodium-type, Engelhardtia, Sapotaceae, Myrica, Alchornea, Mussaenda type, Melastomataceae, Rutaceae, Avicennia and Sindora; and mesothemeric plants, such as Quercus deciduous-type, Caryya and Zelkova, also contribute to such a pollen assemblage. Cathaya, a gymnosperm today restricted to some subtropical mid-altitude forests of Southeastern China, is also present but generally in very low percentages. Mid-altitude (Cedrus, Tsuga) and high-altitude (Abies, Picea) conifers appear only occasionally. The vegetation, according to the high percentage of herbs in the pollen spectra, was typical of an open environment. Percentages of the remaining groups are very low. The mesothermic trees were probably restricted to mid- or high-altitude environments.

Vegetation in the northeastern part of the Iberian Peninsula (Rubielos de Mora, La Rierussa and Sant Pau d’Ordal sections; Figs. 2 and 3) was also characterized by the high-abundance of herbs and shrubs, with Poaceae, Asteraceae, and halophytes such as Amaranthaceae–Chenopodiaceae and Plumbaginaceae (Jiménez-Moreno, 2005). Thermophilous elements (mostly Taxodium-type and Engelhardtia) were abundant and Avicennia mangrove also populated the coastal area. However, many of the subdesertic elements identified in the southern part of the Iberian Peninsula were not present here and Caesalpiniaeeae and Acacia are recorded in lower percentages. The rest of the assemblage is characterized by temperate elements as Amaranthaceae–Chenopodiaceae, Ephedra, Plumbaginaceae, Caryophyllaceae, Plantago and Tamari, inhabited coastal environments. Today, this kind of impoverished mangrove represents the northernmost limit of mangroves and occurs under arid or semi-arid conditions as in the Red Sea and Persian Gulf (White, 1983; Audru et al., 1987).
marine sediments, presumably because of the capacity of bisaccate Pinus and indeterminate Pinaceae, can be particularly abundant in 1991; Cambon et al., 1997; Beaudouin, 2003). Today restricted to some subtropical mid-altitude forests of South-Quercus such as deciduous mixed forest mainly composed of mesothermic elements Platycarya and Liquidambar, broad-leaved evergreen forest and a steppe or a wood juxtaposition of greatly contrasted environments in the lowlands: a lakes) or at mid-altitude, but in general, not as open as in southern forests developing at low altitude along humid environments (rivers, and Sant Pau d’Ordal sections). Such pollen spectra suggest scattered age control of the 16 considered pollen localities indicating the authors of the pollen analyses. Table 1

<table>
<thead>
<tr>
<th>Section</th>
<th>Datation</th>
<th>Age</th>
<th>Pollen analysis by</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Rio Major F16</td>
<td>Fauquette et al. (1999)</td>
<td>Pliocene</td>
<td>Diniz (1984a)</td>
</tr>
<tr>
<td>5 Andalucia A1</td>
<td>ELF; Rodríguez-Fernández et al., 1999</td>
<td>Late Langhian–Early Tortonian</td>
<td>Jiménez-Moreno, 2005; Jiménez-Moreno and Suc, 2007</td>
</tr>
<tr>
<td>7 Rубиелос de Mora</td>
<td>Cruasafont-Pairó et al., 1966; Bessais and Cravatte, 1988, 1974; Montoya et al., 1996; Jiménez-Moreno et al., 2007b</td>
<td>Option 1 of Jiménez-Moreno et al. (2007b)</td>
<td>Aquitanian–Burdigalian</td>
</tr>
<tr>
<td>10 Zarratán</td>
<td>Rivas-Carballo et al. (1994)</td>
<td>Serravallian–Tortonian</td>
<td>Rivas-Carballo et al. (1994)</td>
</tr>
<tr>
<td>16 Caranceja</td>
<td>Alcalde Olivares et al. (2004)</td>
<td>Late Pliocene</td>
<td>Alcalde Olivares et al. (2004)</td>
</tr>
</tbody>
</table>

(mainly Carya, Zelkova and Buxus sempervirens type). Mid- and high-altitude conifers are very scarce in these samples. This is in agreement with the pollen data of Bessédik (1985) for the same area (La Rierussa and Sant Pau d’Ordal sections). Such pollen spectra suggest scattered forests developing at low altitude along humid environments (rivers, lakes) or at mid-altitude, but in general, not as open as in southern Spain. Pollen assemblages from the Iberian Peninsula denote the juxtaposition of greatly contrasted environments in the lowlands: a broad-leaved evergreen forest and a steppe or a wood–shrub vegetation. The presence of subdesertic taxa (Nitria, Lygeum, Prospis, Neurada, Calligonum and Caesalpiniaceae), which conditioned by a long dry season, together with others showing very high water requirements (like Engelhardia, Platycarya, Rubiaceae, Hamamelidaceae, Taxodium-type, Nyssa, Sapotaceae and Myrica), needing constant water, has two possible explanations. This could be due to the structure of the vegetation in altitudinal belts and the effect of humid cloud masses, which cling to the mountains at an altitude of ca. 400–500 m (Bessédik, 1984), similar to the Canary Islands today (Rivas-Martínez, 1987). Secondly, there may have been significant availability of water sources along rivers or around lakes, as has been interpreted as the cause of such a floral assemblage in the Rubielos de Mora lacustine Basin (Jiménez-Moreno, 2005; Jiménez-Moreno et al., 2007a,b) and which frequently occurs in subtropical and tropical Africa, for instance around Lake Tanganyika. In both situations water availability clearly controls the vegetation and would compensate for the lack of precipitations in the summer time. Swamp forests were also well developed during this time period as Taxodium or Glyptostrobus, Nyssa and Myrica show comparatively high values in the pollen spectra as well as ecologically related riparian forests, with Platanus, Liquidambard, Zelkova, Carya, Pterocarya and Salix.

