Middle Miocene latitudinal climatic gradient in Western Europe: Evidence from pollen records

Gonzalo Jiménez-Moreno a,b,⁎, Jean-Pierre Suc a

a Laboratoire PaléoEnvironnements et PaléobioSphère (UMR CNRS 5125), Université Claude Bernard — Lyon 1, bâtiment Géode, 27-43 boulevard du 11 Novembre, 69622 Villeurbanne Cedex, France
b Departamento de Estratigrafía y Paleontología, Universidad de Granada, Avda. Fuente Nueva S/N, 18002 Granada, Spain

Received 4 January 2005; received in revised form 26 February 2007; accepted 5 March 2007

Abstract

Pollen analysis of sections spanning the Middle Miocene (Langhian and Serravallian) from southern Spain to Switzerland has been carried out with the aim of reconstructing the existing latitudinal environmental gradient.

Floral assemblages indicate a tropical–subtropical to warm–temperate climate for the entire area during the Middle Miocene. The presence, in all pollen spectra, of taxa with high temperature requirements demonstrates that the latitudinal gradient in temperature was relatively low. The development of a diverse subarid flora in southern Spain including Neurada, Lygeum, Prosopis, Calligonum, Nitraria, Caesalpiniaceae, etc., points to a very dry climate with a marked seasonality. These features clearly indicate that a very warm and dry climate (i.e. a steppe environment) was already present during the Langhian in the northwestern Mediterranean area. On the other hand, milder conditions are progressively inferred towards the north as subdesertic elements gradually disappeared and taxa with higher water requirements increased. The latter dominates the pollen assemblages in the eastern central part of France and Switzerland, thus precipitations would have been evenly distributed throughout the year. We interpret this gradient from subdesertic vegetation in the south to humidity-adapted plant environments in the north as the result of a latitudinal gradient in precipitation.

© 2007 Elsevier B.V. All rights reserved.

Keywords: Palynology; Vegetation; Climate; Biogeography; Middle Miocene; Western Europe

1. Introduction

The modern distribution of plants in Southwestern Europe is very complex (Quézel and Médail, 2003). It is mainly controlled by the latitude, altitude, and the influence of the Atlantic Ocean or the Mediterranean Sea, as well as the position of the mountain ranges. However, the temperature gradient, from the very south of Spain and Italy, where summer drought and temperatures are more pronounced, to the north, mainly controls the present-day latitudinal distribution of the vegetation. At the same time, the mountainous character of the Iberian and Italian peninsulas allows a marked southward extension of “boreal” assemblages (Quézel and Médail, 2003).

The Miocene is a key period in Cainozoic climatic and tectonic evolution. Indeed, the Middle Miocene represents one of the last warm episodes of the Neogene (Miocene Climatic Optimum, MCO) in a general cooling trend and development of major permanent Antarctic ice sheets (Flower and Kennett, 1994; Zachos...
et al., 2001). The continents finally evolved toward their present-day configuration during Miocene–Pliocene times due to the uplift of the Alpine Chain and changes in sea-level (Meulenkamp and Sissingh, 2003).

Palynological studies carried out in order to understand vegetation and climate history during the Neogene in Europe are numerous. The most recent sediments are the most studied, therefore, the past dynamics of Pliocene vegetation and climate are well-known (Zagwijn, 1960; Pons, 1964; Suc, 1976, 1984; Suc and Cravatte, 1982; Diniz, 1984; Zheng and Cravatte, 1986; Bessais and Cravatte, 1988; Drivaliari, 1993; Bertini, 1994; Suc et al., 1995a; Popescu, 2001; Fauquette and Bertini, 2003). These studies suggest that, at least during the Early Pliocene (5.33–3.6 Ma), factors similar to those found today already played an important role in the organisation of the Mediterranean vegetation (Suc, 1989).

The Late Miocene is also well studied thanks to many studies that aimed at clarifying the climate forcing on the controversial Messinian Salinity Crisis (Suc and Bessais, 1990; Suc et al., 1995a; Bertini et al., 1998; Fauquette et al., 2006; Popescu, 2006).

However, Middle Miocene palynological studies in southwestern Europe are scarcer and have been geographically restricted (Bessedik, 1984, 1985; Zheng, 1990; Valle et al., 1995). These studies have proved beneficial by providing information mainly about the vegetation and climate of the different sites or relatively small areas (e.g. Catalonia and Southern France by Bessedik, 1984, 1985).

In order to fill this gap, several pollen records of Langhian and Serravallian ages from southern Spain to Switzerland have been compared in this paper. This was done to better understand the process and pattern of the Middle to Late Miocene climatic evolution in Western Europe.

2. Materials and methods

In this study, 74 samples of Langhian and Serravallian ages from different sections, that are today separated by about 11° in latitude (Spain, France and Switzerland), have been analysed. Samples are located in the north Mediterranean area, and originate from several Neogene basins that formed as a consequence of the African–Eurasian convergence (Meulenkamp and Sissingh, 2003).

