Serial coalgebras and their valued Gabriel quivers

Gabriel Navarro

Departamento de Álgebra
Universidad de Granada

Noncommutative Rings and Geometry

Almería, September 2007
Joint work with José Gómez Torrecillas
Serial coalgebras and their valued Gabriel quivers
arXiv:0707.0132v1 [math.RT]

Continuing the papers:

Joint work with José Gómez Torrecillas
Serial coalgebras and their valued Gabriel quivers
arXiv:0707.0132v1 [math.RT]

Continuing the papers:

Main aim

Study serial coalgebras by means of their valued Gabriel quiver

over an arbitrary field!!!

Looking for analogies with f. d. algebras:

- shape of the quiver
- description of the comodules (A-R quiver)
- are all comodules a direct sum of uniserials?
- Eisenbud-Griffith theorem?
- does localization preserve seriality?
What are we trying to do?

Main aim

Study serial coalgebras by means of their valued Gabriel quiver

over an arbitrary field!!!

Looking for analogies with f. d. algebras:

- shape of the quiver
- description of the comodules (A-R quiver)
- are all comodules a direct sum of uniserials?
- Eisenbud-Griffith theorem?
- does localization preserve seriality?
What are we trying to do?

Main aim

Study serial coalgebras by means of their valued Gabriel quiver

over an arbitrary field!!!

Looking for analogies with f. d. algebras:
- shape of the quiver
- description of the comodules (A-R quiver)
- are all comodules a direct sum of uniserials?
- Eisenbud-Griffith theorem?
- does localization preserve seriality?
What are we trying to do?

Main aim

Study serial coalgebras by means of their valued Gabriel quiver

over an arbitrary field!!!

Looking for analogies with f. d. algebras:

- shape of the quiver
- description of the comodules (A-R quiver)
- are all comodules a direct sum of uniserials?
- Eisenbud-Griffith theorem?
- does localization preserve seriality?
What are we trying to do?

Main aim

Study serial coalgebras by means of their valued Gabriel quiver

over an arbitrary field!!!

Looking for analogies with f. d. algebras:

- shape of the quiver
- description of the comodules (A-R quiver)
- are all comodules a direct sum of uniserials?
- Eisenbud-Griffith theorem?
- does localization preserve seriality?
What are we trying to do?

Main aim

Study serial coalgebras by means of their valued Gabriel quiver

over an arbitrary field!!!

Looking for analogies with f. d. algebras:
- shape of the quiver
- description of the comodules (A-R quiver)
- are all comodules a direct sum of uniserials?
- Eisenbud-Griffith theorem?
- does localization preserve seriality?
Definitions: serial coalgebra

Socle filtration: \(\text{Soc } M \subset \text{Soc}^2 M \subset \text{Soc}^3 M \subset \cdots \subset M \)

- \(\text{Soc } M \) is the socle of \(M \)
- \(\frac{\text{Soc}^n M}{\text{Soc}^{n-1} M} = \text{Soc} \left(\frac{M}{\text{Soc}^{n-1} M} \right) \).

Definition

\(M \) is uniserial if \(\text{Soc} M \subset \text{Soc}^2 M \subset \cdots \subset M \) is a composition series.

Definition

\(C \) is (right, left) serial if (right, left) indecomposable injectives are uniserial.
Definitions: serial coalgebra

Socle filtration: \(\text{Soc} \ M \subset \text{Soc}^2 M \subset \text{Soc}^3 M \subset \cdots \subset M \)

- \(\text{Soc} \ M \) is the socle of \(M \)
- \(\frac{\text{Soc}^n M}{\text{Soc}^{n-1} M} = \text{Soc} \left(\frac{M}{\text{Soc}^{n-1} M} \right) \).

Definition

\(M \) is uniserial if \(\text{Soc} M \subset \text{Soc}^2 M \subset \cdots \subset M \) is a composition series

Definition

\(C \) is (right, left) serial if (right, left) indecomposable injectives are uniserial.
Definitions: serial coalgebra

Socle filtration: \(\text{Soc} \ M \subset \text{Soc}^2 M \subset \text{Soc}^3 M \subset \cdots \subset M \)

- \(\text{Soc} \ M \) is the socle of \(M \)
- \(\frac{\text{Soc}^n M}{\text{Soc}^{n-1} M} = \text{Soc} \left(\frac{M}{\text{Soc}^{n-1} M} \right) \).