Areas at higher altitude were characterized by an evergreen and deciduous mixed forest mainly composed of mesothermic elements such as Quercus, Carya, Pterocarya, Fagus, Ericaceae, llex, Carpiloliaceae, Liquidambard, Parrotia, Carpinus, Celtis, Acer, and also Engelhardia and Platycarya. It should also be mentioned that conifer pollen, mainly Pinus and indeterminate Pinaceae, can be particularly abundant in marine sediments, presumably because of the capacity of bisaccate pollen for long-distance transport (Heusser, 1988; Suc and Drivalieri, 1991; Cambon et al., 1997; Beaudouin, 2003). Cathaya, a gymnosperm today restricted to some subtropical mid-altitude forests of South-eastern China, was also present but generally in very low percentages. Other mid-altitude (Cedrus and Tsuga) and high-altitude (Abies and Picea) conifers were very scarce.

4.2. Serravallian

Important changes in the vegetation occurred gradually during this period of time: several megathermal elements (Buxus bahamensis group, Bombax, Dodonaea, Croton and Meliaceae), most of them typical from a broad-leaved evergreen forest, became rare and most of them disappeared from the Iberian Peninsula (Bessédik, 1985; Jiménez-Moreno, 2005). The evergreen–deciduous mixed forest suffered a great transformation due to the loss and decrease in the abundance of several thermophilous evergreen plants and the increase in deciduous mesothermic plants, such as deciduous Quercus, Fagus, Alnus, Acer, Betula, Alnus, Carpinus, Ulmus, Zelkova and Tilia. Thus, the vegetation showed a tendency towards increasing proportions of mesothermic deciduous elements coming from higher altitudes/latitudes. Even if the thermophilous elements decreased during this period, the swamp forest continued to be well developed. This palaeoecological change occurred slowly and gradually without major fluctuations. A similar vegetation change is observed during the same time-interval in pollen records from other areas of Europe (e.g., southern France, Switzerland, Austria and Hungary: Bessédik, 1985; Jiménez-Moreno, 2005; Jiménez-Moreno et al., 2005; Jiménez-Moreno and Suc, 2007; Jiménez-Moreno et al., 2007a,b).

Open vegetation seems to generally characterize the lowlands of the Iberian Peninsula at that time. However, the south (Andalucía G1, Alborán A1 and Andalucía A1 sections) featured higher amounts of subdesertic plants than the north, and the north (Orella section) featured higher amounts of montane indicators such as Pinus, Cathaya, Tsuga and Sciadopitys, indicating the proximity of a mountain range.

4.3. Tortonian

A reduction in thermophilous plants, and in plant diversity, continued in the Iberian Peninsula during the Tortonian. For example, Avicennia, which previously populated the coastal areas, also vanished, with a last appearance in Tortonian sediments from the southernmost part of Spain (cores Andalucía A1 and Alborán A1). At the same time, conifers from mid- (Cathaya, Tsuga and Cedrus) and high-altitude (Picea and Abies) belts strengthened.

The vegetation in the southern part of the Iberian Peninsula (localities: Andalucía G1, Alborán A1, Tortonian; Fig. 2 and 4) was
characterized by an open vegetation dominated by herbs and shrubs, with Poaceae as the most representative, but also saline bearing elements such as Amaranthaceae–Chenopodiaceae, Euphorbia, Plumbaginaeae, Caryophyllaceae, Plantago and Tamarix. Subdesertic plants, such as Nitraria, Lygeum, Prosopis, Neurada, and Calligonum were also present in this area. However, pollen data also indicate the presence of forests on the surrounding uplands.

Forested environments characterized the northeastern part of the Iberian Peninsula (Sanabastre/Sampsor sites in La Cerdanya; Bessaidik, 1985), where arboreal pollen dominates with low values of herbaceous taxa. The pollen flora is characterized by the dominance of Quercus, FAGUS, ALNUS and conifers (CATHAYA, PINUS, Taxodiaceae), reflecting the presence of mixed deciduous forests and swamp environments. ABIES, a high-altitude conifer is also recorded. Only a few megathermic plants are present with low values. However, the presence, in the Cerdanya Basin, of plants such as evergreen Quercus (in the microflora) or even Cassia, Mahonia, Cinnamomum, Banksia and Combretaceae (in the macroflora; Menéndez Amor, 1955) indicates a warmer climate than today. At Zaratón, the pollen assemblages were similar to those found today in the southwestern Mediterranean region with sclerophyllous woods of Quercus and pines associated with species characteristic of open vegetation as Cistaceae, Capparaceae, Ericaceae, Geraniaceae and Plantago. The presence of deciduous taxa indicates a warm–temperate climate in this region (Rivas-Carballo et al., 1994).

