Simple and injective comodules and localization in coalgebras

Gabriel Navarro

Department of Algebra
University of Granada

New techniques in Hopf algebras and graded ring theory
Brussels, September 2006
Most kinds of coalgebras are defined by properties of:
- its category of comodules
- or merely, its injective or simple comodules

For instance,
- pointed coalgebras
- co-semi-simple coalgebras
- serial coalgebras
- hereditary coalgebras
- semi-perfect coalgebras
- quasi-co-frobenius coalgebras
- and others...
Most kinds of coalgebras are defined by properties of:

- its category of comodules
- or merely, its injective or simple comodules

For instance,

- pointed coalgebras
- co-semi-simple coalgebras
- serial coalgebras
- hereditary coalgebras
- semi-perfect coalgebras
- quasi-co-frobenius coalgebras
- and others...
Most kinds of coalgebras are defined by properties of:
- its category of comodules
- or merely, its injective or simple comodules

For instance,
- pointed coalgebras
- co-semi-simple coalgebras
- serial coalgebras
- hereditary coalgebras
- semi-perfect coalgebras
- quasi-co-frobenius coalgebras
- and others...
Most kinds of coalgebras are defined by properties of:
- its category of comodules
- or merely, its injective or simple comodules

For instance,
- pointed coalgebras
- co-semi-simple coalgebras
- serial coalgebras
- hereditary coalgebras
- semi-perfect coalgebras
- quasi-co-frobenius coalgebras
- and others...
Most kinds of coalgebras are defined by properties of:
- its category of comodules
- or merely, its injective or simple comodules

For instance,
- pointed coalgebras
- co-semi-simple coalgebras
- serial coalgebras
- hereditary coalgebras
- semi-perfect coalgebras
- quasi-co-frobenius coalgebras
- and others...
Most kinds of coalgebras are defined by properties of:

- its category of comodules
- or merely, its injective or simple comodules

For instance,

- pointed coalgebras
- co-semi-simple coalgebras
- serial coalgebras
- hereditary coalgebras
- semi-perfect coalgebras
- quasi-co-frobenius coalgebras
- and others...
Most kinds of coalgebras are defined by properties of:
- its category of comodules
- or merely, its injective or simple comodules

For instance,
- pointed coalgebras
- co-semi-simple coalgebras
- serial coalgebras
- hereditary coalgebras
- semi-perfect coalgebras
- quasi-co-frobenius coalgebras
- and others...
Problem

Study the behavior of injective and simple comodules in different situations

In particular, in this talk,

Aim

Study how the functors associated to a localizing subcategory transform these comodules
Problem

Study the behavior of injective and simple comodules in different situations

In particular, in this talk,

Aim

Study how the functors associated to a localizing subcategory transform these comodules
A dense subcategory of an abelian category \mathcal{C}:

- There is a quotient functor $T : \mathcal{C} \to \mathcal{C}/\mathcal{A}$.
- \mathcal{A} is localizing if T has a right adjoint functor $S : \mathcal{C}/\mathcal{A} \to \mathcal{C}$ (section functor).
- \mathcal{A} is perfect localizing if S is exact.

Theorem

- T is an exact functor.
- S is a fully faithful and left exact functor.
- $TS = 1_{\mathcal{C}/\mathcal{A}}$.
A dense subcategory of an abelian category \mathcal{C}:

- There is a quotient functor $T : \mathcal{C} \rightarrow \mathcal{C}/\mathcal{A}$.
- \mathcal{A} is localizing if T has a right adjoint functor $S : \mathcal{C}/\mathcal{A} \rightarrow \mathcal{C}$ (section functor).
- \mathcal{A} is perfect localizing if S is exact.

Theorem

- T is an exact functor.
- S is a fully faithful and left exact functor.
- $TS = 1_{\mathcal{C}/\mathcal{A}}$.
A dense subcategory of an abelian category \mathcal{C}:

- There is a **quotient functor** $T : \mathcal{C} \to \mathcal{C}/\mathcal{A}$.
- \mathcal{A} is **localizing** if T has a right adjoint functor $S : \mathcal{C}/\mathcal{A} \to \mathcal{C}$ (**section functor**).
- \mathcal{A} is **perfect localizing** if S is exact.