Definition

\(M \) is uniserial if \(\text{Soc} M \subset \text{Soc}^2 M \subset \cdots \subset M \) is a composition series.

Definition

\(C \) is (right, left) serial if (right, left) indecomposable injectives are uniserial.
C basic coalgebra over an arbitrary field
\{S_i\}_{i \in I_C} set of simple C-comodules

Definition

The (right) valued Gabriel quiver of C is:
- Vertices are simple comodules
- There exists \(S_1 \overset{(a,b)}{\longrightarrow} S_2 \) if and only if
 - \(\text{Ext}^1_C(S_1, S_2) \neq 0 \)
 - \(a = \dim \text{End}_C(S_1) \text{Ext}^1_C(S_1, S_2) \)
 - \(b = \dim \text{End}_C(S_2) \text{Ext}^1_C(S_1, S_2) \)
Definitions: valued Gabriel quiver

A basic coalgebra over an arbitrary field C has a set of simple C-comodules $\{S_i\}_{i \in I}$.

Definition

The (right) valued Gabriel quiver of C is:

- Vertices are simple comodules
- There exists an arrow $S_1 \xrightarrow{(a,b)} S_2$ if and only if
 - $\text{Ext}_C^1(S_1, S_2) \neq 0$
 - $a = \dim \text{End}_C(S_1) \text{Ext}_C^1(S_1, S_2)$
 - $b = \dim \text{End}_C(S_2) \text{Ext}_C^1(S_1, S_2)$
C basic coalgebra over an arbitrary field
\{S_i\}_{i \in I_C} set of simple C-comodules

Definition

The (right) valued Gabriel quiver of C is:
- Vertices are simple comodules
- There exists \(S_1 \overset{(a,b)}{\longrightarrow} S_2 \) if and only if
 - \(\text{Ext}^1_C(S_1, S_2) \neq 0 \)
 - \(a = \dim \text{End}_C(S_1) \text{Ext}^1_C(S_1, S_2) \)
 - \(b = \dim \text{End}_C(S_2) \text{Ext}^1_C(S_1, S_2) \)
C basic coalgebra over an arbitrary field
\[\{ S_i \}_{i \in I_C} \] set of simple \(C \)-comodules

Definition

The (right) valued Gabriel quiver of \(C \) is:
- Vertices are simple comodules
- There exists \(S_1 \xrightarrow{(a,b)} S_2 \) if and only if
 - \(\text{Ext}^1_C(S_1, S_2) \neq 0 \)
 - \(a = \dim_{\text{End}_C(S_1)} \text{Ext}^1_C(S_1, S_2) \)
 - \(b = \dim_{\text{End}_C(S_2)} \text{Ext}^1_C(S_1, S_2) \)
Definitions: valued Gabriel quiver

C basic coalgebra over an arbitrary field
$\{S_i\}_{i \in I_C}$ set of simple C-comodules

Definition

The (right) valued Gabriel quiver of C is:

- Vertices are simple comodules
- There exists $S_1 \xrightarrow{(a,b)} S_2$ if and only if
 - $\operatorname{Ext}^1_C(S_1, S_2) \neq 0$
 - $a = \dim_{\operatorname{End}_C(S_1)} \operatorname{Ext}^1_C(S_1, S_2)$
 - $b = \dim_{\operatorname{End}_C(S_2)} \operatorname{Ext}^1_C(S_1, S_2)$
Proposition

The immediate predecessors of S_i are given by $\frac{\text{Soc}^2 E_i}{\text{Soc} E_i}$.

Corollary

C is right serial if and only if:

- Each vertex is the target of at most one arrow.
- The arrows are labeled by $(1, d)$.

Proposition

The left valued Gabriel quiver is the opposite to the right valued Gabriel quiver.
Properties of the valued Gabriel quiver

Proposition

The immediate predecessors of S_i are given by $\frac{\text{Soc} \ E_i}{\text{Soc} \ 2E_i}$.

Corollary

C is right serial if and only if:

- Each vertex is the target of at most one arrow.
- The arrows are labeled by $(1,d)$.

Proposition

The left valued Gabriel quiver is the opposite to the right valued Gabriel quiver.
Proposition

The immediate predecessors of S_i are given by $\frac{\text{Soc}^2 E_i}{\text{Soc} E_i}$.