4.4. Messinian

Vegetation data from the Atlantic side of the Iberian Peninsula only comes from the Carmona area in the Guadalquivir Basin (southern Spain; Figs. 1 and 2). Pollen data from Carmona come from two sections and the pollen flora (analyses by J.-P. Suc, N. Feddi and J. Ferrier, unpublished) was dominated by herbs (alternating Poaceae and Asteraceae mainly) including rare subdesertic elements such as Lygeum and Neurada. PINUS was abundant and showed several fluctuations. Tree frequencies were low and were mostly constituted by deciduous Quercus.

The Andalucía G1 core showed open environments for the southern part of the Iberian Peninsula (Fig. 2), with vegetation rich in herbs, mainly Asteraceae, Poaceae, Nitraria, Neurada and Calligonum. Lygeum and other Mediterranean xerophytes were present. Arboreal taxa were frequent, dominated by deciduous Quercus, Taxodiaceae, Myrica and ALNUS, indicating the existence of more humid places in the hinterland or moister conditions at higher altitudes. PINUS continued to show important percentages.

In southern Catalonia (core Tarragona E2; Bessais and Cravatte, 1988) vegetation was characterized by the predominance of herbs (mainly Asteraceae and Poaceae, Lygeum, Nitraria and Calligonum), indicating dry to very dry environments. Mediterranean xerophytes were very frequent, making pollen assemblages very close to the modern thermo-Mediterranean association (Bessais and Cravatte, 1988). The presence of pollen grains of arboreal taxa (mainly deciduous Quercus, Taxodiaceae, Alnus, Caryya) indicates more humid places in the hinterland and along the rivers. PINUS was moderately abundant. As for Andalucía G1, pollen data did not show any distinct variation in the vegetation between the Messinian and Pliocene parts of the section.

Pollen data from the Can Villega section in Cerdanya (NE Iberian Peninsula) revealed a riparian forest environment (Taxodiaceae, Alnus, Myrica, Cyrillaceae–Clethraceae, Engelhardtia, Cephalanthus, Pterocarya, Populus, Nyssa and Salix) with many associated herbs (Cyperaceae, Poaceae and Typha; Agusti et al., 2006). PINUS was very scarce.

4.5. Pliocene

The same vegetation dynamics, marked by the disappearance of thermophilous plants and the increase in mesothermic and meso-

microthermic plants, continued. A mosaic of different plant associations inherited from the Miocene also characterized the vegetation at that time.

Vegetation data from the Atlantic side of the Iberian Peninsula comes from the Rio Maior F16 core (Portugal; Figs. 1 and 2). Vegetation in this area differs from the rest of the Iberian Peninsula by the high representation of Ericaceae, which still characterizes the Atlantic coast environments today (Oldfield, 1959). The pollen diagram of Rio Maior (Diniz, 1984a,b) shows the dominance of mega-mesothermic trees (mainly Cathaya, Engelhardia, Sequoia, Myrica and Taxodium). Mediterranean xerophytes such as Olea, Phillyrea, Cistus, Rhamnaceae and Quercus ilex-type were also significantly represented. In this pollen diagram, altitude indicators such as Abies, Tsuga, Sciadopitys were weakly represented, thus indicating that relief was far away or else was not very significant. The pollen study of Caranceja (Alcalde Olivares et al., 2004), located in Cantabria (northern Spain) and dated as Late Pliocene, also shows abundant percentages of Ericaceae. This probably indicates an Atlantic climatic influence that reaches as far as this locality (Fig. 1) in northern Spain.

The region of Catalonia (northeastern Spain) can be split into the Northwest and the Southwest Mediterranean (Suc, 1989), each represented by one site: Garraf 1 (Suc and Cravatte, 1982) in the Northwest Mediterranean zone and Tarragona E2 in the Southwest Mediterranean (Bessais and Cravatte, 1988; Suc et al., 1995b). At Garraf, mega-mesothermic trees were dominant, among them Taxodium-type indicating swamp conditions, Engelhardia, and Symlocos. The end of the pollen sequence was marked by the decrease of arboreal taxa to the advantage of herbaceous taxa (notably Artemisia, Asteraceae), indicating the beginning of the first glacial–interglacial cycles (Suc and Cravatte, 1982). Conversely, Tarragona was characterized by a predominance of herbs (mainly Asteraceae and Poaceae). Some herbaceous taxa such as Lygeum, Nitraria and Calligonum were also found, indicating very dry and warm conditions. Today these taxa can be found in North Africa under subdesertic conditions (Faquette et al., 1998a). There are decreased values of arboreal pollen grains compared to the Northwest Mediterranean zone, predominantly Taxodiaceae, Engelhardia and deciduous Quercus, as before. Mediterranean xerophytes were regularly represented in this pollen diagram. In fact, the pollen assemblages resemble the modern thermo-Mediterranean formation (Bessais and Cravatte, 1988).