The first 10 sections (Fig. 1) were analysed by one of the authors (G.J.-M.). They are (from south to north): Andalucía G1 (Alboran Sea), borehole (from Late Langhian to Early Tortonian; ELF, 1984); Alborán A1 (Alboran Sea), borehole (from Late Langhian to Early Tortonian; ELF, 1984); Andalucía A1 (Alboran Sea), borehole (from Late Langhian to Early

Fig. 1. Geographic position of the considered pollen localities. Black dots: new pollen localities acquired in this work; white dots: pollen spectra from Bessedik (1984, 1985). See text for a complete description of pollen localities and pollen records. (1) Andalucía G1; (2) Alborán A1; (3) Andalucía A1; (4) Gor; (5) La Rierussa; (6) Farinole; (7) Estagel–Bayanne; (8) Les Mées; (9) Ecotet; (10) Le Locle (Combe Girard); (11) Sant Pau d’Ordal; (12) Montady; (13) Poussan; (14) Issanka.
Tortonian; Chevron, 1986); Andalucía A1 (Alboran Sea), borehole (from Late Langhian to Early Tortonian; ELF, 1984; Rodríguez-Fernández et al., 1999); Gor (Spain), exposed section (Langhian; Martín Pérez and Viseras, 1994); La Rierussa (Spain), exposed section (Langhian; Magné, 1978; C. Müller in Bessedik, 1985); Farinole (France, Corsica), exposed section (Serravallian; Ferrandini et al., 1998, 2003); Estagel and Bayanne (France), exposed sections (Late Burdigalian and Langhian; Maurel-Ferrandini, 1976; Besson et al., 2002; Jiménez Moreno et al., 2002); Les Méès (France), borehole (from Late Burdigalian to Early Serravallian; Dubois and Curnelle, 1978); Ecotet (France), exposed section (Serravallian; Aguilar et al., 2004); Le Locle (Combe Girard locality) (Switzerland), exposed section (Serravallian; Kälin et al., 2001).

The remaining sections (11 to 14: Fig. 1) were studied by Bessedik (1985) and have been used here to refine the interpretations: Sant Pau d’Ordal (Spain), exposed section (Langhian), Montady (France), exposed section (Serravallian), Issanka (France), exposed section (Langhian), Poussan (France), and exposed section (Langhian).

Only the exposed section La Rierussa [Spain, Bessedik (1985)], was analysed again in order to refine the pollen record.

The Mid-Miocene palaeogeography is now relatively well-known and was relatively similar to the modern one in spite of the Late Miocene to Present change in latitude due to the subduction of the African plate. The latitudinal range between our two most distant localities (which is today a difference of 11°) may be estimated to have been about 12–13° in the Mid-Miocene (Rögl, 1998; Goncharova et al., 2004; Ilyina et al., 2004; Harzhauser and Piller, 2007).

The sections studied (outcrops and boreholes) are well dated by planktonic foraminifera or nannoplankton and, in some cases, by mammals, all of which contain taxa that indicate a Middle Miocene age (Langhian and Serravallian stages; see references above and Fig. 2).

Sampling was done by taking ca. 150 g of sediment per sample. In the chemical treatment only a part (20–30 g of sediment) was used.

The samples were processed with cold HCl (35%) and HF (70%), removing carbonates and silicates respectively. Separation of the palynomorphs from the rest of the residue was carried out using ZnCl₂ (density > 2). Sieving was done using a 10 μm nylon sieve. The pollen residue, together with glycerine, was prepared on slides. A transmitted light microscope, using ×250 and ×1000 (oil immersion) magnifications, was used for identification and counting of palynomorphs.

Palynomorphs are abundant in the sediments, which generally contain more than 2000 pollen grains/gram of sediment and in some cases many dinoflagellate cysts (concentrations were estimated according to the Cour’s (1974) method). Spores have not been considered due to their sparse representation. Many of the pollen grains were identified by comparing them with published keys and the modern pollen reference collection at the pollen laboratory in Lyon, and also using the Photopal website (http://medias.obs-mip.fr/photopal). A minimum of 150 pollen grains was counted in each analysed sample. Generally samples were diverse, containing more than 30

Fig. 2. Chronostratigraphic situation of the considered sections, according to the time-scale of Harzhauser and Piller, 2007. The sections are arranged from South (left) to the North (right). Black sections: pollen analyses done by G. Jiménez-Moreno; grey sections: pollen analyses done by M. Bessedik (1984, 1985).
different taxa. A total of 172 taxa have been identified. *Pinus* and Pinaceae and undetermined pollen grains were counted but excluded from the pollen sum. *Pinus* and Pinaceae are usually overrepresented because of their prolific production and the advantage they have in air and water transport, as well as in preservation.

Several studies (Turon, 1984; Hooghiemstra et al., 1986; Cambon et al., 1997) confirm that pollen content of modern coastal marine sediments, transported by air or rivers, reflects the regional vegetation, and therefore, environmental and climatic interpretations are possible using comparable Miocene sediments.

Based on the results of the pollen spectra, detailed pollen diagrams (Figs. 3–7; Table 1) and standard synthetic diagrams (Suc, 1984) without *Pinus* and Pinaceae have been constructed. In the synthetic pollen diagrams, taxa have been grouped into 12 different groups based on ecological criteria in order to clearly visualise the composition of the past vegetation (see Table 2).

Complete pollen data will be available on the web from the “Cenozoic Pollen and Climatic values” database (CPC) (http://cpc.mediasfrance.org).

3. Results

Changes in vegetation can be observed in some of the sections covering a relatively long time frame, and they are likely to have been produced by climatic changes which occurred during the Mid-Miocene (e.g. the Antarctic glaciation at ca. 14 Ma; see Kennett, 1977; Miller et al., 1991; Flower and Kennett, 1994). Nevertheless, these changes produced mainly quantitative variations in the different taxa, and in only a few

---

Fig. 3. Detailed pollen diagrams without *Pinus* and indeterminable Pinaceae of the boreholes Andalucía G-1 and Alborán A-1. Black dots mean values lower than 1%.
Fig. 4. Detailed pollen diagrams without Pinus and indeterminable Pinaceae of the sections Andalucía A-1 and Gor. Black dots mean values lower than 1%.

