Exceptional holonomy and calibrated submanifolds.

MARK HASKINS

Imperial College London

' G_2 manifolds and associative submanifolds via weak Fano 3-folds', with A. Corti, J. Nordstrom & T. Pacini. In preparation.

Geometry day Granada, December 2010

Exceptional holonomy groups: a review

Motivating question: which subgroups of SO(n) can be the holonomy group of a simply-connected n-manifold M?

- 1955: Berger gives list of 8 families of subgroups of SO(n) that *could* be holonomy groups of a simply-connected irreducible and nonsymmetric Riemannian manifold.
- Includes 3 exceptional cases in dim 7, 8 and 16.

$$G_2 \subset SO(7), \qquad Spin(7) \subset SO(8), \qquad Spin(9) \subset SO(16).$$

- 1962: Simons simplifies Berger's proof: shows Hol(g) must act transitively and effectively on the unit sphere in \mathbb{R}^n .
- 1968: Alekseevskii proves any Riemannian metric with holonomy group $Spin(9) \subset SO(16)$ is symmetric.

Exceptional holonomy question:

Do manifolds with holonomy G_2 and Spin(7) exist?

What is the group G_2 ?

Unhelpful answer: G_2 is the unique compact 1-connected simple Lie group of dimension 14.

Two geometric characterizations of G_2 :

- (i) the automorphism group of the octonions $\mathbb O$
- (ii) the stabilizer of a generic 3-form in \mathbb{R}^7

Define a vector cross-product on $\mathbb{R}^7 = \text{Im}(\mathbb{O})$

$$u \times v = \operatorname{Im}(uv)$$

where uv denotes octonionic multiplication.

Cross-product has an associated 3-form

$$\phi_0(u, v, w) := \langle u \times v, w \rangle = \langle uv, w \rangle$$

 ϕ_0 is a generic 3-form so

$$G_2 = \{ A \in GL(7, \mathbb{R}) | A^* \phi_0 = \phi_0 \} \subset SO(7).$$

$$SU(2) \subset SU(3) \subset G_2$$

 \exists close relations between G_2 holonomy and Calabi-Yau geometries in 2 and 3 dimensions.

• Write $\mathbb{R}^7 = \mathbb{R} \times \mathbb{C}^3$ with $(\mathbb{C}^3, \omega, \Omega)$ the std SU(3) structure then

$$\phi_0 = dt \wedge \omega + \operatorname{Re}(\Omega)$$

Hence stabilizer of \mathbb{R} factor in G_2 is $SU(3) \subset G_2$.

More generally if (X,g) is a Calabi-Yau 3-fold then product metric on $\mathbb{S}^1 \times X$ has holonomy $SU(3) \subset G_2$.

• Write $\mathbb{R}^7 = \mathbb{R}^3 \times \mathbb{C}^2$ with coords (x_1, x_2, x_3) on \mathbb{R}^3 , with std SU(2) structure $(\mathbb{C}^2, \omega_I, \Omega = \omega_J + i\omega_K)$ then

$$\phi_0 = dx_1 \wedge dx_2 \wedge dx_3 + dx_1 \wedge \omega_I + dx_2 \wedge \omega_J + dx_3 \wedge \omega_K,$$

Hence subgroup of G_2 fixing $\mathbb{R}^3 \subset \mathbb{R}^3 \times \mathbb{C}^2$ is $SU(2) \subset G_2$.

Exceptional holonomy: some milestones

1984: (Bryant) locally \exists many metrics with holonomy G_2 and Spin(7). Proof uses Exterior Differential Systems.

1989: (Bryant-Salamon) explicit complete metrics with holonomy G_2 and Spin(7) on noncompact manifolds.

1996: (Joyce) Gluing methods used to construct *compact* 7-manifolds with holonomy G_2 and 8-manifolds with holonomy $Spin_7$. Uses a modified Kummer-type construction.

- Start with flat orbifold T^7/Γ for appropriate finite groups $\Gamma \in G_2$.
- Resolve singularities of orbifold to give smooth (but nearly singular) 7-mfd and a metric which is close to G_2 holonomy (small torsion).
- Use analysis (on nearly singular mfd) to perturb 3-form to torsion-free G_2 structure.