In southern Spain (Andalucía G1 core), the composition of the pollen spectra is more or less similar to that of Tarragona, i.e. large quantities of herbs, including subdesertic herbs. Trees were well represented most likely due to the presence of nearby relief. Climatic fluctuations are recorded throughout the sequence of Andalucía G1 (Faquette et al., 2007). During the Pliocene, this region was characterized by a more or less similar vegetation type as today, i.e. an open subdesertic landscape (Suc et al., 1995b) but with more thermophilous taxa, found today in North Africa.

The mixed deciduous forest (mainly made up of conifers like PINUS, and several deciduous trees such as Quercus, Acer, Carpinus, Carvya, Pterocarya, Liquidambar, Platana, Tilia, Ulmus and Zelkova), situated at higher altitude, as well as the trees belonging to the highest altitudinal belts (Cathaya, Cedrus, Tsuga, Picea and Abies), became more abundant during this period. Another important fact that makes a difference between Pliocene and Miocene vegetation is the strong development of the steppe with Artemisia in the Iberian Peninsula since the Early Pliocene (see Garraf 1 pollen diagram; Fig. 2).

5. Climate change

The high presence of thermophilous elements during the Early (Burdigalian) and the early Middle Miocene (Langhian) suggests the existence of a warm, subtropical climate. The floral assemblages during that time clearly reflect the Miocene Climatic Optimum (MCO: Zachos et al., 2001; Shovenell et al., 2004). This is supported by the
estimated temperature values, based on the “Climatic Amplitude Method”, that shows most likely values of mean annual temperatures (Ta) between 17 and 21 °C at Rubielos de Mora and La Rierussa (Fig. 3) and even higher values for southern Spain, between 17 and 25 °C (Andalucía G1, Alboraín A1 and Gor sections). The presence of several xerophytes in the pollen spectra (Acacia, Prosopis, Calligonum, Lygeum, Neurada, Nitraria, Caesalpiniaceae, Ephedra and Convolvulaceae), particularly in southern Spain, and in the macrofloras of the Iberian Peninsula (presence of Proteaceae, Mimosaceae and Caesalpiniaceae) (Sanz de Siria Catalan, 1993), suggests that the overall climate was very dry and characterized by a strong seasonality with periods without any precipitation for 7–9 months (Sanz de Siria Catalan, 1993; this study). A dry subtropical climate is also in accordance with the previous climatic interpretations for the Early Miocene based on fossil mammals (Calvo et al., 1993). Precipitation estimates for the Iberian Peninsula at that time of about 743 mm for southern Spain, 900–1700 mm for the Rubielos de Mora area, and 900–1300 mm for La Rierussa in northeastern Spain (Jiménez-Moreno, 2005) are not in accordance with values of less than 500 mm mean annual precipitation suggested by the pollen record of subdesertic plants (Lygeum: 150–400 mm; Neurada: 20–200 mm; Nitraria: 50–150 mm; Calligonum: 40–100 mm; Fauquette et al., 1998a,b) identified in this study. Those values seem to be overestimated, notably for southern Spain, due to the mixture of taxa of different vegetation types, subtropical trees with high-humidity requirements and subdesertic herbs, biasing the estimation of the precipitation. These results reflect in fact local humid conditions under a generalized dry climate that could be due to either the effect of humid cloud masses, which cling to the mountains at an altitude of ca. 400–500 m (Bessedik, 1984), or to significant availability of water sources along rivers or around lakes.

A tendency towards cooler conditions occurred in the late Mid-Miocene (Serravallian) and Late Miocene (Tortonian) as many thermophilous plants disappeared reducing plant diversity from the Iberian Peninsula (Bessedik, 1985; Jiménez-Moreno, 2005). On the other hand, mesothermic plants (mainly deciduous Quercus, Alnus, etc.) and high-elevation conifers increased. This climatic change is related to a gradual decrease in temperature after the MCO that has been well-documented on a worldwide scale and has been correlated to a gradual decrease in temperature after the MCO that has been seen in the pollen data, marked by a decrease in thermophilous trees and an increase in herbs. Our quantitative reconstruction does not indicate changes through this period (Fauquette et al., 1998b), indicating the transition to a different climate regime.

