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Exceptional holonomy groups: a review

Motivating question: which subgroups of SO(n) can be the

holonomy group of a simply-connected n-manifold M?

• 1955: Berger gives list of 8 families of subgroups of SO(n) that could

be holonomy groups of a simply-connected irreducible and nonsymmetric

Riemannian manifold.

• Includes 3 exceptional cases in dim 7, 8 and 16.

G2 ⊂ SO(7), Spin(7) ⊂ SO(8), Spin(9) ⊂ SO(16).

• 1962: Simons simplifies Berger’s proof: shows Hol(g) must act transi-

tively and effectively on the unit sphere in Rn.

• 1968: Alekseevskii proves any Riemannian metric with holonomy group

Spin(9) ⊂ SO(16) is symmetric.

Exceptional holonomy question:

Do manifolds with holonomy G2 and Spin(7) exist?
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What is the group G2?

Unhelpful answer: G2 is the unique compact 1-connected simple Lie group of

dimension 14.

Two geometric characterizations of G2:

(i) the automorphism group of the octonions O

(ii) the stabilizer of a generic 3-form in R7

Define a vector cross-product on R7 = Im(O)

u× v = Im(uv)

where uv denotes octonionic multiplication.

Cross-product has an associated 3-form

φ0(u, v, w) := 〈u× v, w〉 = 〈uv,w〉

φ0 is a generic 3-form so

G2 = {A ∈ GL(7,R)| A∗φ0 = φ0} ⊂ SO(7).



SU(2) ⊂ SU(3) ⊂ G2

∃ close relations between G2 holonomy and Calabi-Yau geome-

tries in 2 and 3 dimensions.

• Write R7 = R× C3 with (C3, ω,Ω) the std SU(3) structure then

φ0 = dt ∧ ω + Re(Ω)

Hence stabilizer of R factor in G2 is SU(3) ⊂ G2.

More generally if (X, g) is a Calabi-Yau 3-fold then product metric on S1 ×X
has holonomy SU(3) ⊂ G2.

• Write R7 = R3×C2 with coords (x1, x2, x3) on R3, with std SU(2) structure

(C2, ωI,Ω = ωJ + iωK) then

φ0 = dx1 ∧ dx2 ∧ dx3 + dx1 ∧ ωI + dx2 ∧ ωJ + dx3 ∧ ωK,

Hence subgroup of G2 fixing R3 ⊂ R3 × C2 is SU(2) ⊂ G2.



Exceptional holonomy: some milestones

1984: (Bryant) locally ∃ many metrics with holonomy G2 and

Spin(7). Proof uses Exterior Differential Systems.

1989: (Bryant-Salamon) explicit complete metrics with holon-

omy G2 and Spin(7) on noncompact manifolds.

1996: (Joyce) Gluing methods used to construct compact 7-

manifolds with holonomy G2 and 8-manifolds with holonomy

Spin7. Uses a modified Kummer-type construction.

• Start with flat orbifold T 7/Γ for appropriate finite groups Γ ∈ G2.

• Resolve singularities of orbifold to give smooth (but nearly singular) 7-
mfd and a metric which is close to G2 holonomy (small torsion).

• Use analysis (on nearly singular mfd) to perturb 3-form to torsion-free
G2 structure.



Calibrations – Definitions

A calibrated geometry is a distinguished class of minimal sub-
manifolds associated with a differential form.

• A calibrated form is a closed differential

p-form φ on a Riemannian manifold (M, g) satisfying φ ≤ volg.

i.e. φ(e1, . . . , ep) ≤ 1

for any orthonormal set of p tgt vectors

• For m ∈ M associate with φ the subset Gm(φ) of oriented p-planes for

which equality holds in (∗) – the calibrated planes.

• A submanifold calibrated by φ is an oriented p-dim submanifold whose

tangent plane at each point m lies in the subset Gm(φ) of distinguished

p-planes.

Lemma: (Harvey–Lawson) Calibrated submanifolds minimize
volume in their homology class.



Holonomy, constant tensors & calibrations

Key fact: Parallel tensors on (M, g) determined by holonomy

group G = Hol g.

G ⊂ O(n) also acts on k-forms on Rn.