Calibrations – Definitions

A calibrated geometry is a distinguished class of minimal submanifolds associated with a differential form.

• A calibrated form is a closed differential p-form ϕ on a Riemannian manifold (M,g) satisfying $\phi \leq vol_g$.

i.e.
$$\phi(e_1,\ldots,e_p) \leq 1$$

for any orthonormal set of p tgt vectors

- For $m \in M$ associate with ϕ the subset $G_m(\phi)$ of oriented p-planes for which equality holds in (*) the *calibrated* planes.
- A submanifold *calibrated* by ϕ is an oriented p-dim submanifold whose tangent plane at each point m lies in the subset $G_m(\phi)$ of distinguished p-planes.

Lemma: (Harvey–Lawson) Calibrated submanifolds minimize volume in their homology class.

Holonomy, constant tensors & calibrations

Key fact: Parallel tensors on (M,g) determined by holonomy group $G = \operatorname{Hol} g$.

 $G \subset O(n)$ also acts on k-forms on \mathbb{R}^n .

G-invariant k-forms \iff parallel k-forms on (M,g)

If ϕ_0 is G-invariant k-form on \mathbb{R}^n , by rescaling can arrange comass 1 property

 $\Rightarrow \phi_0$ is a calibration on \mathbb{R}^n .

Also ϕ_0 *G*-invariant \Rightarrow

 ξ a calibrated plane \Rightarrow so is $\gamma.\xi$ for any $\gamma \in G$,

i.e. \exists many ϕ_0 -calibrated planes.

 ϕ_0 calibration \Rightarrow corresponding parallel k-form ϕ on (M,g) also a calibration with a large set of calibrated k-planes.

Suggests locally should exist many ϕ -calibrated submfds.

Associative & coassociative calibrations

3-form ϕ_0 and 4-form $*\phi_0$ on \mathbb{R}^7 are G_2 -invariant calibrations.

Oriented 3-planes calibrated by ϕ_0 are called *associative* planes.

- $\mathbb{R}^3 \subset \mathbb{R}^3 \times \mathbb{C}^2$ is an associative 3-plane.
- G_2 acts transitively on associative 3-planes.

Oriented 4-planes calibrated by $*\phi_0$ are called *coassociative*.

• 4-plane is coassociative iff its orthogonal complement is associative.

Holonomy/constant tensor correspondence ⇒

on any mfd (M,g) with $Hol(g) \subset G_2$ we have parallel 3 and 4-forms ϕ and $*_q\phi$.

 \Rightarrow associative and coassociative calibrations exist on any mfd with holonomy G_2 .

G_2 structures and positive 3-forms

Positive 3-forms \iff (oriented) G_2 -structures

ullet A 3-form ϕ on an oriented 7-mfd M is positive if $\forall~p\in M~\exists~$ an oriented isomorphism

$$i: T_pM \to \mathbb{R}^7$$
, such that $i^*\phi_0 = \phi$.

- Positive 3-forms on $\mathbb{R}^7 \iff GL_+(7,\mathbb{R})/G_2$.
- $\dim(GL_{+}(7,\mathbb{R})/G_{2}) = 35 = \dim \Lambda^{3}\mathbb{R}^{7}$.
- \Rightarrow Positive 3-forms on M form an *open* subbundle of Λ^3T^*M *i.e.* small perturbations of a G_2 structure are G_2 structures.

Prop: (S. Salamon) Let (M, ϕ, g) be a G_2 structure on a compact 7-manifold. TFAE

- 1. $\operatorname{Hol}(g) \subset G_2$ and ϕ is the induced 3-form
- 2. $\nabla \phi = 0$ where ∇ is Levi-Civita w.r.t g
- 3. $d\phi = d^*\phi = 0$.

NB (3) is nonlinear in ϕ because metric g depends nonlinearly on ϕ .

The topology of G_2 manifolds

Prop:

- (a). A compact 7-manifold M admits a G_2 -structure iff M is orientable and spinnable.
- (b). A compact 7-manifolds M with a torsion-free G_2 structure (ϕ, g) has $Hol(g) = G_2$ iff $\pi_1 M$ is finite.
- (c). A compact 7-manifold (M,g) with $Hol(g) = G_2$ has nonzero first Pontrjagin class $p_1(M)$.