Corollary

C is right serial if and only if:
- Each vertex is the target of at most one arrow.
- The arrows are labeled by $(1, d)$.

Proposition

The left valued Gabriel quiver is the opposite to the right valued Gabriel quiver.
Theorem

C is **serial** if and only if its valued Gabriel quiver is

(a) ∞A_{∞}: $\circ \rightarrow \circ \rightarrow \circ \rightarrow \circ \rightarrow \circ \rightarrow \circ$

(b) A_{∞}: $\circ \rightarrow \circ \rightarrow \circ \rightarrow \circ \rightarrow \circ \rightarrow \circ$

(c) ∞A : $\circ \rightarrow \circ \rightarrow \circ \rightarrow \circ \rightarrow \circ \rightarrow \circ$

(d) A_n: $\circ \rightarrow \circ \rightarrow \circ$ $\circ \rightarrow \circ \rightarrow \circ$ $n \geq 1$

(e) \tilde{A}_n: \circ $\circ \leftarrow \circ \circ \rightarrow \circ$ $n \geq 1$

and the labels are (1, 1).
Characterization by means of quivers

Theorem

C is serial if and only if its valued Gabriel quiver is

(a) \(\infty \mathbb{A}_\infty : \quad \bullet \rightarrow \bullet \rightarrow \bullet \rightarrow \bullet \rightarrow \bullet \rightarrow \bullet \rightarrow \cdots \)

(b) \(\mathbb{A}_\infty : \quad \bullet \rightarrow \bullet \rightarrow \bullet \rightarrow \bullet \rightarrow \bullet \rightarrow \bullet \rightarrow \cdots \)

(c) \(\infty \mathbb{A} : \quad \bullet \rightarrow \bullet \rightarrow \bullet \rightarrow \bullet \rightarrow \bullet \rightarrow \bullet \rightarrow \quad \)

(d) \(\mathbb{A}_n : \quad \bullet \rightarrow \bullet \rightarrow \bullet \rightarrow \bullet \rightarrow \bullet \rightarrow \bullet \rightarrow \quad n \geq 1 \)

(e) \(\tilde{\mathbb{A}}_n : \quad \bullet \rightarrow \bullet \rightarrow \bullet \rightarrow \bullet \rightarrow \bullet \rightarrow \bullet \rightarrow \quad n \geq 1 \)

and the labels are \((1, 1)\).
Proposition

TFAE:
- \(M \) is uniserial.
- Every f.d. subcomodule of \(M \) is uniserial.

Theorem

\(C \) serial coalgebra, \(M \) indecomposable f.d. comodule
- \(M \cong \text{Soc}^n E_i = S_i^n \), \(E_i \) indecomposable injective.
- \(C \) has almost split sequence, in particular,

\[
\begin{align*}
\text{Soc}^n E & \xrightarrow{(i)} \text{Soc}^{n+1} E \oplus \frac{\text{Soc}^n E}{\text{Soc} E} \xrightarrow{(q-j)} \frac{\text{Soc}^{n+1} E}{\text{Soc} E}
\end{align*}
\]

is almost split.
Finite dimensional comodules

Proposition

TFAE:
- M is uniserial.
- Every f.d. subcomodule of M is uniserial.

Theorem

C serial coalgebra, M indecomposable f.d. comodule

- $M \cong \text{Soc}^n E_i = S^n_i$, E_i indecomposable injective.
- C has almost split sequence, in particular,

\[
\begin{align*}
\text{Soc}^n E & \xrightarrow{(i_p)} \text{Soc}^{n+1} E
\oplus \frac{\text{Soc}^n E}{\text{Soc} E} & \xrightarrow{(q-j)} \frac{\text{Soc}^{n+1} E}{\text{Soc} E}
\end{align*}
\]

is almost split.
Finite dimensional comodules

Proposition

TFAE:

- M is uniserial.
- Every f.d. subcomodule of M is uniserial.