<table>
<thead>
<tr>
<th>MIDDLE MIOCENE</th>
<th>LATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Langian</td>
<td>Serravallian</td>
</tr>
<tr>
<td>Sample #</td>
<td>Depth (m)</td>
</tr>
<tr>
<td>Rutaceae</td>
<td>Rutaceae</td>
</tr>
<tr>
<td>Euphorbiaceae</td>
<td>Euphorbiaceae</td>
</tr>
<tr>
<td>Musaeoideae type</td>
<td>Musaeoideae type</td>
</tr>
<tr>
<td>Rubiaceae</td>
<td>Rubiaceae</td>
</tr>
<tr>
<td>Acaia</td>
<td>Acaia</td>
</tr>
<tr>
<td>Bombax</td>
<td>Bombax</td>
</tr>
<tr>
<td>Taxodium type</td>
<td>Taxodium type</td>
</tr>
<tr>
<td>Anacardiaceae</td>
<td>Anacardiaceae</td>
</tr>
<tr>
<td>Sympliococca</td>
<td>Sympliococca</td>
</tr>
<tr>
<td>Arecaceae</td>
<td>Arecaceae</td>
</tr>
<tr>
<td>Sapilociaceae</td>
<td>Sapilociaceae</td>
</tr>
<tr>
<td>Datylium</td>
<td>Datylium</td>
</tr>
<tr>
<td>Platycarya</td>
<td>Platycarya</td>
</tr>
<tr>
<td>Engelhardtia</td>
<td>Engelhardtia</td>
</tr>
<tr>
<td>Phoepetea</td>
<td>Phoepetea</td>
</tr>
<tr>
<td>Quercus ilex-coccierea type</td>
<td>Quercus ilex-coccierea type</td>
</tr>
<tr>
<td>Ceratonia</td>
<td>Ceratonia</td>
</tr>
<tr>
<td>Quercus deciduous type</td>
<td>Quercus deciduous type</td>
</tr>
<tr>
<td>Carya</td>
<td>Carya</td>
</tr>
<tr>
<td>Liquidambar</td>
<td>Liquidambar</td>
</tr>
<tr>
<td>Fila</td>
<td>Fila</td>
</tr>
<tr>
<td>Zeikova</td>
<td>Zeikova</td>
</tr>
<tr>
<td>Carpinus orientalis</td>
<td>Carpinus orientalis</td>
</tr>
<tr>
<td>Carpinus</td>
<td>Carpinus</td>
</tr>
<tr>
<td>Rhus</td>
<td>Rhus</td>
</tr>
<tr>
<td>Parthenocissus</td>
<td>Parthenocissus</td>
</tr>
<tr>
<td>Celtis</td>
<td>Celtis</td>
</tr>
<tr>
<td>Acer</td>
<td>Acer</td>
</tr>
<tr>
<td>Tamarix</td>
<td>Tamarix</td>
</tr>
<tr>
<td>Loniceria</td>
<td>Loniceria</td>
</tr>
<tr>
<td>Hederaceae</td>
<td>Hederaceae</td>
</tr>
<tr>
<td>Hadera</td>
<td>Hadera</td>
</tr>
<tr>
<td>Anis</td>
<td>Anis</td>
</tr>
<tr>
<td>Salix</td>
<td>Salix</td>
</tr>
<tr>
<td>Oleaceae</td>
<td>Oleaceae</td>
</tr>
<tr>
<td>Cupressaceae</td>
<td>Cupressaceae</td>
</tr>
<tr>
<td>Cathaya</td>
<td>Cathaya</td>
</tr>
<tr>
<td>Cedrus</td>
<td>Cedrus</td>
</tr>
<tr>
<td>Picea</td>
<td>Picea</td>
</tr>
<tr>
<td>Abies</td>
<td>Abies</td>
</tr>
<tr>
<td>Pinaceae</td>
<td>Pinaceae</td>
</tr>
<tr>
<td>Asteraceae Asteroidae</td>
<td>Asteraceae Asteroidae</td>
</tr>
<tr>
<td>Asteraceae Cichorioidae</td>
<td>Asteraceae Cichorioidae</td>
</tr>
<tr>
<td>Centaurea</td>
<td>Centaurea</td>
</tr>
<tr>
<td>Plantago</td>
<td>Plantago</td>
</tr>
<tr>
<td>Brassicaceae</td>
<td>Brassicaceae</td>
</tr>
<tr>
<td>Lygeum</td>
<td>Lygeum</td>
</tr>
<tr>
<td>Geraniaceae</td>
<td>Geraniaceae</td>
</tr>
<tr>
<td>Codium</td>
<td>Codium</td>
</tr>
<tr>
<td>Geranium</td>
<td>Geranium</td>
</tr>
<tr>
<td>Cistaceae</td>
<td>Cistaceae</td>
</tr>
<tr>
<td>Cistus</td>
<td>Cistus</td>
</tr>
<tr>
<td>Helianthemum</td>
<td>Helianthemum</td>
</tr>
<tr>
<td>Campanulaceae</td>
<td>Campanulaceae</td>
</tr>
<tr>
<td>Plumbaginaceae</td>
<td>Plumbaginaceae</td>
</tr>
<tr>
<td>Lamiaceae</td>
<td>Lamiaceae</td>
</tr>
<tr>
<td>Convolvulus</td>
<td>Convolvulus</td>
</tr>
<tr>
<td>Labiatae</td>
<td>Labiatae</td>
</tr>
<tr>
<td>Centranthus</td>
<td>Centranthus</td>
</tr>
<tr>
<td>Valerianaceae</td>
<td>Valerianaceae</td>
</tr>
<tr>
<td>Artemisia</td>
<td>Artemisia</td>
</tr>
<tr>
<td>Cichorium</td>
<td>Cichorium</td>
</tr>
<tr>
<td>Amaranthaceae-Chenopod.</td>
<td>Amaranthaceae-Chenopod.</td>
</tr>
<tr>
<td>Caryophyllaceae</td>
<td>Caryophyllaceae</td>
</tr>
<tr>
<td>Amenia</td>
<td>Amenia</td>
</tr>
<tr>
<td>Ericaceae</td>
<td>Ericaceae</td>
</tr>
<tr>
<td>Liliaceae</td>
<td>Liliaceae</td>
</tr>
<tr>
<td>Apioideae</td>
<td>Apioideae</td>
</tr>
<tr>
<td>Luron</td>
<td>Luron</td>
</tr>
<tr>
<td>Cyperaceae</td>
<td>Cyperaceae</td>
</tr>
<tr>
<td>Potamogeton</td>
<td>Potamogeton</td>
</tr>
<tr>
<td>Typha</td>
<td>Typha</td>
</tr>
<tr>
<td>Rosaceae</td>
<td>Rosaceae</td>
</tr>
<tr>
<td>Sanguisorba</td>
<td>Sanguisorba</td>
</tr>
<tr>
<td>Indeterminate grains</td>
<td>Indeterminate grains</td>
</tr>
<tr>
<td>Indeterminate grains</td>
<td>Indeterminate grains</td>
</tr>
</tbody>
</table>
Fig. 5. Detailed pollen diagrams without Pinus and indet. Pinaceae of the La Rierussa and Farinole outcrops. Black dots mean values lower than 1%.
Fig. 6. Detailed pollen diagrams without *Pinus* and indeterminable Pinaceae of the Estagel and Bayanne outcrops. Black dots mean values lower than 1%.
cases, extinction of some of the taxa, such as *Avicennia*, a mangrove element, from the northwestern Mediterranean shorelines. In this study, general and detailed pollen assemblages of each site are used to compare different sites to each other.