Theorem

- T is an exact functor.
- S is a fully faithful and left exact functor.
- $TS = 1_{\mathcal{C}/\mathcal{A}}$.
A dense subcategory of an abelian category \mathcal{C}:

- There is a quotient functor $T : \mathcal{C} \to \mathcal{C}/\mathcal{A}$.
- \mathcal{A} is **localizing** if T has a right adjoint functor $S : \mathcal{C}/\mathcal{A} \to \mathcal{C}$ (section functor).
- \mathcal{A} is **perfect localizing** if S is exact.

Theorem

- T is an exact functor.
- S is a fully faithful and left exact functor.
- $TS = 1_{\mathcal{C}/\mathcal{A}}$.

Dually,

- \mathcal{A} is \textbf{colocalizing} if \(T \) has a left adjoint functor \(H : \mathcal{C} / \mathcal{A} \to \mathcal{C} \) (\textit{colocalizing functor}).
- \(\mathcal{A} \) is \textbf{perfect colocalizing} if \(H \) is exact.

Theorem

- \(H \) is a fully faithful and right exact functor.
- \(TH = 1_{\mathcal{C} / \mathcal{A}} \).
Dually,

- \(\mathcal{A} \) is **colocalizing** if \(T \) has a left adjoint functor \(H : C/\mathcal{A} \to C \) (**colocalizing functor**).
- \(\mathcal{A} \) is **perfect colocalizing** if \(H \) is exact.

Theorem

- \(H \) is a fully faithful and right exact functor.
- \(TH = 1_{C/\mathcal{A}} \).
C be a coalgebra and \mathcal{M}^C the right C-comodules.

Theorem

There are one-to-one correspondences between:
- **Localizing subcategories** of \mathcal{M}^C.
- Classes of equivalence of **injective** C-comodules.
- **Coidempotent subcoalgebras** of C ($A \wedge A = A$).
- Sets of **simple** C-comodules.
- Sets of **indecomposable injective** C-comodules.
- Classes of equivalence of **idempotents** in C^*.

Gabriel Navarro Localization in coalgebras
\(\mathcal{T}_e \) localizing subcategory associated to \(e \in C^* \).

- There is an equivalence \(\mathcal{M}^C / \mathcal{T}_e \cong \mathcal{M}^{eCe} \)

\[
\Delta_{eCe}(exe) = \sum_{(x)} ex(1)e \otimes ex(2)e
\]

if \(\Delta_C(x) = \sum_{(x)} x(1) \otimes x(2) \)

- The quotient \(T = e(-) = -\square_C eC = \text{Cohom}_C(Ce, -) \)
- The section \(S = -\square_{eCe} Ce \)
- The colocalizing functor \(H = \text{Cohom}^e_{eCe}(eC, -) \)
\(\mathcal{T}_e \) localizing subcategory associated to \(e \in C^* \).

- There is an equivalence \(\mathcal{M}_e^C / \mathcal{T}_e \cong \mathcal{M}^{eC} \)

\[
\Delta_{eC}(exe) = \sum_{(x)} e \times_1 e \otimes e \times_2 e
\]

if \(\Delta_C(x) = \sum_{(x)} x_1 \otimes x_2 \)

- The quotient \(T = e(-) = -\square_C eC = \text{Cohom}_C(Ce, -) \)
- The section \(S = -\square_{eC}Ce \)
- The colocalizing functor \(H = \text{Cohom}_{eC}(eC, -) \)
Example: localization of path coalgebras

\[Q = (Q_0, Q_1) \text{ quiver} \]
\[e \text{ idempotent in } (KQ)^* \]
\[X \subseteq Q_0 \text{ vertices associated to } e \]

\[X \leftrightarrow e(p) = \begin{cases}
1 & \text{if } p \in X \\
0 & \text{otherwise}
\end{cases} \]

Let \(p \) be a path in \(Q \)

\[
\begin{array}{cccccc}
O & \rightarrow & O & \rightarrow & \cdots & \rightarrow & O & \rightarrow & O \\
X_1 & & X_2 & & \cdots & & X_{n-1} & & X_n
\end{array}
\]