G-invariant k-forms ! parallel k-forms on (M, g)

If φ0 is G-invariant k-form on Rn, by rescaling can arrange comass

1 property

⇒ φ0 is a calibration on Rn.

Also φ0 G-invariant ⇒

ξ a calibrated plane ⇒ so is γ.ξ for any γ ∈ G,

i.e. ∃ many φ0-calibrated planes.

φ0 calibration ⇒ corresponding parallel k-form φ on (M, g) also

a calibration with a large set of calibrated k-planes.

Suggests locally should exist many φ-calibrated submfds.



Associative & coassociative calibrations

3-form φ0 and 4-form ∗φ0 on R7 are G2-invariant calibrations.

Oriented 3-planes calibrated by φ0 are called associative planes.

• R3 ⊂ R3 × C2 is an associative 3-plane.

• G2 acts transitively on associative 3-planes.

Oriented 4-planes calibrated by ∗φ0 are called coassociative.

• 4-plane is coassociative iff its orthogonal complement is associative.

Holonomy/constant tensor correspondence ⇒

on any mfd (M, g) with Hol(g) ⊂ G2 we have parallel 3 and 4-

forms φ and ∗gφ.

⇒ associative and coassociative calibrations exist on any mfd

with holonomy G2.
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G2 structures and positive 3-forms

Positive 3-forms ! (oriented) G2-structures

• A 3-form φ on an oriented 7-mfd M is positive if ∀ p ∈ M ∃ an oriented

isomorphism

i : TpM → R7, such that i∗φ0 = φ.

• Positive 3-forms on R7 ! GL+(7,R)/G2.

• dim(GL+(7,R)/G2) = 35 = dim Λ3R7.

⇒ Positive 3-forms on M form an open subbundle of Λ3T ∗M i.e.
small perturbations of a G2 structure are G2 structures.

Prop: (S. Salamon) Let (M,φ, g) be a G2 structure on a com-
pact 7-manifold. TFAE

1. Hol(g) ⊂ G2 and φ is the induced 3-form

2. ∇φ = 0 where ∇ is Levi-Civita w.r.t g

3. dφ = d∗φ = 0.

NB (3) is nonlinear in φ because metric g depends nonlinearly on φ.



The topology of G2 manifolds

Prop:

(a). A compact 7-manifold M admits a G2-structure iff M is

orientable and spinnable.

(b). A compact 7-manifolds M with a torsion-free G2 structure

(φ, g) has Hol(g) = G2 iff π1M is finite.

(c). A compact 7-manifold (M, g) with Hol(g) = G2 has nonzero

first Pontrjagin class p1(M).



Compact mfds with holonomy G2 via neck-stretching

Donaldson suggested constructing compact G2 manifolds via a

neck-stretching argument

• Use noncompact version of Calabi conjecture to construct asymptotically

cylindrical Kähler-Ricci-flat (AC KRF) 3-folds X with one end ∼ C∗×D,

with D a smooth K3

• M = S1 × X is a Riem 7-mfd with Hol g = SU(3) ⊂ G2 with end ∼
R+ × T 2 ×K3.

• Take a twisted connect sum of a pair of Mi = S1 ×Xi

• For T >> 1 construct a G2-structure w/ small torsion (exponentially

small in T ) and prove it can be corrected to torsion-free.



Hyperkähler rotation (or matching data)

Product G2 structure on Mi asymptotic to

dθ1 ∧ dθ2 ∧ dt+ dθ1 ∧ ω
(i)
I + dθ2 ∧ ω

(i)
J + dt ∧ ω(i)

K

• ω(i)
I denotes Ricci-flat Kähler metric on Di

• ω(i)
J +

√
−1ω(i)

K parallel (2,0)-form on Di.

To get a well-defined G2 structure using

F : [T − 1, T ]× T2 ×D1 → [T − 1, T ]× T2 ×D2

given by

(t, θ1, θ2, y) 7→ (2T − 1− t, θ2, θ1, f(y))

to identify end of M1 with M2 we need f : D1 → D2 to satisfy

f∗ω(2)
I = ω

(1)
J , f∗ω(2)

J = ω
(1)
I , f∗ω(2)

K = −ω(1)
K

Constructing such hyperkähler rotations is nontrival and a major

part of the construction.