Theorem

C serial coalgebra, M indecomposable f.d. comodule

- $M \cong \text{Soc}^n E_i = S_i^n$, E_i indecomposable injective.
- C has almost split sequence, in particular,

\[
\begin{align*}
\text{Soc}^n E & \xrightarrow{(i)} \text{Soc}^{n+1} E \oplus \frac{\text{Soc}^n E}{\text{Soc} E} & \xrightarrow{(q-j)} \frac{\text{Soc}^{n+1} E}{\text{Soc} E}
\end{align*}
\]

is almost split.
Proposition

TFAE:

- \(M \) is uniserial.
- Every f.d. subcomodule of \(M \) is uniserial.

Theorem

Let \(C \) be a serial coalgebra, \(M \) an indecomposable finite-dimensional comodule

- \(M \cong \operatorname{Soc}^n E_i = S_i^n \), \(E_i \) indecomposable injective.
- \(C \) has almost split sequence, in particular,

\[
\begin{align*}
\operatorname{Soc}^n E &\xrightarrow{(i)} \operatorname{Soc}^{n+1} E \oplus \frac{\operatorname{Soc}^n E}{\operatorname{Soc} E} \xrightarrow{(q-j)} \frac{\operatorname{Soc}^{n+1} E}{\operatorname{Soc} E}
\end{align*}
\]

is almost split.
Gabriel Navarro
Serial coalgebras
Gabriel Navarro
Serial coalgebras
Gabriel Navarro Serial coalgebras
Theorem

A serial finite dimensional algebra, then each module is a direct sum of uniserial modules

And for coalgebras?? Not really!!

Proposition

C serial. Each comodule is direct sum of uniserial comudules if and only if C is pure-semisimple.

Counterexample

Consider the path coalgebra of ◦
Theorem

A serial finite dimensional algebra, then each module is a direct sum of uniserial modules

And for coalgebras?? Not really!!

Proposition

C serial. Each comodule is direct sum of uniserial comudules if and only if C is pure-semisimple.

Counterexample

Consider the path coalgebra of
Infinite dimensional comodules

Theorem

A serial finite dimensional algebra, then each module is a direct sum of uniserial modules

And for coalgebras?? Not really!!

Proposition

C serial. Each comodule is direct sum of uniserial comodules if and only if C is pure-semisimple.

Counterexample

Consider the path coalgebra of ◦
A dense subcategory of an abelian category \mathcal{C}:

- There is a quotient functor $T : \mathcal{C} \to \mathcal{C}/\mathcal{A}$.
- \mathcal{A} is localizing if T has a right adjoint functor $S : \mathcal{C}/\mathcal{A} \to \mathcal{C}$ (section functor).
- \mathcal{A} is perfect localizing if S is exact.

\[\mathcal{C} \xleftrightarrow{T} \mathcal{C}/\mathcal{A} \xleftrightarrow{S} \]

Proposition

- T is an exact functor.
- S is a fully faithful and left exact functor.
A dense subcategory of an abelian category \mathcal{C}:

- There is a **quotient functor** $T : \mathcal{C} \to \mathcal{C}/\mathcal{A}$.
- \mathcal{A} is **localizing** if T has a right adjoint functor $S : \mathcal{C}/\mathcal{A} \to \mathcal{C}$ (section functor).
- \mathcal{A} is **perfect localizing** if S is exact.

$\mathcal{C} \xrightarrow{T} \mathcal{C}/\mathcal{A} \xleftarrow{S}$

Proposition

- T is an exact functor.
- S is a fully faithful and left exact functor.
A dense subcategory of an abelian category \mathcal{C}:

- There is a **quotient functor** $T : \mathcal{C} \to \mathcal{C}/\mathcal{A}$.
- \mathcal{A} is **localizing** if T has a right adjoint functor $S : \mathcal{C}/\mathcal{A} \to \mathcal{C}$ (section functor).
- \mathcal{A} is **perfect localizing** if S is exact.

\[
\begin{array}{ccc}
\mathcal{C} & \xrightarrow{T} & \mathcal{C}/\mathcal{A} \\
\mathcal{C}/\mathcal{A} & \xleftarrow{S} & \mathcal{C}
\end{array}
\]

Proposition

- T is an exact functor.
- S is a fully faithful and left exact functor.
A dense subcategory of an abelian category \mathcal{C}:

- There is a **quotient functor** $T : \mathcal{C} \rightarrow \mathcal{C}/\mathcal{A}$.
- \mathcal{A} is **localizing** if T has a right adjoint functor $S : \mathcal{C}/\mathcal{A} \rightarrow \mathcal{C}$ (section functor).
- \mathcal{A} is **perfect localizing** if S is exact.

$$
\begin{array}{ccc}
\mathcal{C} & \xrightarrow{T} & \mathcal{C}/\mathcal{A} \\
\xleftarrow{S} & & \\
\end{array}
$$

Proposition

- T is an exact functor.
- S is a fully faithful and left exact functor.
C be a coalgebra and \mathcal{M}^C the right C-comodules.