- \(p \) is a **cell** relative to \(X \) if \[
\begin{cases}
x_1, x_n \in X, \\
x_2, x_3, \ldots, x_{n-1} \notin X
\end{cases}
\]
Example: localization of path coalgebras

\[Q = (Q_0, Q_1) \] quiver
\[e \] idempotent in \((KQ)^*\)
\[X \subseteq Q_0 \] vertices associated to \(e \)

\[X \leftrightarrow e(p) = \begin{cases}
1 & \text{if } p \in X \\
0 & \text{otherwise}
\end{cases} \]

Let \(p \) be a path in \(Q \)

\[
\begin{array}{c}
\circ \rightarrow \circ \rightarrow \circ \rightarrow \cdots \rightarrow \circ \rightarrow \circ \\
X_1 \quad X_2 \quad X_3 \quad \cdots \quad X_{n-1} \quad X_n
\end{array}
\]

\(p \) is a **cell** relative to \(X \) if
\[
\begin{cases}
x_1, x_n \in X, \\
x_2, x_3, \ldots, x_{n-1} \notin X
\end{cases}
\]
Example: localization of path coalgebras

\[Q = (Q_0, Q_1) \text{ quiver} \]
\[e \text{ idempotent in } (KQ)^* \]
\[X \subseteq Q_0 \text{ vertices associated to } e \]

\[X \leftrightarrow e(p) = \begin{cases} 1 & \text{if } p \in X \\ 0 & \text{otherwise} \end{cases} \]

Let \(p \) be a path in \(Q \)

\[x_1 \rightarrow x_2 \rightarrow \cdots \rightarrow x_{n-1} \rightarrow x_n \]

- \(p \) is a **cell** relative to \(X \) if \(\begin{cases} x_1, x_n \in X, \\ x_2, x_3, \ldots, x_{n-1} \notin X \end{cases} \)
Theorem

\(e(KQ)e \cong KQ^e \), where \(Q^e = (X, \text{Cell}_X^Q) \).

Example

\(e(\circ) = 1 \) and \(e(\bullet) = 0 \)

\[A_3 : \circ \rightarrow \bullet \rightarrow \circ \]

\[(A_3)^e : \circ \rightarrow \circ \]
Theorem

\[e(KQ)e \cong KQ^e, \text{ where } Q^e = (X, \text{Cell}_X^Q). \]

Example

\[e(\circ) = 1 \text{ and } e(\bullet) = 0 \]

\[\begin{array}{c}
A_3 : \circ \rightarrow \bullet \rightarrow \circ \\
(\circ)_{A_3}^e : \circ \rightarrow \bullet \rightarrow \circ
\end{array} \]
Theorem

\[e(KQ)e \cong KQ^e, \text{ where } Q^e = (X, \text{Cell}^{Q}_X). \]

Example

\[e(\circ) = 1 \text{ and } e(\bullet) = 0 \]

\[\begin{array}{c}
\xymatrix{
\bigtriangleup^3 : & \circ \ar[r] & \bullet \ar[r] & \circ \\
& & \circ \\
& & \circ \\
& & \circ
}
\end{array} \]

\[(\bigtriangleup^3)^e : \begin{array}{c}
\circ \\
\circ
\end{array} \]
Theorem

\[e(KQ)e \cong KQ^e, \text{ where } Q^e = (X, \text{Cell}_X^Q). \]

Example

\[e(\circ) = 1 \text{ and } e(\bullet) = 0 \]

\[A_3 : \circ \rightarrow \bullet \rightarrow \circ \]

\[(A_3)^e : \circ \rightarrow \circ \]
Example: localization of path coalgebras

Theorem

\[e(KQ)e \cong KQ^e, \text{ where } Q^e = (X, Cell_X^Q). \]

Example

\[e(\circ) = 1 \text{ and } e(\bullet) = 0 \]

\[\begin{array}{c}
\xymatrix{
\circ \ar[r] & \bullet \ar[r] & \circ \\
\downarrow & & \downarrow \\
(\mathbb{A}_3)^e \colon & \circ \ar[r] & \circ
}
\end{array} \]
Example: localization of path coalgebras

Example

\[e(\circ) = 1 \text{ and } e(\bullet) = 0 \]

\[\bullet \quad \circ \]

Gabriel Navarro Localization in coalgebras
Example: localization of path coalgebras

Example

\[e(\circ) = 1 \text{ and } e(\bullet) = 0 \]

\[\bullet \quad \rightarrow \quad \circ \]

\[\circ \quad \rightarrow \quad \circ \]