Kovalev’s compact G2 manifolds

Kovalev carried out Donaldson’s proposal.

Main points of Kovalev’s approach (2003):

1. Construct asymptotically cylindrical Calabi-Yau 3-folds from smooth Fano
3-folds, using work of Tian-Yau

2. Need to find sufficient conditions for existence of a “hyperkähler rotation”
between D1 and D2.

3. Given a pair of AC KRF 3-folds Xi and a HK-rotation f : D1 → D2 can
always glue M1 and M2 to get a 1-parameter family of cpt manifolds MT

with holonomy G2.

4. Use global Torelli theorems and lattice embedding results (Nikulin) to
find hyperkähler rotations from suitable initial pairs of Fano 3-folds

5. When set up in terms of analysis on exponentially weighted Sobolev

spaces the gluing /perturbation argument is relatively straightforward

(no small eigenvalues)



An asymptotically cylindrical Calabi conjecture

Tian-Yau I (JAMS 1990): The Calabi conjecture on fibred

quasiprojective manifolds.

Setup:

• X is a projective manifold

• D ⊂ X a divisor

• π : X → S is a fibre space over a smooth algebraic curve S with connected

fibres

• D = π−1(DS), DS ⊂ S consists of finitely many smooth reduced fibres.

Thm: Let X = X \D. Given any (1,1)-form Ω representing c1(K−1
X
⊗ [D]−1),

there is a complete Kähler metric with Ω as its Ricci form and this metric

has linear volume growth.

⇒ Get complete Calabi-Yau metrics with linear volume growth from anti-

canonical divisors in fibred quasiprojective varieties.

Q: How do we find such K3 fibred projective 3-folds?
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K3-fibred 3-folds from Fano 3-folds

X a smooth Fano 3-fold: a nonsingular cx 3-fold X with K−1
X ample.

A generic anticanonical divisor D1 ∈ |K−1
X | is a smooth K3 sur-

face. BUT, normal bundle of D1 in X is not trivial.

If D1, D′1 ∈ |K
−1
X | are generic then C = D1 ∩D′1 is a smooth curve of genus g.

g is the genus of the Fano 3-fold and satisfies

(K−1
X )3 = 2g − 2.

Blowing up C yields a new 3-fold X and a map

π : X → P1

whose fibres are the proper transforms of the surfaces in the pencil defined

by D1 and D′1. Proper transform of D1 is an anticanonical divisor on X.

M = X \ D1 is a quasiprojective 3-fold with trivial canonical

bundle which fibres over C with generic fibre a smooth K3;

M admits an asymptotically cylindrical Calabi-Yau metric

Q: how can we find more K3 fibred quasiprojective 3-folds?



Weak Fano 3-folds

Basic idea: replace condition K−1
X is positive, with K−1

X suffi-

ciently “non-negative”; replace ample with nef and big.

Definition: A smooth cx 3-fold X is a weak Fano manifold if

K−1
X is big and nef.

• A holomorphic line bundle L on X is nef if

c1(L).C =
∫
C
c1(L) ≥ 0

for every irreducible (holo) curve C ⊂ X.

• A holomorphic line bundle L on X is big if

h0(L⊗m) ≥ Cmn, for m� 1, n = dimCX.

There exist many more weak Fano 3-folds than Fano 3-folds

(thousands versus around 100 deformation families of Fanos)

Classification of smooth weak Fano 3-folds ongoing
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Weak Fano 3-folds and G2 manifolds

Main points:

1. Generic elements of |K−1
X | smooth K3s for weak Fano 3-folds.

⇒ can still construct asymptotically cylindrical Calabi-Yau 3-folds from weak

Fanos.

2. Need more than weak Fano to construct hyperkahler rotation f : D1 → D2.

Need a sufficiently good deformation/moduli theory for anticanonical K3 di-

visors in deformation family of the 3-fold

Definition: A weak Fano 3-fold is weak-* if the natural mor-

phism to its anti-canonical model is small.

Also useful to allow intermediate class of weak Fano 3-folds where AC model

is only semismall.

For weak-* Fano 3-folds can still construct HK rotations.