The pollen content of the considered localities allows the subdivision of the area into four flora-vegetation domains from south to north. The same general features, even if some changes occurred, are observed during the Langhian and Serravallian stages.

1) Southern Spain. (localities: Andalucía G1, Alborán A1, Andalucía A1, Gor; Figs. 3, 4 and 8).

Herbs and shrubs are clearly dominant in the pollen spectra with Poaceae, and halophytes such as Amaranthaceae–Chenopodiaceae, Plumbaginaceae *p.p.*, Caryophyllaceae *p.p.*, as the most representative. The pollen spectra are also characterized by the abundance of subdesertic elements since the Langhian, such as *Nitraria*, *Lygeum*, *Prosopis*, *Neura*da, and *Calligonum* (see Fig. 9).

Thermophilous (i.e. tropical and subtropical) elements [*Taxodium* type¹, *Engelhardia*, Sapotaceae, *Myrica*, *Alchornea*, *Mussaenda* type, Melastomataceae, *Rutaceae*, *Avicennia* (which constituted an impoverished mangrove in the coastal area) and *Sindora*] and mesothermic (i.e. warm–temperate) elements (such as *Quercus* deciduous type, *Carya*, *Zelkova*, etc.) contribute to such a pollen assemblage. *Cathaya*, a gymnosperm today restricted to some subtropical mid-altitude forests of southeastern China, is also present but generally in very low percentages. Mid-altitude (*Cedrus*, *Tsuga*) and high-altitude (Abies, *Picea*) elements appear only occasionally.

¹ A pollen type including the genera *Taxodium* and *Glyptostrobus*, both being regularly recorded among the Neogene plant macro-remains in Europe.
The vegetation, according to the high percentage of herbs in the pollen spectra, is typical of an open environment. Percentages of the remaining groups are very low. The mesothermic trees were probably restricted to mid- to high-altitude environments.

2) NE Spain and Corsica. (Localities: La Rierussa and Farinole; Figs. 5 and 8).

In this area, pollen spectra are rich in herbs and shrubs, mainly made up of Poaceae, Asteraceae, and halophytes such as Amaranthaceae–Chenopodiaceae, Plumbaginaceae, etc. Thermophilous elements are abundant in all the samples and *Avicennia* still plays a very important role in this area, representing the impoverished mangrove in the coastal area. However, many of the subdesertic elements are not present in the pollen spectra and Caesalpinioideae and *Acacia* were recorded in very low percentages. The rest of the assemblage is characterized by temperate elements (*Carya, Zelkova, Buxus sempervirens* type, etc.). Mid- and high-altitude elements are very scarce in these samples.

This is in agreement with the pollen data of Bessedik (1985) for the same area (La Rierussa and Sant Pau d’Ordal sections).

Such pollen spectra suggest scattered forests developing at a low altitude along humid places (rivers, lakes) or at mid-altitude, but in general, not as open as in southern Spain.

3) Southern France (localities: Estagel, Bayanne, Les Mées; Figs. 6, 7a, and 8).

This domain is characterized by the dominance of thermophilous elements (Sapotaceae, *Myrica, Engelhardia, Taxodium* type, Hamamelidaceae, Simaruba-ceae, Chloranthaceae, *Avicennia*, etc.) as well as mesothermic elements such as *Carya, Buxus sempervirens* type, *Zelkova, Quercus* deciduous type, Oleaceae, *Liquidambar*, etc. Percentages of herbs and shrubs are sometimes important; however they do not dominate the pollen spectra. This group is mainly made up of Poaceae, Amaranthaceae–Chenopodiaceae, Plumbaginaceae, Geraniaceae, Ericaceae, etc. Very low percentages of semiarid taxa such as *Acacia, Caesalpinioideae* or *Prosopis* are noted (see Fig. 9).

The same results were obtained by Bessedik (1985) within the same area of study (Montady, Poussan and Issanka sections) during the Middle Miocene and suggest more developed forest vegetation in this area.

4) Eastern-central part of France and Switzerland. (Localities: Ecotet and Le Locle; Figs. 7b and 8; Table 1).

In this region, the pollen flora is characterized by the high abundance of thermophilous elements and predominantly by *Taxodium* type and *Engelhardia* and by high percentages of mesothermic elements mainly made up of *Quercus* deciduous type. *Avicennia* has not been recorded in this area and percentages of herbs and shrubs and other groups are very low.