Gabriel Navarro
Localization in coalgebras
Let C any (basic) coalgebra (over a field)

- $\{S_x\}_{x \in I_C}$ simple C-comodules
- $\{E_x\}_{x \in I_C}$ indecomposable injectives

Let $e \in C^*$ idempotent element

- $K_e = \{S_x\}_{x \in l_e \subseteq I_C}$ simple eC_ee-comodules
- $\{\overline{E}_x\}_{x \in l_e}$ indecomposable injectives
Let C any (basic) coalgebra (over a field)

- $\{S_x\}_{x \in l_C}$ simple C-comodules
- $\{E_x\}_{x \in l_C}$ indecomposable injectives

Let $e \in C^*$ idempotent element

- $\mathcal{K}_e = \{S_x\}_{x \in l_e \subset l_C}$ simple eC_ee-comodules
- $\{\bar{E}_x\}_{x \in l_e}$ indecomposable injectives
Simple and injective comodules

\[\mathcal{M}^C \xleftarrow{T = e(-) = - \square_C eC} \mathcal{M}^{eCe} \xrightarrow{S = - \square_{eCe} Ce} \mathcal{M}^{eCe} \cdot \]

Lemma

\[T(S_x) = \begin{cases} S_x, & \text{if } S_x \in \mathcal{K}_e \\ 0, & \text{if } S_x \notin \mathcal{K}_e \end{cases} \]

Lemma

\[S(\overline{E}_x) = E_x \text{ for all indecomposable injective comodule} \]
Simple and injective comodules

\[\mathcal{M}^C \xrightarrow{T = e(-) = -\square_C eC} \mathcal{M}^{eCe} \]

Lemma

\[T(S_x) = \begin{cases}
S_x, & \text{if } S_x \in \mathcal{K}_e \\
0, & \text{if } S_x \notin \mathcal{K}_e
\end{cases} \]

Lemma

\[S(\overline{E}_x) = E_x \text{ for all indecomposable injective comodule} \]
Simple and injective comodules

$$\mathcal{M}^C \xrightarrow{T = e(-) = -\square eC} \mathcal{M}^{eC}$$

Lemma

$$T(S_x) = \begin{cases}
S_x, & \text{if } S_x \in \mathcal{K} e \\
0, & \text{if } S_x \notin \mathcal{K} e
\end{cases}$$

Lemma

$$S(\overline{E}_x) = E_x$$ for all indecomposable injective comodule
Section functor and simple comodules

Problem

Is $S(S_x) = S_x$ for any simple eC_e-comodule?

Example

$S(S_o) = S_o \square_{eC_e} C_e \cong C_e \cong < x, \alpha > \neq S_o$

S does not preserve simples

Example

$S(S_o) = S_o \square_{eC_e} C_e \cong C_e \cong < 1, \{\alpha_1 \cdots \alpha_{n-1} \alpha_n\}_{n \geq 1} >$

S does not preserve finite dimension
Section functor and simple comodules

Problem

Is $S(S_x) = S_x$ for any simple eCe-comodule?

Example

$\bullet \xrightarrow{\alpha} \circ$

$S(S_o) = S_o \bigotimes_{eCe} Ce \cong Ce \cong < x, \alpha > \neq S_o$

S does not preserve simples

$\cdots \xrightarrow{\alpha_{n+1}} \bullet \xrightarrow{\alpha_n} \bullet \xrightarrow{\alpha_{n-1}} \bullet \cdots \xrightarrow{\alpha_2} \bullet \xrightarrow{\alpha_1} \circ$

$S(S_o) = S_o \bigotimes_{eCe} Ce \cong Ce \cong < 1, \{\alpha_1 \cdots \alpha_{n-1} \alpha_n\}_{n \geq 1} >$

S does not preserve finite dimension
Problem

Is $S(S_x) = S_x$ for any simple eCe-comodule?