Theorem

There are one-to-one correspondences between:

- **Localizing subcategories** of \mathcal{M}^C.
- Classes of equivalence of *injective* C-comodules.
- **Coidempotent subcoalgebras** of C ($A \wedge A = A$).
- Sets of *indecomposable injective* C-comodules.
- Sets of *simple* C-comodules.
- Classes of equivalence of *idempotents* in C^*.

Corollary

$\mathcal{M}^C / T_e \simeq \mathcal{M}^{eC_0}$
C be a coalgebra and \mathcal{M}^C the right C-comodules.

Theorem

There are one-to-one correspondences between:

- Localizing subcategories of \mathcal{M}^C.
- Classes of equivalence of injective C-comodules.
- Coidempotent subcoalgebras of C ($A \wedge A = A$).
- Sets of indecomposable injective C-comodules.
- Sets of simple C-comodules.
- Classes of equivalence of idempotents in C^*.

Corollary

$\mathcal{M}^C / \mathcal{T}_e \simeq \mathcal{M}^{eCe}$
Example: localization of path coalgebras

\[Q = (Q_0, Q_1) \text{ quiver} \]
\[e \text{ idempotent in } (KQ)^* \]
\[X \subseteq Q_0 \text{ vertices associated to } e \]

\[X \leftrightarrow e(p) = \begin{cases}
1 & \text{if } p \in X \\
0 & \text{otherwise}
\end{cases} \]

Let \(p \) be a path in \(Q \)

\[x_1 \rightarrow x_2 \rightarrow \cdots \rightarrow x_{n-1} \rightarrow x_n \]

\(p \) is a \textbf{cell} relative to \(X \) if

\[\begin{cases}
x_1, x_n \in X, \\
x_2, x_3, \ldots, x_{n-1} \notin X
\end{cases} \]
Example: localization of path coalgebras

\[Q = (Q_0, Q_1) \text{ quiver} \]
\[e \text{ idempotent in } (KQ)^* \]
\[X \subseteq Q_0 \text{ vertices associated to } e \]

\[X \leftrightarrow e(p) = \begin{cases}
1 & \text{if } p \in X \\
0 & \text{otherwise}
\end{cases} \]

Let \(p \) be a path in \(Q \)

\[\xymatrix{
& \bullet
\ar[r] & \bullet
\ar[r] & \cdots
\ar[r] & \bullet
\ar[r] & \circ \\
X_1 & X_2 & & X_{n-1} & X_n
} \]

\(p \) is a cell relative to \(X \) if
\[\begin{cases}
x_1, x_n \in X, \\
x_2, x_3, \ldots, x_{n-1} \notin X
\end{cases} \]
Example: localization of path coalgebras

\[Q = (Q_0, Q_1) \text{ quiver} \]

\(e \) idempotent in \((KQ)^*\)

\(X \subseteq Q_0 \) vertices associated to \(e \)

\[X \leftrightarrow e(p) = \begin{cases}
1 & \text{if } p \in X \\
0 & \text{otherwise}
\end{cases} \]

Let \(p \) be a path in \(Q \)

\[\begin{array}{c}
\circ \\
X_1
\end{array} \rightarrow \begin{array}{c}
\bullet \\
x_2
\end{array} \rightarrow \begin{array}{c}
\bullet \\
x_3 \\
\bullet \\
x_{n-1} \\
\bullet \\
x_n
\end{array} \rightarrow \begin{array}{c}
\circ
\end{array} \]

\(p \) is a **cell** relative to \(X \) if

\[\begin{cases}
x_1, x_n \in X, \\
x_2, x_3, \ldots, x_{n-1} \notin X
\end{cases} \]
Example: localization of path coalgebras

Theorem

\[e(KQ)e \cong KQ^e, \text{ where } Q^e = (X, Cell_{X}^Q). \]