The Garraf 1 pollen diagram (Suc and Cravatte, 1982) is particularly important because it is a continuous well-dated long record that provides a palaeoclimatic record from the lowermost Zanclean (5.32 Ma) to the latest Gelasian (about 1.8 Ma). In this area, the Early Pliocene climate was warm and humid, with a trend toward progressively cooler and drier conditions through time, from the beginning to the end of the sequence. At around 4.5 Ma, a cooling is seen in the pollen data, marked by a decrease in thermophilous trees and an increase in herbs. Our quantitative reconstruction does not indicate changes through this period (Fauquette et al., 1998b). In fact, the decrease in subtropical plants was not very important and even though their pollen percentages decreased, they still exceeded the thresholds and we conclude that the climate did not change directly but rather through this period (Fauquette et al., 1998b).
significantly during this interval. This cooling was followed by a warm period during which the temperatures were higher than today. Annual precipitation was also very high, falling between 1100 and 1600 mm (vs. 610 mm today). Another cooling event occurred at around 3.4 Ma, immediately after the Zanclean–Piacenzian boundary (Suc and Zawigin, 1983; Suc, 1984). This event was characterized at Garraf 1 by a strong decrease in the pollen of mega-mesothermic trees and by an increase in herb pollen. This event is evident in the palaeoclimatic reconstruction, even though the decrease of the annual temperatures was not very pronounced. The inferred changes in temperature and moisture were probably responsible for the reduction in the cover of Taxodiaceae swamps, the increase in open vegetation, and other changes in vegetation structure (Suc and Cravatte, 1982). Mega-mesothermic taxa progressively diminished between ca. 3.4 and 2.6 Ma, although there were a few oscillations. The last warming period within this interval occurred at around 3.1–3.0 Ma, as illustrated by the occurrence of the final significant percentages of subtropical pollen taxa. This climatic event is not really obvious in the climatic reconstruction by Fauquette et al. (1998b). At this time temperature of the warmest month increased (26 to 28 °C), although neither the annual temperatures nor the coldest month changed. From about 2.6 Ma to the end of the sequence, the pollen diagram is characterized by rapid alternations between steppe and forest linked to glacial–interglacial fluctuations (Suc and Zawigin, 1983). These alternations are well marked in the climatic reconstruction: during glacial phases annual temperatures decreased to values similar to those of the present time; during interglacial phases temperatures again increased. Variations in annual precipitation were seemingly rapid through this period and reached very low values during this interval (equivalent to modern ones). During the Pliocene, before the first high-amplitude glacial–interglacial cycles, our method suggests that annual temperatures were 1 to 5 °C warmer, and annual precipitation was 400 to 1000 mm higher than Present. This interpretation is in agreement with the climates inferred from pollen data by Willard (1994) for a mid-latitude site (36°N) in southeastern Virginia (USA) where annual temperatures were 2.5 °C higher than today.

Open herbaceous formations in the Iberian Peninsula and Morocco are then known since the Burdigalian (Suc et al., 1995a,b; Bachiri Taoufiq et al., 2001; Jiménez-Moreno, 2005; Jiménez-Moreno and Suc, 2007). They developed significantly during the Zanclean in other regions of the Mediterranean area (Suc et al., 1999) but were relatively poor in Artemisia, except in Anatolia (Popescu, 2006). It is at the end of the Pliocene, as the climate got cooler and glacial–interglacial cycles appeared in the Northern Hemisphere, when the steppe and mesothermic elements (probably of Anatolian origin; Popescu, 2006) became of significant importance in the Iberian Peninsula as everywhere along the northern Mediterranean coastlines (Suc et al., 1995b) during the glacial periods (Suc and Cravatte, 1982; Combourieu Nevrot and Vergnaud Grazzini, 1991; Beaudouin, 2003) and even during interglacials (Subally et al., 1999) because of the ambivalent significance of Artemisia from the temperature viewpoint (cold vs. warm species: Subally and Quézel, 2002) and some influence of the monsoon (Joannin et al., 2007).

The decrease in thermophilous plants and, on the contrary, the noticeable increase in mesothermic plants and altitudinal trees during the Miocene and Pliocene, can be interpreted as a result of the above-mentioned climatic cooling, or from the uplift of the surrounding mountains in this area, which was very intense during the studied time period, or the progressive movement of Eurasia (and the Iberian Peninsula) towards northern latitudes as a result of the northwards collision of Africa. In all the cases, altitudinal elements would increase. However, the estimated climate, using only taxa growing at low to middle–low altitude, seems to confirm a decrease in mean annual temperatures, which was most likely insufficient to explain the development of an Abies–Picea forest. All the phenomena coexisted and it is quite difficult to separate one process from the other (global climatic forcing vs. regional tectonics and relief uplift), due to the tectonic situation of the studied area and the fact that all of them may have interfered. What is clear is that even if the uplift of the surrounding mountains may have influenced the regional climate and the increase in conifers observed in the pollen spectra, the evolution of the vegetation during the Miocene was very dependent on the global climatic signal as shown in previous studies (Jiménez-Moreno, 2005; Jiménez-Moreno et al., 2005; Mosbrugger et al., 2005; Jiménez-Moreno, 2006; Böhme et al., 2007; Utescher et al., 2007).

6. Climatic latitudinal gradient

A latitudinal climatic gradient between southern and northern Iberian Peninsula has been observed in the pollen data and the climate reconstructions since the Middle Miocene (Jiménez-Moreno and Suc, 2007; Fauquette et al., 2007). Both pollen and climatic estimations show a decrease in temperature and a reduction in dryness from South to North.