Compact mfds with holonomy G_2 via neck-stretching

Donaldson suggested constructing compact G_2 manifolds via a neck-stretching argument

- Use noncompact version of Calabi conjecture to construct asymptotically cylindrical Kähler-Ricci-flat (AC KRF) 3-folds X with one end $\sim \mathbb{C}^* \times D$, with D a smooth K3
- $M = \mathbb{S}^1 \times X$ is a Riem 7-mfd with $\operatorname{Hol} g = \operatorname{SU}(3) \subset G_2$ with end $\sim \mathbb{R}^+ \times T^2 \times K3$.
- Take a twisted connect sum of a pair of $M_i = \mathbb{S}^1 \times X_i$
- For T >> 1 construct a G_2 -structure w/ small torsion (exponentially small in T) and prove it can be corrected to torsion-free.

Hyperkähler rotation (or matching data)

Product G_2 structure on M_i asymptotic to

$$d\theta_1 \wedge d\theta_2 \wedge dt + d\theta_1 \wedge \omega_I^{(i)} + d\theta_2 \wedge \omega_J^{(i)} + dt \wedge \omega_K^{(i)}$$

- ullet $\omega_I^{(i)}$ denotes Ricci-flat Kähler metric on D_i
- $\omega_J^{(i)} + \sqrt{-1} \, \omega_K^{(i)}$ parallel (2,0)-form on D_i .

To get a well-defined G_2 structure using

$$F: [T-1,T] \times T^2 \times D_1 \to [T-1,T] \times T^2 \times D_2$$

given by

$$(t, \theta_1, \theta_2, y) \mapsto (2T - 1 - t, \theta_2, \theta_1, f(y))$$

to identify end of M_1 with M_2 we need $f:D_1\to D_2$ to satisfy

$$f^*\omega_I^{(2)} = \omega_J^{(1)}, \quad f^*\omega_J^{(2)} = \omega_I^{(1)}, \quad f^*\omega_K^{(2)} = -\omega_K^{(1)}$$

Constructing such hyperkähler rotations is nontrival and a major part of the construction.

Kovalev's compact G_2 manifolds

Kovalev carried out Donaldson's proposal.

Main points of Kovalev's approach (2003):

- 1. Construct asymptotically cylindrical Calabi-Yau 3-folds from smooth *Fano* 3-folds, using work of Tian-Yau
- 2. Need to find sufficient conditions for existence of a "hyperkähler rotation" between D_1 and D_2 .
- 3. Given a pair of AC KRF 3-folds X_i and a HK-rotation $f:D_1\to D_2$ can always glue M_1 and M_2 to get a 1-parameter family of cpt manifolds M_T with holonomy G_2 .
- 4. Use global Torelli theorems and lattice embedding results (Nikulin) to find hyperkähler rotations from suitable initial pairs of Fano 3-folds
- 5. When set up in terms of analysis on exponentially weighted Sobolev spaces the gluing /perturbation argument is relatively straightforward (no small eigenvalues)

An asymptotically cylindrical Calabi conjecture

Tian-Yau I (JAMS 1990): The Calabi conjecture on fibred quasiprojective manifolds.

Setup:

- ullet \overline{X} is a projective manifold
- $D \subset \overline{X}$ a divisor
- \bullet $\pi:\overline{X}\to \overline{S}$ is a fibre space over a smooth algebraic curve \overline{S} with connected fibres
- $D = \pi^{-1}(D_{\overline{S}})$, $D_{\overline{S}} \subset \overline{S}$ consists of finitely many smooth reduced fibres.

Thm: Let $X = \overline{X} \setminus D$. Given any (1,1)-form Ω representing $c_1(K_{\overline{X}}^{-1} \otimes [D]^{-1})$, there is a complete Kähler metric with Ω as its Ricci form and this metric has linear volume growth.

⇒ Get complete Calabi-Yau metrics with linear volume growth from anticanonical divisors in fibred quasiprojective varieties.