Example

$$S(S_o) = S_o \Box^e_{eCe} Ce \cong Ce \cong \langle x, \alpha \rangle \neq S_o$$

S does not preserve simples

Example

$$S(S_o) = S_o \Box^e_{eCe} Ce \cong Ce \cong \langle 1, \{\alpha_1 \cdots \alpha_{n-1} \alpha_n\}_{n \geq 1} \rangle$$

S does not preserve finite dimension
Geometry of the Ext-quiver

\[\Gamma_C \text{ Ext-quiver of } C \equiv \left\{ \begin{array}{l}
\text{The vertices are } \{S_x\}_{x \in I_C} \\
S_y \rightarrow S_x \iff \text{Ext}_C^1(S_y, S_x) \neq 0
\end{array} \right\} \]

Example

\[
\begin{array}{c}
\circ y \xrightarrow{\alpha} \circ z \xrightarrow{\beta} \circ x
\end{array}
\]

- \(C_1 = KQ\)
- \(C_2 = \langle x, y, z, \alpha, \beta \rangle\)

Then \(\Gamma_{C_1} = \Gamma_{C_2}\) is

\[S_y \rightarrow S_z \rightarrow S_x \]
\[\Gamma_C \text{ Ext-quiver of } C \equiv \begin{cases} \text{The vertices are } \{S_x\}_{x \in I_C} \\ S_y \to S_x \iff \text{Ext}^1_C(S_y, S_x) \neq 0 \end{cases} \]

Example

\[\begin{array}{ccc} y & \xrightarrow{\alpha} & z \\ \downarrow & & \downarrow \\ x & \xrightarrow{\beta} & \end{array} \]

- \(C_1 = KQ \)
- \(C_2 = \langle x, y, z, \alpha, \beta \rangle \)

Then \(\Gamma_{C_1} = \Gamma_{C_2} \) is

\[S_y \to S_z \to S_x \]
Geometry of the Ext-quiver

Γ_C Ext-quiver of $C \equiv \begin{cases}
\text{The vertices are } \{S_x\}_{x \in I_C} \\
S_y \to S_x \iff \text{Ext}^1_C(S_y, S_x) \neq 0
\end{cases}$

Example

\[
\begin{array}{ccc}
\circ_y & \xrightarrow{\alpha} & \circ_z \\
\beta & & \xrightarrow{} \circ_x \\
\end{array}
\]

- $C_1 = KQ$
- $C_2 = \langle x, y, z, \alpha, \beta \rangle$

Then $\Gamma_{C_1} = \Gamma_{C_2}$ is

\[
S_y \longrightarrow S_z \longrightarrow S_x
\]
Geometry of the Ext-quiver

\[\Gamma_C \text{ Ext-quiver of } C \equiv \left\{ \begin{array}{l}
\text{The vertices are } \{S_x\}_{x \in I_C} \\
S_y \to S_x \Leftrightarrow Ext^1_C(S_y, S_x) \neq 0
\end{array} \right. \]

Example

\[
\begin{array}{c}
\circ \ x \\
\circ \ y \xrightarrow{\alpha} \circ \ z \xrightarrow{\beta} \circ \ x
\end{array}
\]

- \(C_1 = KQ \)
- \(C_2 = \langle x, y, z, \alpha, \beta \rangle \)

Then \(\Gamma_{C_1} = \Gamma_{C_2} \) is

\[
S_y \to S_z \to S_x
\]
Lemma

\[\text{Soc}\left(\frac{E_x}{S_x} \right) = \bigoplus \text{immediate predecessors of } S_x. \]

Consider the Loewy filtration of \(E_x \),

\[0 \subset \text{Soc} E_x \subset \text{Soc}^2 E_x \subset \cdots \subset E_x \]

Definition

\[\text{Soc}\left(\frac{E_x}{\text{Soc}^n(E_x)} \right) = \bigoplus n\text{-predecessors of } S_x. \]

Proposition

If \(S_y \) is an \(n \)-predecessor of \(S_x \) then there is a \(n \)-length path from \(S_y \) to \(S_x \).