6.1. Middle Miocene

Jiménez-Moreno and Suc (2007) showed that during the Middle Miocene the vegetation in southern Spain (Fig. 2) was characterized by the predominance of herbs and shrubs, with abundant subdesertic elements, such as Nitraria, Lygeum, Prosopis, Neurada, and Calligonum. They characterized this vegetation as typical of an open environment. On the other hand, in Northeastern Spain and even though the vegetation was also rich in herbs and shrubs, subdesertic indicators such as Caesalpiniaceae and Acacia, only occurred at very low percentages. Jiménez-Moreno and Suc (2007) described two main vegetation domains (zones A and B; Fig. 3) in the Iberian Peninsula during the Middle Miocene, with a clear latitudinal zonation in the vegetation. The presence, all along this transect, of plants characterized by high thermophilic requirements such as Engelhardtia, Myrica, Taxodium-type, Mussaenda-type and Avicennia, indicates that the latitudinal temperature gradient was lower than today. This is consistent with the presence of abundant thermophilous taxa in other Middle Miocene pollen data from Central and Northern Europe (Jiménez-Moreno, 2005; Jiménez-Moreno and Suc, 2007). Liu and Leopold (1994) also observed the occurrence of thermophilous plants at higher latitudes in North America. These authors estimated a thermic gradient of 0.3 °C per degree of latitude for North America (between 35°N and 65°N) during the Middle Miocene.

Mean annual temperatures reconstructed from our pollen data (Fig. 3) do not show many significant changes looking at the intervals. However, the Most Likely Values (MLVs) from south to north show decreasing annual temperatures. Moreover, the thermic gradient is weaker than the modern one as the differences between the Miocene and the modern temperatures are between ca. 2 °C in southern Spain and ca. 4 °C in northern Spain. The MLV is less robust than the entire interval (as a single value can not reflect the life- optimum of a plant assemblage) but, as it is weighted according to the size of the climatic intervals of each plant exceeding its presence/absence and/or abundance thresholds, variations of the MLV may be considered as real temperature changes.

The precipitation reconstruction shows increasing values from south to north, as today, with even higher amounts than today in northern Spain but almost equivalent amounts of precipitation than today in southern Spain. The MLVs reconstructed from pollen data between 36.4°N and 47°N (Fauquette et al., 2007) indicate that during the Middle Miocene the thermic gradient in Western Europe was around 0.48 °C per degree in latitude whereas it is around 0.6 °C today (Ozenda, 1989). This result is in agreement with the climatic estimations obtained by
Bruch et al. (2004) using European fossil floras, also finding a lower latitudinal temperature gradient than today.

6.2. Late Miocene

This climatic latitudinal gradient is also evident in the pollen and climatic reconstructions for the Late Miocene (Tortonian: Fauquette et al., 2007; Fig. 4; Messinian: Fauquette et al., 2006; Favre et al., 2007) in the Iberian Peninsula. Although less pollen data exist for this period, a clear latitudinal gradient is observed for both temperature and precipitation. During the Tortonian, forested environments are indicated in the northern Iberian Peninsula (Sanabastre/Sampsor sites in Cerdanya, Bessedik, 1985), where arboreal pollen dominates with low values of herbaceous taxa. At Zaratan, the pollen assemblages are more similar to those found today in the southwestern Mediterranean region with sclerophyllous woods of Quercus and pines associated with species characteristic of open vegetation as Cistaceae, Cupressaceae, Ericaceae, Geraniaceae and Plantago (Rivas-Carballo et al., 1994). Finally, in the southern part of the Iberian Peninsula, the pollen spectra are largely dominated by herbaceous taxa, indicating dry open environments with the presence of subdesertic herbs. The climatic reconstructions based on these pollen sequences show that climate was warm and humid in northern Iberian Peninsula (most-likely values ca. 4 to 9 °C and annual precipitation rainfall 100 to 600 mm higher than today), and warm and dry in the south Mediterranean region (most-likely values of 3 to 4 °C higher and less than 200 mm higher than today). The climatic estimates show that the north–south climatic gradient that existed during the Tortonian was similar to today, with increasing temperature and decreasing precipitation, but with higher temperatures (Fig. 4). This persistence is also supported by mammals (see Casanovas-Vilar and Agustí, 2007, Fauquette et al., 2007), taking into account other available pollen records from Western Europe, calculated a thermal gradient of around 0.6 °C per degree in latitude. The climatic latitudinal gradient is also very clear for the Messinian (Fauquette et al., 2006). To the south, herb assemblages are dominated by Poaceae, Asteraceae, Plantago, Erodium and subdesertic plants like Lygeum, which today characterizes the southern Mediterranean region under a thermo-Mediterranean climate (from semi-arid to arid conditions, with mean annual precipitation from around 500 to 100 mm, and under high annual temperatures from around 16 to 26 °C; Fauquette et al., 1998b). On the other hand, the north is characterized by more humid and colder conditions with temperature estimations around 15–22 °C and precipitations around 680–870 mm in Tarragona E1 and 1070–1300 mm in Can Vilella (Fauquette et al., 2006).