This kind of pollen assemblage is very similar to the one which characterized the Middle Miocene in the Pannonian basin and the Middle Miocene environment of Central Europe (Gregor et al., 1989; Ashraf and Mosbrugger, 1996; Jiménez-Moreno et al., 2005) and even though some species of Caesalpinioideae or Mimosaceae were observed, they occur in small proportions and would appear to
Table 2
List of the taxa identified in this study grouped by ecological requirements in order to plot the synthetic diagrams

<table>
<thead>
<tr>
<th>Thermophilous elements</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Rutaceae</td>
<td></td>
</tr>
<tr>
<td>Croton</td>
<td></td>
</tr>
<tr>
<td>Alchornea</td>
<td></td>
</tr>
<tr>
<td>Mussaenda type</td>
<td></td>
</tr>
<tr>
<td>Mappianthus</td>
<td></td>
</tr>
<tr>
<td>Grewia—Corchorus</td>
<td></td>
</tr>
<tr>
<td>Passifloraceae</td>
<td></td>
</tr>
<tr>
<td>Melastomataceae</td>
<td></td>
</tr>
<tr>
<td>Acanthaceae</td>
<td></td>
</tr>
<tr>
<td>Bombax</td>
<td></td>
</tr>
<tr>
<td>Icacinaceae</td>
<td></td>
</tr>
<tr>
<td>Malpighiaceae</td>
<td></td>
</tr>
<tr>
<td>Avenencia</td>
<td></td>
</tr>
<tr>
<td>Meliaceae</td>
<td></td>
</tr>
<tr>
<td>Foshergilla</td>
<td></td>
</tr>
<tr>
<td>Simarubaceae</td>
<td></td>
</tr>
<tr>
<td>Buxus bahamensis type</td>
<td></td>
</tr>
<tr>
<td>Dodonaca</td>
<td></td>
</tr>
<tr>
<td>Myrica</td>
<td></td>
</tr>
<tr>
<td>Symplocos</td>
<td></td>
</tr>
<tr>
<td>Areceae</td>
<td></td>
</tr>
<tr>
<td>Sapotaceae</td>
<td></td>
</tr>
<tr>
<td>Loranthaceae</td>
<td></td>
</tr>
<tr>
<td>Engelhardia</td>
<td></td>
</tr>
<tr>
<td>Platycarya</td>
<td></td>
</tr>
<tr>
<td>Parthenocissus</td>
<td></td>
</tr>
<tr>
<td>Lea</td>
<td></td>
</tr>
<tr>
<td>Cornus</td>
<td></td>
</tr>
<tr>
<td>Microtropsis fallax</td>
<td></td>
</tr>
<tr>
<td>Celastracea</td>
<td></td>
</tr>
<tr>
<td>Rhoiptelea</td>
<td></td>
</tr>
<tr>
<td>Restio</td>
<td></td>
</tr>
<tr>
<td>Anacardiaceae</td>
<td></td>
</tr>
<tr>
<td>Taxodaceae</td>
<td></td>
</tr>
<tr>
<td>Taxodium type</td>
<td></td>
</tr>
<tr>
<td>Cyriellaceae—Clethra.</td>
<td></td>
</tr>
<tr>
<td>Theaceae</td>
<td></td>
</tr>
<tr>
<td>Distyllum</td>
<td></td>
</tr>
<tr>
<td>Embolanthera</td>
<td></td>
</tr>
<tr>
<td>Rhodoleia</td>
<td></td>
</tr>
<tr>
<td>Loropetalum</td>
<td></td>
</tr>
<tr>
<td>cf. Corylopsis</td>
<td></td>
</tr>
<tr>
<td>Hamamelidaceae</td>
<td></td>
</tr>
<tr>
<td>Menispermae</td>
<td></td>
</tr>
<tr>
<td>Agavaceae</td>
<td></td>
</tr>
<tr>
<td>Chloranthaceae</td>
<td></td>
</tr>
<tr>
<td>Ricinus</td>
<td></td>
</tr>
<tr>
<td>Cathaya</td>
<td></td>
</tr>
<tr>
<td>Mesothermic elements</td>
<td></td>
</tr>
<tr>
<td>Nyssa</td>
<td></td>
</tr>
<tr>
<td>Betula</td>
<td></td>
</tr>
<tr>
<td>Alnus</td>
<td></td>
</tr>
<tr>
<td>Carpinus</td>
<td></td>
</tr>
<tr>
<td>Carpinus orientalis</td>
<td></td>
</tr>
<tr>
<td>Sequoia</td>
<td></td>
</tr>
<tr>
<td>Tamarix</td>
<td></td>
</tr>
<tr>
<td>Fabaceae—Papilion</td>
<td></td>
</tr>
<tr>
<td>Buxus sempervirens</td>
<td></td>
</tr>
<tr>
<td>Restio</td>
<td></td>
</tr>
<tr>
<td>Celtis</td>
<td></td>
</tr>
<tr>
<td>Zelkova</td>
<td></td>
</tr>
<tr>
<td>Ulmus</td>
<td></td>
</tr>
<tr>
<td>Cissus</td>
<td></td>
</tr>
<tr>
<td>Vitis</td>
<td></td>
</tr>
<tr>
<td>Ilex</td>
<td></td>
</tr>
<tr>
<td>Oleaceae</td>
<td></td>
</tr>
<tr>
<td>Ligustrum</td>
<td></td>
</tr>
<tr>
<td>Fraxinus</td>
<td></td>
</tr>
<tr>
<td>Caprifoliaceae</td>
<td></td>
</tr>
<tr>
<td>Lonicera</td>
<td></td>
</tr>
<tr>
<td>Viburnum</td>
<td></td>
</tr>
<tr>
<td>Rhus cf. cotinus</td>
<td></td>
</tr>
<tr>
<td>Rhus</td>
<td></td>
</tr>
<tr>
<td>Salix</td>
<td></td>
</tr>
<tr>
<td>Eucommia</td>
<td></td>
</tr>
<tr>
<td>Populus</td>
<td></td>
</tr>
<tr>
<td>Rhamnaeceae</td>
<td></td>
</tr>
<tr>
<td>Sequoia type</td>
<td></td>
</tr>
<tr>
<td>Hedera</td>
<td></td>
</tr>
<tr>
<td>Hamamelis</td>
<td></td>
</tr>
<tr>
<td>Parrotia</td>
<td></td>
</tr>
<tr>
<td>Parrotia cf. persica</td>
<td></td>
</tr>
<tr>
<td>Eustigma</td>
<td></td>
</tr>
<tr>
<td>Platanus</td>
<td></td>
</tr>
<tr>
<td>Liquidambar</td>
<td></td>
</tr>
<tr>
<td>Hamamelis</td>
<td></td>
</tr>
<tr>
<td>Tilia</td>
<td></td>
</tr>
<tr>
<td>Acer</td>
<td></td>
</tr>
<tr>
<td>Moraceae</td>
<td></td>
</tr>
<tr>
<td>Resedaceae</td>
<td></td>
</tr>
<tr>
<td>Meso-microthermic elements</td>
<td></td>
</tr>
<tr>
<td>Cedrus</td>
<td></td>
</tr>
<tr>
<td>Sciadopitys</td>
<td></td>
</tr>
<tr>
<td>Tsuga</td>
<td></td>
</tr>
<tr>
<td>Microthermic elements</td>
<td></td>
</tr>
<tr>
<td>Abies</td>
<td></td>
</tr>
<tr>
<td>Picea</td>
<td></td>
</tr>
<tr>
<td>Non-significant elements</td>
<td></td>
</tr>
<tr>
<td>Indet. grains</td>
<td></td>
</tr>
<tr>
<td>Indeterminable grains</td>
<td></td>
</tr>
<tr>
<td>Rosaceae</td>
<td></td>
</tr>
<tr>
<td>Ranunculaceae</td>
<td></td>
</tr>
<tr>
<td>Euphorbiaceae</td>
<td></td>
</tr>
<tr>
<td>Rubiaceae</td>
<td></td>
</tr>
<tr>
<td>Myrtaceae</td>
<td></td>
</tr>
</tbody>
</table>