Q: How do we find such K3 fibred projective 3-folds?

K3-fibred 3-folds from Fano 3-folds

X a smooth Fano 3-fold: a nonsingular cx 3-fold X with K_X^{-1} ample.

A generic anticanonical divisor $D_1 \in |K_X^{-1}|$ is a smooth K3 surface. BUT, normal bundle of D_1 in X is not trivial.

If $D_1, D_1' \in |K_X^{-1}|$ are generic then $C = D_1 \cap D_1'$ is a smooth curve of genus g. g is the *genus* of the Fano 3-fold and satisfies

$$(K_X^{-1})^3 = 2g - 2.$$

Blowing up C yields a new 3-fold \overline{X} and a map

$$\pi:\overline{X}\to\mathbb{P}^1$$

whose fibres are the proper transforms of the surfaces in the pencil defined by D_1 and D'_1 . Proper transform of D_1 is an anticanonical divisor on \overline{X} .

 $M=\overline{X}\setminus \overline{D}_1$ is a quasiprojective 3-fold with trivial canonical bundle which fibres over $\mathbb C$ with generic fibre a smooth K3; M admits an asymptotically cylindrical Calabi-Yau metric

Q: how can we find more K3 fibred quasiprojective 3-folds?

Weak Fano 3-folds

Basic idea: replace condition K_X^{-1} is positive, with K_X^{-1} sufficiently "non-negative"; replace ample with nef and big.

Definition: A smooth cx 3-fold X is a weak Fano manifold if K_X^{-1} is big and nef.

ullet A holomorphic line bundle L on X is *nef* if

$$c_1(L).C = \int_C c_1(L) \ge 0$$

for every irreducible (holo) curve $C \subset X$.

ullet A holomorphic line bundle L on X is \emph{big} if

$$h^0(L^{\otimes m}) \ge Cm^n$$
, for $m \gg 1$, $n = \dim_{\mathbb{C}} X$.

There exist many more weak Fano 3-folds than Fano 3-folds (thousands versus around 100 deformation families of Fanos)

Classification of smooth weak Fano 3-folds ongoing

Weak Fano 3-folds and G_2 manifolds

Main points:

- 1. Generic elements of $|K_X^{-1}|$ smooth K3s for weak Fano 3-folds.
- \Rightarrow can still construct asymptotically cylindrical Calabi-Yau 3-folds from weak Fanos.
- 2. Need *more* than weak Fano to construct hyperkahler rotation $f:D_1\to D_2$. Need a sufficiently good deformation/moduli theory for anticanonical K3 divisors in deformation family of the 3-fold

Definition: A weak Fano 3-fold is *weak-** if the natural morphism to its anti-canonical model is *small*.

Also useful to allow intermediate class of weak Fano 3-folds where AC model is only *semismall*.

For weak-* Fano 3-folds can still construct HK rotations.

 \Rightarrow can use them to construct compact G_2 manifolds.

Simple examples of weak-* Fano 3-folds

Example 1: start with a (singular) Fano 3-fold Y containing a plane Π and resolve.

If $\Pi = (x_0 = x_1 = 0)$ then eqn of Y is

$$Y = (x_0 a_3 + x_1 b_3 = 0) \subset \mathbb{P}^4$$

where a_3 and b_3 are homogeneous cubic forms in (x_0, \ldots, x_4) . Generically the plane cubics

$$(a_3(0,0,x_2,x_3,x_4)=0)\subset\Pi,$$

$$(b_3(0,0,x_2,x_3,x_4)=0)\subset\Pi$$

intersect in 9 distinct points, where Y has 9 ordinary double points.

Simultaneous resolution of these ODPs by blowing-up $\Pi \subset Y$ gives a weak-* Fano 3-fold X such that:

X contains 9 smooth rigid rational curves with normal bundle $\mathcal{O}(-1) \oplus \mathcal{O}(-1)$ with genus 3 and Picard rank 2.