Example

\[e(\circ) = 1 \text{ and } e(\bullet) = 0 \]

\[A_3 : \circ \rightarrow \bullet \rightarrow \circ \]

\[(A_3)^e : \circ \rightarrow \circ \]
Example: localization of path coalgebras

Theorem

\[e(KQ)e \cong KQ^e, \text{ where } Q^e = (X, Cell_X^Q). \]

Example

\[e(\circ) = 1 \text{ and } e(\bullet) = 0 \]

\[A_3 : \circ \rightarrow \bullet \rightarrow \circ \]

\[(A_3)^e : \circ \rightarrow \circ \]
Example: localization of path coalgebras

Theorem

\[e(KQ)e \cong KQ^e, \text{ where } Q^e = (X, Cell^Q_X). \]

Example

\[e(\circ) = 1 \text{ and } e(\bullet) = 0 \]

\[\mathbb{A}_3 : \circ \longrightarrow \bullet \longrightarrow \circ \]

\[(\mathbb{A}_3)^e : \circ \longrightarrow \circ \]
Example: localization of path coalgebras

Theorem

\[e(KQ)e \cong KQ^e, \text{ where } Q^e = (X, \text{Cell}^Q_X). \]

Example

\[e(\odot) = 1 \text{ and } e(\bullet) = 0 \]

\[A_3 : \odot \rightarrow \bullet \rightarrow \odot \]

\[(A_3)^e : \odot \rightarrow \odot \]

Gabriel Navarro | Serial coalgebras
Example: localization of path coalgebras

Theorem

\[e(KQ)e \cong KQ^e, \text{ where } Q^e = (X, \text{Cell}_X^Q). \]

Example

\[e(\circ) = 1 \text{ and } e(\bullet) = 0 \]

\[\mathbb{A}_3 : \begin{array}{ccc}
\circ & \xrightarrow{} & \bullet \\
\downarrow & & \downarrow \\
\circ & \xrightarrow{} & \circ \\
\end{array} \quad (\mathbb{A}_3)^e : \begin{array}{c}
\circ \xrightarrow{} \circ \\
\end{array} \]
Example: localization of path coalgebras

Example

\[e(\circ) = 1 \text{ and } e(\bullet) = 0 \]
Example: localization of path coalgebras

Example

\[
e(\bigcirc) = 1 \text{ and } e(\bullet) = 0
\]
Example: localization of path coalgebras

\[e(\bigcirc) = 1 \text{ and } e(\bullet) = 0 \]
Example: localization of path coalgebras

Example

\[e(\bigcirc) = 1 \text{ and } e(\bullet) = 0 \]
Some consequences

Proposition

If M is a uniserial C-comodule, then $T(M) = eM$ is a uniserial eCe-comodule.

Corollary

- If C is serial, then eCe is serial.
- If any socle-finite eCe is serial then C is serial.

Example

KQ is not serial.
Some consequences

Proposition

If M is a uniserial C-comodule, then $T(M) = eM$ is a uniserial eCe-comodule

Corollary

- If C is serial, then eCe is serial.
- If any socle-finite eCe is serial then C is serial.

Example

KQ is not serial
Some consequences

Proposition

If M is a uniserial C-comodule, then $T(M) = eM$ is a uniserial eCe-comodule

Corollary

- *If C is serial, then eCe is serial.*
- *If any socle-finite eCe is serial then C is serial.*

Example

KQ is not serial
Some consequences

Proposition

If M is a uniserial C-comodule, then $T(M) = eM$ is a uniserial eCe-comodule

Corollary

- If C is serial, then eCe is serial.
- If any socle-finite eCe is serial then C is serial.

Example

KQ is not serial
Theorem (Eisenbud-Griffith Theorem)

Every proper quotient of a hereditary noetherian prime ring is serial

“Coalgebraic” notions:

- Subcoalgebra
- hereditary (global dimension 0 or 1)
-Strictly quasi-finite (quotients are quasi-finite comodules)
- prime ($A \land B = C$, then $A = C$ or $B = C$).
Eisenbud-Griffith Theorem for coalgebras

Theorem (Eisenbud-Griffith Theorem)

Every proper quotient of a hereditary noetherian prime ring is serial.