A crucial environmental change probably occurred during the Tortonian, which led to the disappearance of hominoids from Europe (Andrews and Bernor, 1999) causing the lack of food (mostly fruits) throughout a significant part of the year, a hypothesis expressed by Andrews (1992). This assumption is supported by pollen data from Southwestern Europe (Suc et al., 1999) and plant macrofossils from Northeastern Iberia (Agustí et al., 2003), which indeed show that during the Tortonian, trees producing fruits throughout the year were predominantly replaced by those displaying only a seasonal production of fruits.

6.3. Piocene

The abundant and widely distributed Pliocene pollen data make the latitudinal differences in vegetation easily identifiable (Suc, 1989; Suc et al., 1995a). Three main vegetation domains (Fig. 5) were described by Suc (1989), Suc et al. (1995a) and Fauquette et al. (2007) in the Iberian Peninsula during the Pliocene, with a clear latitudinal zonation in the vegetation. The site on the Atlantic coast of the Iberian Peninsula (Fig. 5, zone C, Rio Maior) shows forested vegetation dominated by Taxodiaceae, Ericaceae and mesothermic deciduous trees. In the northernmost part of the Iberian Peninsula (Garraf 1; Fig. 5, zone B), the forests were dominated by Taxodiaceae, accompanied by mega-mesothermic plants such as Engelhardia, Symplocos and Platyzyga. At that time, the region of Tarragona belonged from the vegetation point of view to the southern Iberian ecosystems as the transition zone with the northern Mediterranean vegetation was identified between Barcelona and Tarragona (Suc et al., 1999), exactly as it is today for the transition between the meso-Mediterranean vegetation belt and the thermo-Mediterranean one (Rivas-Martínez, 1987; Quézel and Médail, 2003). Indeed, in areas south of Tarragona (Tarragona E2; Fig. 5, zone A) the vegetation was characterized by Mediterranean xerophytic ecosystems (‘matorral’ composed by Olea, Phillyrea, Pistacia, Ceratonia, evergreen Quercus, Nerium, Cistus) and, more to the south (Andalucia G1), by open environments dominated by subdesertic plants like Lygeum, Neruda, Calligonum, Geraniaceae and Agavaceae. Since the Zanclean, a thermal threshold existed between Barcelona and Tarragona, as it does today, separating thermo-Mediterranean from meso-Mediterranean formations (Suc et al., 1995a). Since the Mid-Pliocene, another thermal and/or xeric threshold existed between the northern and southern edge of the Eastern Pyrenees, which could be related to the onset or strengthening of northern “cold” winds (Suc et al., 1999).

A north–south climatic gradient existed during the Pliocene, with, as of today, increasing temperatures and decreasing precipitation (Fig. 5). The thermal gradient calculated on the ‘most-likely values’ of mean annual temperatures during the Pliocene in Western Europe is very similar to that observed today, i.e. around 0.6 °C per degree in latitude (Fauquette et al., 2007).

7. Paleoclimatology

Located between the mid-latitude temperate zone and the Sahara Desert and also influenced by the Atlantic Ocean, the Iberian Peninsula experiences a warm and dry climate in the southern part and a warm and wetter climate in its northern part since almost the Middle Miocene. Like today, a latitudinal gradient in temperature and precipitation was a very important feature in the Mediterranean region, with drier areas along the African coast and significantly wetter areas north of the Mediterranean Sea. Today, the moisture flux in the Mediterranean region comes mostly from the Atlantic Ocean (Mariotti et al., 2002).

During the Mid-Miocene, the different temperature gradient compared to today may be due to a different oceanic circulation that forces atmospheric changes and thus climate changes. Indeed, the continental configuration of the world during the Miocene was similar to the present. However, plate tectonics led to intense palaeogeographical changes around the world, especially during the Early and Middle Miocene. These changes, in particular the opening of some sea gateways (Drake passage, Bering Strait) and the closure of others (the Atlantic–Pacific passage across Panama, the passage between the Indian Ocean and the Tethys) (Pagani et al., 2000; Hall et al., 2003; Schmidt, 2006; Pfuhl and McCave, 2006), together with some others like modifications in atmospheric CO2, orbital forcing and ice-climate feedbacks (DeConto and Pollard, 2003a,b), contributed to fluctuations in the Neogene climate. Changes in oceanic circulation at that time led to the establishment of the modern ocean circulation pattern (e.g. the Antarctic Circumpolar Current) that in turn, affected the global climate. In addition, many atmospheric general circulation model simulations have shown the influence of the uplift of mountain ranges and plateaus (Rocky mountains, Andean, Himalayas, Alps, Tibetan Plateau) on global climate through changes in the atmospheric circulation (e.g. Ruddiman and Kutzbach, 1989; Ramstein et al., 1997; Fluteau et al., 1999; Kutzbach and Behling, 2004). However, in spite of these global modifications, the climate pattern in the Iberian...
Peninsula was the same as today: a warm and dry climate in the south and a warm and wetter climate in the North.