Examples of weak-* Fano 3-folds

Example 2: A quartic 3-fold in \mathbb{P}^4 with only ordinary double points has at most 45 singular points. Up to coordinate change, there is a unique such 3-fold, the *Burkhardt quartic Y*

$$(x_0^4 - x_0(x_1^3 + x_2^3 + x_3^3 + x_4^3 + 3x_1x_2x_3x_4)) = 0) \subset \mathbb{P}^4.$$

Y admits a small projective resolution X

X is a weak-* Fano 3-fold w/ genus 3, Picard rank 16 and 45 smooth rigid \mathbb{P}^1 s with normal bundle $\mathcal{O}(-1) \oplus \mathcal{O}(-1)$.

Example 2 shows weak-* Fano 3-folds can have larger Picard rank. \Rightarrow can get G_2 manifolds with larger Betti numbers.

Deformation classes of Fano 3-folds classified in 1980s via minimal model techniques. Classification results \Rightarrow any Fano 3-fold has Picard rank \leq 10. In fact, Picard rank \geq 6 forces X to be $\mathbb{P}^1 \times a$ 2d Fano (del Pezzo surface).

Toric weak-* Fano 3-folds

Any terminal toric Fano 3-fold has only ODPs as singularities

Toric terminal Fano 3-folds classified in terms of reflexive polytopes $\Rightarrow \exists$ 82 terminal toric Fano 3-folds

Every terminal Fano 3-folds admits at least one projective small resolution; most admit many such resolutions.

⇒ lots of smooth toric weak-* Fano 3-folds

Advantages of weak-* Fano vs. Fano

- 1. Many more weak-* Fano than Fano 3-folds \Rightarrow get more topological types of G_2 mfds
- 2. In a Fano 3-fold K_X^{-1} is ample:
 - \Rightarrow any compact holo curve $C\subset X$ must intersect any antical divisor
 - A weak-* Fano 3-fold can contain holo curves C that do not meet anticanonical divisors.
- 3. For each smooth rigid \mathbb{P}^1 in a weak-* Fano 3-fold X any G_2 manifold built from X contains a rigid associative submanifold w/ topology $S^1 \times S^2$.

Theorem: (Corti-Haskins-Norstrom-Pacini)

There exist many topological types of compact G_2 manifold which contain *rigid* associative submanifolds diffeomorphic to $S^1 \times S^2$.

Why do we get rigid associatives?

Let C be a cpt holo curve in X not meeting anticanonical divisor $D_1 \rightsquigarrow \operatorname{cpt}$ holo curve $C \subset M = \overline{X} \setminus D_1 \rightsquigarrow \mathbb{S}^1 \times C$ is cpt associative submfd in $\mathbb{S}^1 \times M$.

- ullet C rigid as a holo curve in M iff $\mathbb{S}^1 \times C$ rigid as associative submfd of $\mathbb{S}^1 \times M$
- Since $\mathbb{S}^1 \times C$ is rigid in $\mathbb{S}^1 \times M$, easy to perturb $\mathbb{S}^1 \times C$ to rigid associative submfd in glued G_2 structure for $T \gg 1$.

Remarks:

- \bullet First examples of *rigid* associative submanifolds in compact G_2 manifolds.
- Infinitesimal deformations of associative submfds \iff twisted harmonic spinors.
- \Rightarrow deformation theory can be obstructed (unlike special Lagrangians & coassociatives)
- Index of twisted Dirac operator is zero since in odd dimension, but hard to control kernel or cokernel seperately.
- ullet Can attempt to build invariants of G_2 manifolds by counting associative submfds in a given homology class. Generically expect only 0-diml moduli spaces of associative submfds.

Existence of HK-rotations

Basic strategy:

- 1. Understand which K3 surfaces D arise in $|K_X^{-1}|$ for X in a deformation class of Fano or weak Fano 3-folds
- 2. Use understanding from 1, together with global Torelli/surjectivity of periods for K3 surfaces to reduce to problem about embedding certain types of lattice in the K3 lattice.
- 3. Apply Nikulin's results on existence of lattice embeddings to construct the HK-rotation.
- 4. Some subtleties from 1: only get Zariski open (so dense) subset of natural K3 moduli spaces.

Question: Which K3 surfaces D arise in $|K_X^{-1}|$ for X in a deformation class of Fano 3-folds?