“Coalgebraic” notions:

- **Subcoalgebra**
 - hereditary (global dimension 0 or 1)
 - Strictly quasi-finite (quotients are quasi-finite comodules)
 - prime ($A \land B = C$, then $A = C$ or $B = C$).
Theorem (Eisenbud-Griffith Theorem)

Every proper quotient of a hereditary noetherian prime ring is serial.

“Coalgebraic” notions:

- Subcoalgebra
- **Hereditary** (global dimension 0 or 1)
 - Strictly quasi-finite (quotients are quasi-finite comodules)
 - prime ($A \land B = C$, then $A = C$ or $B = C$).
Theorem (Eisenbud-Griffith Theorem)

Every proper quotient of a hereditary noetherian prime ring is serial.

“Coalgebraic” notions:

- Subcoalgebra
- hereditary (global dimension 0 or 1)
- **Strictly quasi-finite** (quotients are quasi-finite comodules)
- prime ($A \land B = C$, then $A = C$ or $B = C$).
Theorem (Eisenbud-Griffith Theorem)

Every proper quotient of a hereditary noetherian prime ring is serial.

“Coalgebraic” notions:

- Subcoalgebra
- hereditary (global dimension 0 or 1)
- Strictly quasi-finite (quotients are quasi-finite comodules)
- prime ($A \wedge B = C$, then $A = C$ or $B = C$).
Theorem

Every subcoalgebra of a prime, hereditary and strictly quasi-finite coalgebra is serial.
STEP 1: Reduction to socle-finite coalgebras

\[eCe \text{ socle-finite “localized” coalgebra} \]

\[eCe \text{ is} \begin{cases} \text{hereditary} \\ \text{strictly quasi-finite} \\ \text{prime} \end{cases} \]

E-G theorem

\[eCe \text{ is serial} \]

\[C \text{ is serial} \]
STEP 2: The colocal case

Example

If \((2,1) \) then \(C \) is NOT strictly quasi-finite

Therefore,

Lemma

The quiver of a colocal “localized” coalgebra is:

- a single point, or
- \((1,1) \)
STEP 2: The colocal case

Example

If \((2,1)\) then \(C\) is NOT strictly quasi-finite

Therefore,

Lemma

The quiver of a colocal "localized" coalgebra is:

- a single point, or
- \((1,1)\)
Eisenbud-Griffith Theorem for coalgebras

STEP 3: Deduction of the quiver

Theorem

- If C is prime, then each vertex is in a cycle.
- If C is hereditary and

\[
\begin{array}{c}
 x \\
 \rightarrow (d_1, d_2) \\
 \rightarrow \bullet \\
 \rightarrow (c_1, c_2) \\
 \rightarrow y
\end{array}
\]

then

\[
\begin{array}{c}
 x \\
 \rightarrow (c_1 d_1, c_2 d_2) \\
 \rightarrow y
\end{array}
\]

Corollary

The quiver of C is

Gabriel Navarro Serial coalgebras
Eisenbud-Griffith Theorem for coalgebras

STEP 3: Deduction of the quiver

Theorem

- If C is prime, then each vertex is in a cycle.
- If C is hereditary and

$$
\begin{array}{c}
\circ \arrow[d, (d_1, d_2)] \circ \\
\downarrow \downarrow \\
\bullet \arrow[d, (c_1, c_2)] \circ \\
\downarrow \\
n \end{array}
\begin{array}{c}
\circ \arrow[d, (c_1 d_1, c_2 d_2)] \circ \\
\downarrow \downarrow \\
\bullet \arrow[d, (c_1, c_2)] \circ \\
\downarrow \\
y
\end{array}
$$

then

Corollary

The quiver of C is

$$
\begin{array}{c}
1 \leftrightarrow 2 \leftrightarrow 3 \\
\downarrow \downarrow \downarrow \\
7 \leftrightarrow 6 \leftrightarrow 5 \\
\downarrow \downarrow \downarrow \\
4 \leftrightarrow 3 \leftrightarrow 2 \\
\downarrow \downarrow \downarrow \\
n \leftrightarrow 1 \leftrightarrow 2 \\
\downarrow \downarrow \downarrow \\
7 \leftrightarrow 6 \leftrightarrow 5 \\
\downarrow \downarrow \downarrow \\
4 \leftrightarrow 3 \leftrightarrow 2 \\
\downarrow \downarrow \downarrow \\
n \leftrightarrow 1 \leftrightarrow 2 \\
\end{array}
$$