(continued on next page)
Table 2 (continued)

<table>
<thead>
<tr>
<th>Subdesertic elements</th>
<th>Halophytes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lygeum</td>
<td>Amaranthaceae–Chenopodiaceae</td>
</tr>
<tr>
<td>Neurada</td>
<td>Plumbaginaceae</td>
</tr>
<tr>
<td>Calligonum</td>
<td>Limonium</td>
</tr>
<tr>
<td>Caesalpiniaceae</td>
<td>Armeria</td>
</tr>
</tbody>
</table>

represent small patches of dry adapted subtropical taxa. In general, the pattern record points to a forest vegetation.

4. Discussion

4.1. Flora and vegetation

According to pollen data, numerous Mediterranean Middle Miocene taxa (mostly identified at the genus level) show close affinities to modern species nowadays growing in:

1. Eastern Asia (*Avicennia, Distylium, Engelhardia, Platycarya, Cathaya, Symplocos, Eucommia*, etc.),
2. Central America (*Avicennia, Engelhardia, Symplocos*, etc.),
3. Tropical Asia, Africa and America (*Avicennia, Alchornea, Bombax, Celastraceae, Meliaceae, Icacinaceae, Arecaceae*, etc.),
4. Persian Gulf and the Red Sea coastlines (*Avicennia marina* which represents here the closest present-day occurrence to Europe, *Neurada, Prosopis*, etc.) under subtropical climates.

As has been shown, Middle Miocene pollen assemblages denote the juxtaposition of greatly contrasted environments. The presence of subdesertic taxa (*Nitraria, Lygeum, Prosopis, Neurada, Calligonum, Caesalpiniaceae*, etc.), which grow conditioned by a long dry season, together with others showing very high water requirements (like *Engelhardia, Platycarya, Taxodium* type, *Sapotaceae, Myrica*, etc.), needing constant water, has two possible explanations. This could be due to the structure of the vegetation in altitudinal belts and the effect of humid cloud masses, which cling to the mountains at an altitude of ca. 400–500 m (Besserdik, 1984), similar to the Canary Islands today (Rivas-Martínez, 1987). Secondly, there may have been significant availability of water sources along the rivers or around the lakes, as has been interpreted as the cause of such a floral assemblage in the Rubielos de Mora (Burdigalian) lacustrine basin in Spain (Jiménez-Moreno, 2005) and which frequently occurs in subtropical and tropical Africa, for instance around Lake Tanganyika. In both situations water availability clearly controls the vegetation and would compensate for the lack
of precipitations in the summer time. This compensation would result from the duality of the gradual disappearance of a humid climate with summer rainfall (“Asian” climate type), which prevailed during the Paleogene in this area, and the episodic appearance of a subtropical climate with a dry season which progressively became established, responsible for the semiarid zone in the lowlands during the Miocene (Bessedik, 1984).

As a large number of taxa have been identified in this study, they can also be compared to the organisation of the present-day plant ecosystems in altitudinal belts. Reconstructions are mainly done by comparing data to the present-day forest of southeastern China (Wang, 1961), the closest living analogue for the Mid-Miocene South European flora (Suc, 1984; Axelrod et al., 1996). Vegetation along the Red Sea (presence of the mangrove of *Avicennia marina* for example) (White, 1983; Audru et al., 1987) and from the Canary Islands (Rivas-Martínez, 1987), is very informative for such a reconstruction, in the latter because of the proximity of the laurel forest and xeric belts.