The converse holds if \(C \) is hereditary.
Lemma
\[\text{Soc} \left(\frac{E_x}{S_x} \right) = \bigoplus \text{immediate predecessors of } S_x. \]

Consider the Loewy filtration of \(E_x \),

\[0 \subset \text{Soc} E_x \subset \text{Soc}^2 E_x \subset \cdots \subset E_x \]

Definition
\[\text{Soc} \left(\frac{E_x}{\text{Soc}^n(E_x)} \right) = \bigoplus \text{n-predecessors of } S_x. \]

Proposition
If \(S_y \) is an \(n \)-predecessor of \(S_x \) then there is a \(n \)-length path from \(S_y \) to \(S_x \).
The converse holds if \(C \) is hereditary.
Lemma

\[\text{Soc} \left(\frac{E_x}{S_x} \right) = \bigoplus \text{inmediate predecessors of } S_x. \]

Consider the Loewy filtration of \(E_x \),

\[0 \subset \text{Soc} \ E_x \subset \text{Soc}^2 E_x \subset \cdots \subset E_x \]

Definition

\[\text{Soc} \left(\frac{E_x}{\text{Soc}^n(E_x)} \right) = \bigoplus \text{n-predecessors of } S_x. \]

Proposition

If \(S_y \) is an \(n \)-predecessor of \(S_x \) then there is a \(n \)-length path from \(S_y \) to \(S_x \).
The converse holds if \(C \) is hereditary.
Proposition

TFAE:

- S_y is a n-predecessor of S_x.
- There exists a morphism $f : E_x \to E_y$ such that

 $f(\text{Soc}^i E_x) = 0$ for all $i = 1, \ldots, n$

 $f(\text{Soc}^{n+1} E_x) \neq 0$

Corollary

S_y is a predecessor of S_x if and only if $\text{Rad}_C(E_x, E_y) \neq 0$.
Geometry of the Ext-quiver

Proposition

TFAE:

- S_y is a n-predecessor of S_x.
- There exists a morphism $f : E_x \to E_y$ such that

 \[f(\text{Soc}^i E_x) = 0 \text{ for all } i = 1, \ldots, n \]

 \[f(\text{Soc}^{n+1} E_x) \neq 0 \]

Corollary

S_y is a predecessor of S_x if and only if $\text{Rad}_C(E_x, E_y) \neq 0$.
Section functor and simple comodules

Problem
Who is $S(S_x)$? At least we know $S_x \subseteq S(S_x) \subseteq E_x$.

Theorem
\[
\frac{S(S_x)}{S_x} \text{ is the torsion subcomodule of } \frac{E_x}{S_x}
\]
Problem

Who is $S(S_x)$? At least we know $S_x \subseteq S(S_x) \subseteq E_x$.

Theorem

$\frac{S(S_x)}{S_x}$ is the torsion subcomodule of $\frac{E_x}{S_x}$.
Section functor and simple comodules

Problem

Who is $S(S_x)$? At least we know $S_x \subseteq S(S_x) \subseteq E_x$.

Theorem

$\frac{S(S_x)}{S_x}$ is the torsion subcomodule of $\frac{E_x}{S_x}$
Corollary

TFAE:

- $S(S_x) = S_x$
- $\frac{E_x}{S_x}$ is torsion-free
- $\not\exists S_y \to S_x$ such that $T(S_y) = 0$
- $\text{Hom}_C(E_x, E_y) = 0$ when $T(S_y) = 0$

Corollary

$S(S_x) = E_x$ if and only if all predecessors of S_x are torsion.
Corollary

TFAE:

- \(S(S_x) = S_x \)
- \(\frac{E_x}{S_x} \) is torsion-free
- \(\nexists \ S_y \to S_x \) such that \(T(S_y) = 0 \)
- \(\text{Hom}_C(E_x, E_y) = 0 \) when \(T(S_y) = 0 \)

Corollary

\(S(S_x) = E_x \) if and only if all predecessors of \(S_x \) are torsion.
Consider the Loewy filtration of $S(S_x)$,

$$0 \subset \text{Soc} S(S_x) \subset \text{Soc}^2 S(S_x) \subset \cdots \subset S(S_x)$$

Theorem

If $S_y \subseteq \frac{S(S_x)}{\text{Soc}^n S(S_x)}$ for some $n \geq 1$, then:

- S_y is torsion.
- S_y is a n-predecessor of S_x.
- There exists a path

$$S_y \rightarrow S_{n-1} \rightarrow \cdots \rightarrow S_2 \rightarrow S_1 \rightarrow S_x$$

such that S_i is torsion for all $i = 1, \ldots, n-1$.