⇒ can use them to construct compact G2 manifolds.
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Simple examples of weak-* Fano 3-folds

Example 1: start with a (singular) Fano 3-fold Y containing a

plane Π and resolve.

If Π = (x0 = x1 = 0) then eqn of Y is

Y = (x0a3 + x1b3 = 0) ⊂ P4

where a3 and b3 are homogeneous cubic forms in (x0, . . . , x4). Generically the

plane cubics

(a3(0,0, x2, x3, x4) = 0) ⊂ Π,

(b3(0,0, x2, x3, x4) = 0) ⊂ Π

intersect in 9 distinct points, where Y has 9 ordinary double points.

Simultaneous resolution of these ODPs by blowing-up Π ⊂ Y gives a weak-*

Fano 3-fold X such that:

X contains 9 smooth rigid rational curves with normal bundle

O(−1)⊕O(−1) with genus 3 and Picard rank 2.
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Examples of weak-* Fano 3-folds

Example 2: A quartic 3-fold in P4 with only ordinary double points has

at most 45 singular points. Up to coordinate change, there is a unique such

3-fold, the Burkhardt quartic Y

(x4
0 − x0(x3

1 + x3
2 + x3

3 + x3
4 + 3x1x2x3x4)) = 0) ⊂ P4.

Y admits a small projective resolution X

X is a weak-* Fano 3-fold w/ genus 3, Picard rank 16 and 45

smooth rigid P1s with normal bundle O(−1)⊕O(−1).

Example 2 shows weak-* Fano 3-folds can have larger Picard

rank. ⇒ can get G2 manifolds with larger Betti numbers.

Deformation classes of Fano 3-folds classified in 1980s via minimal model

techniques. Classification results ⇒ any Fano 3-fold has Picard rank ≤ 10. In

fact, Picard rank ≥ 6 forces X to be P1×a 2d Fano (del Pezzo surface).
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Toric weak-* Fano 3-folds

Any terminal toric Fano 3-fold has only ODPs as singularities

Toric terminal Fano 3-folds classified in terms of reflexive poly-

topes ⇒ ∃ 82 terminal toric Fano 3-folds

Every terminal Fano 3-folds admits at least one projective small

resolution; most admit many such resolutions.

⇒ lots of smooth toric weak-* Fano 3-folds
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Advantages of weak-* Fano vs. Fano

1. Many more weak-* Fano than Fano 3-folds

⇒ get more topological types of G2 mfds

2. In a Fano 3-fold K−1
X is ample:

⇒ any compact holo curve C ⊂ X must intersect any anti-

canonical divisor

A weak-* Fano 3-fold can contain holo curves C that do not

meet anticanonical divisors.

3. For each smooth rigid P1 in a weak-* Fano 3-fold X any G2

manifold built from X contains a rigid associative submani-

fold w/ topology S1 × S2.

Theorem: (Corti-Haskins-Norstrom-Pacini)

There exist many topological types of compact G2 manifold

which contain rigid associative submanifolds diffeomorphic to

S1 × S2.
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Why do we get rigid associatives?

Let C be a cpt holo curve in X not meeting anticanonical divisor D1

 cpt holo curve C ⊂M = X \D1

 S1 × C is cpt associative submfd in S1 ×M .

• C rigid as a holo curve in M iff S1×C rigid as associative submfd of S1×M
• Since S1 × C is rigid in S1 ×M , easy to perturb S1 × C to rigid associative
submfd in glued G2 structure for T � 1.

Remarks:

• First examples of rigid associative submanifolds in compact G2 manifolds.

• Infinitesimal deformations of associative submfds! twisted harmonic spinors.

⇒ deformation theory can be obstructed (unlike special Lagrangians & coas-
sociatives)

• Index of twisted Dirac operator is zero since in odd dimension, but hard to
control kernel or cokernel seperately.

• Can attempt to build invariants of G2 manifolds by counting associative

submfds in a given homology class. Generically expect only 0-diml moduli

spaces of associative submfds.
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Existence of HK-rotations

Basic strategy:

1. Understand which K3 surfaces D arise in |K−1
X | for X in a

deformation class of Fano or weak Fano 3-folds

2. Use understanding from 1, together with global Torelli/surjectivity

of periods for K3 surfaces to reduce to problem about embedding

certain types of lattice in the K3 lattice.