Therefore, the vegetation can be grouped into ecologically different environments, arranged mostly from the coastal area to higher elevation, but also according to the presence of humid places at low altitudes (evergreen broad-leaved forest within our latitudinal domain A, evergreen and deciduous mixed forest within our latitudinal domain B):

1. Coastal environments were represented by the impoverished mangrove (*Avicennia*) and saline bearing elements such as Amaranthaceae–Chenopodiaceae, *Ephedra*, Plumbaginaceae, *Plantago* and *Tamarix*. Today, this kind of impoverished mangrove vegetation represents the high latitude limit of mangroves
and can occur under arid or semiarid conditions as in the Red Sea and Persian Gulf (White, 1983; Audru et al., 1987).

2. An open vegetation with subdesertic plants such as *Nitraria*, *Neurada*, *Ephedra*, *Convolvulus*, *Lygeum*, *Prosopis*, Caesalpiniaceae, *Acacia*, etc., which are...
representative of a steppe or a wood–shrub vegetation, characterized the lowlands. Similar modern assemblages are present on the Red Sea coasts, on the shorelines of the Arabian Peninsula, and in North Africa (Quézel, 1965; Quézel and Médail, 2003).

3. An evergreen broad-leaved forest existed, characterized by the presence of Theaceae, Clethraceae, Bombax, Sapotaceae, Rutaceae, Moraceae, Iacaceae, Simarubaceae, Meliaceae, Melastomataceae, Arecales, Ilex, Hedera, Olea, Ligustrum, Jasminum, Hamamelidaceae, Rhoiptelea, etc. This forest is known as the “Oak-Laurel” forest in eastern Asia (Wang, 1961) and constitutes the “palaeo-origin” of the present-day residual laurel forest in the Canary Islands (Quézel and Médail, 2003).

4. Evergreen and deciduous mixed forest developed at a higher altitude, mainly composed of Quercus deciduous type, Engelhardia, Platycarya, Caryya, Pterocarya, Fagus, Distylium, Liquidambar, Parrotia, Hamamelidaceae, Carpinus, Celtis and Acer. Within this vegetational belt, a riparian plant association has been identified with Salix, Alnus, etc. The shrub level was dominated by Ericaceae, Ilex, Caprifoliaceae, Rhamnaceae, etc. This kind of mesophytic forest today appears above 700–800 m in altitude in eastern China (at 30° N latitude) (Wang, 1961).

5. Mid-high altitude forest attested by small amounts of pollen grains of gymnosperms such as Cathaya, Sciadopitys, Cedrus and Tsuga, and Abies and Picea. The small percentages of mid-high altitude taxa represented in the pollen records during the Middle Miocene in the entire area can be interpreted as due to the low altitude of the surrounding mountains. This is normal as the Alpine Chain was still not well developed therefore high relief cannot be expected during that time.

4.2. Climate

In the global context of the late Early Miocene and Middle Miocene (Burdigalian, Langhian and Serravallian stages; Woodruff and Savin, 1989; Flower and Kennett, 1994; Zachos et al., 2001), the climate in the European mid-latitudes was mainly subtropical (Bessedik, 1985; Lécuyer et al., 1996; Utescher et al., 2000; Agustí and Antón, 2002; Böhme, 2003). This is supported at the South European scale by the abundance of thermophilous elements with high temperature requirements in the pollen spectra. The same interpretations were made by other authors working on palynology (Ivanov et al., 2002), macrofloras (Sanz de Siria Catalan, 1993), corals (Bessedik and Cabrera, 1985; Braga et al., 1996; Saint-Martin et al., 2000) or molluscs (Harzhauser et al., 2003) from equivalent latitudes.

4.3. Latitudinal gradient

The absence of several thermophilous indicators (i.e. Bombax, Buxus bahamensis type or Croton) northward from southern Spain and the coeval lower percentage of the thermophilous group indicate that a latitudinal temperature gradient existed over the studied area during the Mid-Miocene. However, the presence, in the entire area, of several taxa with similar temperature requirements such as Engelhardia, Myrica, Taxodium type, Mussaenda type, Avicennia, etc., suggests that this temperature gradient was relatively low. This is consistent with the presence of some thermophilous taxa during the same time-span, very high in latitude in the European area (Jiménez-Moreno, unpublished data) and Asia (i.e. occurrence of Taxodiaceae, Pterocarya or Hamamelis in Kamchatka; Bratteeva, 1993). This phenomenon was also observed in North America by Liu and Leopold (1994) who estimated a value of just 0.3 °C per degree in latitude for North America and China (between 35°N–65°N) during the Middle Miocene.

Important differences in vegetation in terms of precipitation requirement have been observed in this study from south to northwestern Europe. An increase in rainfall gradually occurred between southern Spain and Switzerland over about 12–13° of past latitudinal difference. The lowland vegetation in southern Spain was dominated by herbs and shrubs, and within this group a high presence of subdesertic taxa such as Nitraria, Neurada, Prosopis, Caescalpiniaceae, Acacia, Ephedra, Convolvulus, Lygeum, etc. has been found. On the contrary, a gradual disappearance of these elements going northward can be observed. They have not been found in the eastern-central part of France or Switzerland. This fact has been interpreted as the consequence of a strong latitudinal gradient in precipitation. The Mid-Miocene latitudinal gradient between southern Spain and Switzerland would have been stronger than the present-day gradient moving from a Saharan-like climate to a very humid situation in only 12–13° in latitude.