The converse also holds if C is hereditary.
Corollary

Let Q be a quiver and $X \subseteq Q_0$. For each vertex $x \in X$, the KQ-comodule $S(S_x)$ is generated by the set of paths

$$\bullet \rightarrow \bullet \rightarrow \bullet \rightarrow \cdots \rightarrow \bullet \rightarrow \bullet \rightarrow \circ \rightarrow x$$
Problem

Who is $T(E_x)$?

Problem

Is $T(E_x) = \begin{cases} \bar{E}_x & \text{if } T(S_x) = S_x, \\ 0 & \text{if } T(S_x) = 0. \end{cases}$?

Example

\begin{equation}
\begin{tikzcd}
\bullet \arrow[r, \alpha] & \circ \\
& \circ \arrow[u, \circlearrowleft, x] & y
\end{tikzcd}
\end{equation}

Then $T(E_y) = e < y, \alpha > \cong S_x \neq 0$.
Problem

Who is $T(E_x)$?

Is $T(E_x) = \begin{cases} \overline{E}_x & \text{if } T(S_x) = S_x, \\ 0 & \text{if } T(S_x) = 0. \end{cases}$?

Example

Then $T(E_y) = e < y, \alpha \simeq S_x \neq 0$.

Gabriel Navarro

Localization in coalgebras
Problem

Who is $T(E_x)$?

Problem

Is $T(E_x) = \begin{cases} \overline{E}_x & \text{if } T(S_x) = S_x, \\ 0 & \text{if } T(S_x) = 0. \end{cases}$?

Example

Then $T(E_y) = e < y, \alpha \cong S_x \neq 0$.

Gabriel Navarro Localization in coalgebras
Quotient functor and injective comodules

Theorem

For a torsion simple comodule \(S_y \). TFAE:

- \(T(E_y) = 0 \)
- \(\text{Hom}_C(E_y, E_x) = 0 \) when \(T(S_x) = S_x \)
- \(S_y \) has no torsion-free predecessors
- \(\nexists S_x \to S_y \) such that \(T(S_x) = S_x \)
- \(T_e \) is a stable subcategory
Corollary

Let S_y be a torsion simple comodule. If $S_x \subseteq \text{Soc } T(E_y)$ then:

- S_x is torsion-free
- S_x is a predecessor of S_y
- There exists a path

$$S_x \rightarrow S_n \rightarrow \cdots \rightarrow S_2 \rightarrow S_1 \rightarrow S_y$$

such that S_i is torsion for all $i = 1, \ldots, n$

If C is hereditary, the converse also holds.
Corollary

Let Q be a quiver and $X \subseteq Q_0$. For each vertex $y \notin X$, $S_x \subseteq T(E_y)$ if and only if there is a path

\[\text{x} \quad \Rightarrow \quad \text{•} \quad \Rightarrow \quad \text{•} \quad \Rightarrow \quad \text{•} \quad \Rightarrow \quad \text{•} \quad \Rightarrow \quad \text{y} \]
Summary

Theorem

TFAE:

- T_e is a stable subcategory.
- $T(E_x) = \begin{cases} \overline{E}_x & \text{if } T(S_x) = S_x, \\ 0 & \text{otherwise.} \end{cases}$
- $\text{Hom}_C(E_y, E_x) = 0$ when $T(S_x) = S_x$ and $T(S_y)$
- Any torsion vertex has no torsion-free predecessor
- $\mathcal{K} = \{ S \in (\Gamma_C)_0 \mid T(S) = S \}$ is right link-closed
- There is no path from a torsion-free vertex to a torsion vertex
- e is a left semicentral idempotent in C^*.

If T_e is a colocalizing

- $H(S_x) = S_x$ for any simple

Gabriel Navarro Localization in coalgebras
Theorem

TFAE:

- \mathcal{T}_{1-e} is a stable subcategory.
- $\text{Hom}_C(E_x, E_y) = 0$ when $T(S_x) = S_x$ and $T(S_y)$
- Any torsion-free vertex has no torsion predecessor.
- There is no path from a torsion vertex to a torsion-free vertex
- $\mathcal{K} = \{ S \in (\Gamma C)_0 \mid T(S) = S \}$ is left link-closed
- e is a right semicentral idempotent in C^*.
- $S(S_x) = S_x$ for any simple
Simple and injective comodules and localization in coalgebras

Gabriel Navarro

Department of Algebra
University of Granada

New techniques in Hopf algebras and graded ring theory
Brussels, September 2006