A. Any such K3 is projective

B. $H^2(X,\mathbb{Z})$ inherits a lattice structure via

$$(L,M) = L \cdot M \cdot K_X^{-1}$$

satisfying $(K_X^{-1}, K_X^{-1}) = 2g - 2$.

Lefschetz Hyperplane Theorem \Rightarrow lattice of any such K3 contains a certain type of sublattice P (the Picard lattice of the Fano 3-fold)

Get special class of K3 surfaces called *ample P-polarized K3* surfaces. Studied by e.g. Dolgachev.

Need to study the forgetful map $(X,D) \mapsto D$ between moduli of pairs and moduli of P-polarized K3 surfaces and the two moduli spaces.

Beauville studied this problem in Fano context.

Lefschetz Hyperplane Theorem and *Nakano Vanishing Theorem* are crucial ingredients.

Vanishing results for weak and weak-* Fano 3-folds

Kodaira vanishing for ample line bundles:

$$H^i(X, K_X \otimes L) = 0$$
 for all $i > 0$.

Kawamata-Viehweg: Kodaira vanishing still holds if L is only big and nef.

I. Akizuki-Nakano vanishing for ample L:

$$H^q(X, \Omega_X^p \otimes L) = 0$$
, for $p + q > n$.

$$(\Leftrightarrow H^q(X, \Omega_X^p \otimes L^{-1}) = 0 \text{ for } p+q < n.)$$

Nakano vanishing fails in general for weak Fanos.

II. Lefschetz Hyperplane Theorem (LHT)

X Fano: K_X^{-1} ample so Lefschetz Hyperplane Theorem applies to $D \in |K_X^{-1}|$.

$$\Rightarrow \pi_1 X = \pi_1 D = (0)$$
 and

 $i^*: H^2(X,\mathbb{Z}) \to H^2(D,\mathbb{Z})$ is injective.

 \Rightarrow Picard lattice of Fano 3-fold embeds as (primitive) sublattice in K3 lattice.

Akizuki-Nakano type vanishing and Lefschetz hyperplane theorem on weak* Fanos

- I. Sommese-Esnault-Viehweg vanishing for k-ample line bundles gives us an analogue of Akizuki-Nakano vanishing
- ⇒ deformation theory used in Beauville's work in the Fano context still goes through for weak-* Fanos
- II. Can apply Goresky-MacPherson's version of Lefschetz Hyperplane Theorem for lef line bundles L to prove:

Picard lattice of a weak-* Fano 3-fold still embeds as (primitive) sublattice in K3 lattice.

Sommese-Esnault-Viehweg vanishing for k-ample bundles

Definition: A line bundle L is k-ample if for some m > 0

- 1. $L^{\otimes m}$ is globally generated i.e. $H^0(X, L^{\otimes m})$ separates points of X.
- 2. the corresponding morphism

$$\phi_{L^{\otimes m}}: X \to \mathbb{P}(H^0(X, L^{\otimes m}))$$

has at most k dimensional fibres.

Remark: L is 0-ample iff L is ample.

Theorem (Sommese-Esnault-Viehweg) If L is a k-ample line bundle of Iataka dimension $\kappa(L)$ on a compact Kähler manifold then

$$H^q(X, \Omega_X^p \otimes L^{-1}) = 0,$$

for $p + q < \min(\kappa(L), n - k + 1)$.

Remark: L big iff Iataka dimension of L is $n = \dim_{\mathbb{C}} X$.

Vanishing for K_X^{-1} of weak-* Fano 3-folds

Proof is application of Esnault-Viehweg's logarithmic de Rham complexes machinery (Asterisque 1989).

Corollary If L is 1-ample and big then Nakano vanishing holds for L.

In particular . . .

If X is a smooth weak-* Fano 3-fold then Nakano vanishing holds for the line bundle K_X^{-1} .

Main Application: Beauville's results about the moduli of pairs (X,D) and the image of map $(X,D) \mapsto D$ for Fano 3-folds still hold on any smooth weak-* Fano 3-fold.

Gives enough control to use Global Torelli Theorem for K3 surfaces to construct HK rotations associated to pairs of weak-* Fano 3-folds in similar way to Fano case.