Previous palynological studies have shown that subdesertic plants already existed in southwestern Europe and North Africa during the Messinian or previously (Suc and Bessais, 1990; Chikhi, 1992; Bertini et al., 1998; Bachiri Taoufiq et al., 2001; Fauquette et al., 2006) and, later on, during the Pliocene (Bessais and Cravatte, 1988; Suc, 1989; Suc et al., 1995a). Modern floras show that these subdesertic elements grow in North Africa, including the Sahara.
Desert (Quézel, 1965). In this study we show that these taxa, and therefore a Saharan type of climate, already existed in the south of the northern Mediterranean area during at least the Langhian (Middle Miocene). The gradual disappearance of most of these elements from the northern Mediterranean area towards the south, during the late Miocene and Pliocene, was due to a climatic cooling and the beginning of an Atlantic climatic influence (Bessedik, 1985; Suc et al., 2004).

As mentioned previously, four different domains have been differentiated with respect to the pollen assemblages (Fig. 8). Because climate controls vegetation organisation, four climatic zones can be estimated for the study area:

1) Zone A, Southern and central Spain: southern Spain is characterized by the high presence of herbs and shrubs and the remarkably high presence of subdesertic taxa (Fig. 9). Very dry conditions are inferred for this area with a marked seasonality in a subtropical climate. Present-day climate in southern Spain is in some areas very arid (i.e. the Almería area), however most of the subdesertic taxa previously mentioned, such as Prosopis, Neurada or Acacia, are not growing in this area today. Therefore, the climate inferred for the Middle Miocene in southern Spain would be more arid than the present-day situation.

2) Zone B, Northeastern Spain: herbs and shrubs are abundant; however, there is a lack of most of the subdesertic taxa. The occurrence of Caesalpiniaceae and Acacia (Mimosaceae) is interpreted as the result of high seasonality. Wetter and/or cooler conditions during the summer time are inferred for this region, preventing the development of subdesertic taxa.

3) Zone C, Southern France: Even though a very few semiarid taxa have been found in this study by Bessedik (1984, 1985), the vegetation was dominated by thermophilous elements requiring high humidity all year (Engelhardia, Platycarya, Taxodium type, Myrica, etc.). Therefore seasonality in terms of precipitation is less marked in this area.

4) Zone D, central-eastern part of France and Switzerland: in this area the vegetation characterized a climate with high precipitations, well distributed throughout the year, as high percentages of high-humidity indicators are recorded and no taxa indicating precipitation seasonality have been observed.

The presence of a subdesertic vegetation, already containing C4 grasses (such as Lygeum) in southern Spain during the Middle Miocene, supports the proposal for subdesertic conditions for this area.

The development of C4-rich grasslands has traditionally been associated with late Cainozoic climate change, decreasing temperatures, increase in aridity and increase in seasonality of temperature and/or precipitation (Axelrod, 1985; Cerling et al., 1997; Fox and Koch, 2004). However, such a subdesertic vegetation is not expected to be found in this area until the late Middle Miocene or Late Miocene, when the development of the East Antarctic Ice Sheet around 14 Ma and the lowering of the atmospheric concentration of CO2, produced mainly by the increase in weathering of the recently uplifted Himalayan–Tibetan region, have been shown to have a global impact on the Middle Miocene ecosystems (Flower and Kennett, 1994; Cerling et al., 1997; Fox and Koch, 2004). In addition, this event strengthened existing climatic belts and triggered a global mid-latitude desertification and increasing seasonality (Flower and Kennett, 1994). This study shows that increasing xericity in southern Spain during the Miocene may have occurred before it occurred in the rest of the northern latitudes (Axelrod, 1985; Cerling et al., 1997; Fox and Koch, 2004).

The observed latitudinal climatic gradient is consistent with a recent study on the distribution of air-breathing fish which are limited by the amount of summer precipitation (they are found where summer rainfall exceeds 150 mm) (Böhme, 2004). This study shows that their Mid-Miocene spatial distribution did not reach the southern parts of western Eurasia (i.e. Spain). This would imply an arid climate with dry summers in this area. Conversely, they were present in France and central Europe, reflecting wetter summers there. This pattern of distribution of summer precipitations in the European area closely matches the results presented here.

5. Conclusions

The Middle Miocene pollen records considered for the present study allow us to document the presence of a latitudinal climatic gradient from southern Spain to Switzerland.

The results demonstrate that, in a general European subtropical frame, taxa such as Calligonum, Neurada, Nitraria, Prosopis and Lygeum, that are linked to a very dry climate, were already present during the Middle Miocene in the northwestern Mediterranean area.

The gradual loss of these subdesertic elements and the progressive increase in taxa with higher water requirements, from the very south of Spain to Switzerland, is interpreted as reflecting a strong latitudinal gradient in precipitation. Consequently, four different types of
pollen assemblages corresponding to four climatic domains have been differentiated. It is nevertheless noteworthy that the presence of similar thermophilous taxa in the pollen spectra from all the localities shows that the latitudinal gradient in terms of temperature was not very large.

Middle Miocene pollen assemblages evidence, therefore, the juxtaposition of very contrasted environments; the presence of subdesertic taxa, which grew in lowlands characterized by a long dry season, together with others with very high water requirements throughout the year, can be explained by the presence of coastal ranges and of humid environments such as rivers or lakes providing local conditions for developing riparian forests in the lowlands. In both cases, vegetation was controlled by water availability under a subtropical and dry-seasonal climate.

Acknowledgments

G. J.-M. was funded by a PhD grant (“Junta de Andalucía”, Spain) and a co-supervised grant from the French Ministry of Universities. The authors are indebted to the EEDEN Programme (ESF) for the invitation to participate in several international workshops. We are grateful to C. Díaz Merino (Repsol-YPF) for helping with the sampling permission of the offshore boreholes of the Alborán Sea. Thanks also to Repsol-YPF for providing those samples. Thanks to J.-P. Berger and D. Becker (University of Fribourg) for kindly facilitating field work in Switzerland. The authors would also like to thank Stefan Klotz for improving the text and Jodi Eckart for correcting the English. Many thanks are due to Louis François for his helpful comments on the text. Fritz Steininger and an anonymous reviewer are thanked for greatly improving the text.

References