From the Late Miocene (Tortonian) to the Mid-Pliocene, the vegetation and climatic latitudinal gradients (in particular the thermal one) differ from those of the Middle Miocene. Temperatures were higher than today, as during the Middle Miocene, but the difference between the North and South was greater than during the Mid-Miocene resulting in a similar gradient in temperature and vegetation to today. For what concerns the Late Miocene, simulations with the AGCM ECHAM4 coupled to a slab ocean model have been made in order to study the climate response during the Tortonian to a generally low palaeography, a weaker-than-present palaeoeccentric heat transport and a changed palaeovegetation (Steppuhn et al., 2006; Micheels et al., 2007). Although the simulations tend to be too cool at higher latitudes and show an overall reduction of the meridional temperature gradient compared to the present (Steppuhn et al., 2006; Micheels et al., 2007), our data from Europe agree with the model simulations. For example, in the Mediterranean region, the simulated climate is slightly warmer and drier than today, which agrees with our data from southwestern Europe (Sicily, Central Spain). In Northern Africa and southern Spain, the Tortonian model simulates warmer and less arid conditions than today. Our evidence for subdesertic herbs indicating arid conditions and forest elements in Morocco and southern Spain does not completely support the climate modelling results. However, it should be noted that these two groups of plants certainly developed at different altitudes that may not be adequately resolved by the climatic model (Fauquette et al., 2006).

During the Pliocene, the thermal gradient was similar to the modern one. However, the precipitation gradient was more accentuated, with a larger difference between the Pliocene and today in the North than in the South. This pattern is confirmed for the Pliocene by climate model simulations realized by Haywood et al. (2000a,b) using the HadAM3 version of the U.K. Meteorological Office’s (UKMO) general circulation model. Haywood et al.’s simulations (2000b) show annual zonal average precipitation similar to modern values between around 30 and 42°N and higher than today between 42 and 51°N, that is in agreement with proxy-data. The authors have explained this pattern by an increased arrival of southwestern air masses. During the Mid-Pliocene, the enhancement of the Icelandic low- and Azores high-pressure systems and the stronger pressure gradient in the North Atlantic caused an intensification of annual westerly wind strength. Combined with warmer sea surface temperatures, the atmospheric transport of heat and moisture over Europe and the Mediterranean region was increased (Haywood et al., 2000a). This pattern is in agreement with the development of Ericaceae moors along the European Atlantic coast that suggest an enhanced westerly wind pattern (Suc et al. 1995a,b) and with the development of open environments dominated by subdesertic plants along the Southeastern coast of the Iberian Peninsula which is submitted to enhanced wind coming from the South (Haywood et al., 2000a).

8. Conclusions

A synthesis of pollen data, interpreted vegetation and palaeoclimatic estimates from Miocene and Pliocene sediments from the Iberian Peninsula has permitted us to observe temporal climatic variations and to notice clear spatial climatic gradients.

The abundance of thermophilous elements and high temperature estimates during the Early Miocene (Burdigalian) and the early Middle Miocene (Langhian) suggest the existence of a warm, subtropical climate. The floral assemblages during that time clearly document the Miocene Climatic Optimum.

A tendency towards cooler conditions occurred since the late Mid-Miocene and persisted during the Pliocene as many thermophilous plants disappeared reducing plant diversity from the Iberian Peninsula. On the other hand, mesothermic plants, high-elevation conifers and Mediterranean xerophytes increased. The beginning of the glacial–interglacial fluctuations and the expansion of Artemisia mark the Early Pleistocene in this area.

The vegetation in the Iberian Peninsula reflects a clear climatic latitudinal gradient since the Middle Miocene. In all of the considered periods, the quantitatively reconstructed climate shows, in comparison to today, higher mean annual temperatures along the gradient and increases in mean annual precipitation in the northernmost part of the Iberian Peninsula, but similar precipitation to today in the southern part of it. The results also show a clear latitudinal gradient of temperature and precipitation, increasing for temperatures but decreasing for precipitation from north to south. The results show that the thermal gradient has evolved in time. During the Middle Miocene, the presence of mega-mesothermic taxa in pollen spectra at all sites shows that the thermal latitudinal gradient was weaker than the modern one. Based on the climate reconstructed from pollen data, the thermal gradient was around 0.48 °C per degree of latitude whereas it is today around 0.6 °C degree in Western Europe. Since the Tortonian, the vegetation distribution and the climate reconstruction show a thermal latitudinal gradient similar to the modern one. The transition from the weak thermal latitudinal gradient of the Mid-Miocene to the modern-like gradient of the Pliocene and Pleistocene appears to take place during the Middle–Late Miocene, before or during the Tortonian. The precipitation gradient was more accentuated than today from the Mid-Miocene to the Mid-Pliocene: the precipitation anomalies between the Neogene and today are larger in the North than in the South. The transition from this pattern to the modern latitudinal gradient took place after the Mid-Pliocene, at the time of the first glacial–interglacial cycles.

Acknowledgements

GJ-M’s research was funded by a research contract from the Universidad de Granada. This paper benefited from the constructive reviews of two anonymous reviewers. This paper is an ISEM contribution no. 2009-053.

References