3. Apply Nikulin’s results on existence of lattice embeddings to

construct the HK-rotation.

4. Some subtleties from 1: only get Zariski open (so dense)

subset of natural K3 moduli spaces.



Question: Which K3 surfaces D arise in |K−1
X | for X in a defor-

mation class of Fano 3-folds?

A. Any such K3 is projective

B. H2(X,Z) inherits a lattice structure via

(L,M) = L ·M ·K−1
X

satisfying (K−1
X ,K−1

X ) = 2g − 2.

Lefschetz Hyperplane Theorem ⇒ lattice of any such K3 contains a certain

type of sublattice P (the Picard lattice of the Fano 3-fold)

Get special class of K3 surfaces called ample P -polarized K3

surfaces. Studied by e.g. Dolgachev.

Need to study the forgetful map (X,D) 7→ D between moduli of pairs and

moduli of P -polarized K3 surfaces and the two moduli spaces.

Beauville studied this problem in Fano context.

Lefschetz Hyperplane Theorem and Nakano Vanishing Theorem

are crucial ingredients.



Vanishing results for weak and weak-* Fano 3-folds

Kodaira vanishing for ample line bundles:

Hi(X,KX ⊗ L) = 0 for all i > 0.

Kawamata-Viehweg: Kodaira vanishing still holds if L is only big

and nef.

I. Akizuki-Nakano vanishing for ample L:

Hq(X,Ωp
X ⊗ L) = 0, for p+ q > n.

(⇔ Hq(X,Ωp
X ⊗ L

−1) = 0 for p+ q < n.)

Nakano vanishing fails in general for weak Fanos.



II. Lefschetz Hyperplane Theorem (LHT)

X Fano: K−1
X ample so Lefschetz Hyperplane Theorem applies

to D ∈ |K−1
X |.

⇒ π1X = π1D = (0) and

i∗ : H2(X,Z)→ H2(D,Z) is injective.

⇒ Picard lattice of Fano 3-fold embeds as (primitive) sublattice

in K3 lattice.



Akizuki-Nakano type vanishing and Lefschetz hyperplane

theorem on weak* Fanos

I. Sommese-Esnault-Viehweg vanishing for k-ample line bundles

gives us an analogue of Akizuki-Nakano vanishing

⇒ deformation theory used in Beauville’s work in the Fano con-

text still goes through for weak-* Fanos

II. Can apply Goresky-MacPherson’s version of Lefschetz Hyper-

plane Theorem for lef line bundles L to prove:

Picard lattice of a weak-* Fano 3-fold still embeds as (primitive)

sublattice in K3 lattice.



Sommese-Esnault-Viehweg vanishing for k-ample bundles

Definition: A line bundle L is k-ample if for some m > 0

1. L⊗m is globally generated i.e. H0(X,L⊗m) separates points of X.

2. the corresponding morphism

φL⊗m : X → P(H0(X,L⊗m))

has at most k dimensional fibres.

Remark: L is 0-ample iff L is ample.

Theorem (Sommese-Esnault-Viehweg) If L is a k-ample line

bundle of Iataka dimension κ(L) on a compact Kähler manifold

then

Hq(X,Ωp
X ⊗ L

−1) = 0,

for p+ q < min (κ(L), n− k + 1).

Remark: L big iff Iataka dimension of L is n = dimCX.



Vanishing for K−1
X of weak-* Fano 3-folds

Proof is application of Esnault-Viehweg’s logarithmic de Rham

complexes machinery (Asterisque 1989).

Corollary If L is 1-ample and big then Nakano vanishing holds

for L.

In particular . . .

If X is a smooth weak-* Fano 3-fold then Nakano vanishing holds

for the line bundle K−1
X .

Main Application: Beauville’s results about the moduli of pairs

(X,D) and the image of map (X,D) 7→ D for Fano 3-folds still

hold on any smooth weak-* Fano 3-fold.

Gives enough control to use Global Torelli Theorem for K3 sur-

faces to construct HK rotations associated to pairs of weak-*

Fano 3-folds in similar way to Fano case.


